CN107659128A - DC/DC switch converters power output transistor integrated drive electronics - Google Patents

DC/DC switch converters power output transistor integrated drive electronics Download PDF

Info

Publication number
CN107659128A
CN107659128A CN201710547844.1A CN201710547844A CN107659128A CN 107659128 A CN107659128 A CN 107659128A CN 201710547844 A CN201710547844 A CN 201710547844A CN 107659128 A CN107659128 A CN 107659128A
Authority
CN
China
Prior art keywords
signal
order
circuit
semiconductor
low level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710547844.1A
Other languages
Chinese (zh)
Other versions
CN107659128B (en
Inventor
黄令华
张海波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHENZHEN HOTCHIP TECHNOLOGY Co Ltd
Original Assignee
SHENZHEN HOTCHIP TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHENZHEN HOTCHIP TECHNOLOGY Co Ltd filed Critical SHENZHEN HOTCHIP TECHNOLOGY Co Ltd
Priority to CN201710547844.1A priority Critical patent/CN107659128B/en
Publication of CN107659128A publication Critical patent/CN107659128A/en
Application granted granted Critical
Publication of CN107659128B publication Critical patent/CN107659128B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

Integrated drive electronics for the driving of DC/DC switch converters power output transistor includes high-order driving pre-stage buffer, bootstrap capacitor, Capacitance Coupled drive circuit and the second phase inverter;High-order driving control signal exports high-order buffered-display driver signal to bootstrap capacitor negative plate and the second phase inverter after high position driving pre-stage buffer input, buffering;Second phase inverter, bootstrap capacitor and Capacitance Coupled drive circuit cooperate and raise the signal potential of high-order buffered-display driver signal, after the conducting of high-order N-type power transistor, make high-order drive signal of the Capacitance Coupled drive circuit output with high driving ability to high-order N-type power transistor grid.Simplify the complicated support circuit of prior art so that high-order prime driving buffering need not be reduced requirement on devices, reduced integrated circuit area using isolation class device;Simplify bit level shift circuit and high-low position N-type power transistor is prevented ganging up circuit, improve circuit efficiency, reduce circuit delay.

Description

DC/DC switch converters power output transistor integrated drive electronics
Technical field
The invention belongs to direct current energy translation circuit and system;More particularly to the double NMOS power transistors of application are as power The integrated drive electronics of the DC/DC switch electrical energy transformers of output power circuit framework.
Background technology
In the prior art, for by known DC input voitage be converted into needed for DC voltage DC/DC switch converters It can be divided into BUCK (decompression), BOOST (boosting), three kinds of BUCK-BOOST (voltage boosting-reducing) by its peripheral topology.Prior art In, the rectifier systems of DC/DC switch converters includes asynchronous rectification and synchronous rectification both working methods.Prior art In, DC/DC switch converters include pulse width modulation (PWM) and pulse frequency modulated again by the modulation system of its control signal PFM both.In asynchronous rectification mode, using diode as rectifying tube, in synchronous rectification pattern, using low on-resistance Power tube MOSFET can effectively reduce conduction loss, improve the efficiency of converter as rectifying tube, low-resistance MOSFET rectifications, because Synchronous rectification pattern is generally used in this portable type electronic product.In order to improve the efficiency of switch converters and improve integrated level, The double N-type power tube frameworks of generally use, because in the case of identical conducting resistance, N-type metal-oxide-semiconductor generally has smaller than p-type metal-oxide-semiconductor Parasitic capacitance, take smaller chip area.
DC/DC switch converters by produce certain frequency, dutycycle square-wave signal controlling switch pipe unlatching and pass It is disconnected, finally by being output to inductance and electric capacity carries out power filter and obtains required DC voltage.
Typical double NMOS power transistors drive circuit structures and corresponding type of drive such as Fig. 6 institutes in the prior art Show, this circuit framework is applied to BUCK, BOOST and BUCK-BOOST converter simultaneously.Its switched mode converter includes high-order N-type Power transistor VTh, low level N-type power transistor VTl, high position driving buffer 60, low level driving buffer 66, bit level Shift circuit 61, low level level displacement circuit 65, phase inverter 64, bootstrap capacitor CBOOT, ring cancellation module 101 and zero current inspection Survey ZCD modules 105.
From the double NMOS power transistor drive circuit structures of prior art typical case shown in Fig. 6, high position driving buffer 60 and bit level shift circuit 61 work when, its operating voltage is equivalent to bootstrap capacitor CBOOTVoltage, due to high-order N-type electricity Power transistor VThSource potential be in non zero potential most of the time in switching process, high position driving buffer 60 and height The current potential of related switch pipe body substrate needs and bootstrap capacitor C in bit level shift circuit 61BOOTThe current potential of negative plate is suitable, Therefore usually required in high-order driving buffer 60 and bit level shift circuit 61 using isolation class device, to ensure high-order drive Dynamic buffer 60 and bit level shift circuit 61 can normal works;And isolating device will take bigger core than non-isolated device Piece area, and the parasitic capacitance of isolating device causes more energy losses in switching process, influences DC/DC switch converters Whole efficiency, especially in the case of light load, the influence to efficiency becomes apparent.
Fig. 9 show bit level shift circuit 61 in the double NMOS power transistor drive circuit structures of prior art typical case Detailed circuit, the circuit structure is complicated, has used 8 transistors;Need to incite somebody to action by the collaborative work of 8 transistors First pulse-width signal u of inputPWMIt is lifted to suitable high-order N-type power transistor VThThe current potential of raster data model;High-order electricity Not only itself the meeting consumed energy, and signal delay can be introduced of prosposition shift circuit 61.
Figure 10 show commonly used in the double NMOS power transistor drive circuit structures of prior art prevent high-order N-type electric power Transistor VThWith low level N-type power transistor VTlThe circuit structure block diagram ganged up, in order to ensure that high bit driver circuit and low level drive Dynamic circuit is operated in sequential in correspondence with each other, therefore in the circuit for preventing power tube from ganging up, before high bit driver circuit and Level displacement circuit is provided with before low level drive circuit, circuit structure is complicated.Explanation of nouns:
DCDC is English Direct current Direct current abbreviation, and Chinese implication is DC voltage conversion For DC voltage;
LDO is English low dropout regulator abbreviation, and Chinese implication refers to low pressure difference linear voltage regulator;
MOSEFT is English Metal-Oxide-Semiconductor Field-Effect Transistor abbreviation, Chinese is meant that metal-oxide-semiconductor field effect t;
The implication of BUCK patterns in this application is the decompression DC/DC translation circuits using BUCK REGULATOR modes;
The implication of BOOST patterns in this application is to convert electricity using the decompression DC/DC of BOOST REGULATOR modes Road;
The implication of BUCK-BOOST patterns in this application is to be become using the buck DC/DC of BUCK-BOOST topological structures Change circuit;It is that a kind of output voltage can both be less than or the not isolated DC converter higher than input voltage, but its output voltage Polarity it is opposite with input voltage.
PWM is English Pulse Width Modulation abbreviation, and Chinese implication is pulse width modulation;Pulsewidth width Modulation system (PWM) switching mode mu balanced circuit be in the case where control circuit output frequency is constant, by adjusting its dutycycle, from And reach the purpose of regulated output voltage.
CCM is English continuous current mode abbreviation, and Chinese is meant that continuous conduction mode, refers to DC/ The inductive current of DC converters output is continuous working method;
DCM is English discontinuous current mode abbreviation, and Chinese is meant that discontinuous conduction mode, referred to The inductive current of DC/DC switch converters output is discrete working method.DC/DC switching converter operations are in DCM patterns I.e. discontinuous conduction mode when, the period that inductive current is zero in the course of the work be present;When inductance is smaller, load current compared with It is small, or when switch periods are long, will appear from just dropping to zero situation, inductive current at the end of inductive current does not have also in the cycle Zero is always remained as, is come until the new cycle, this is discontinuous operating mode;The DC/DC switches of work in ccm mode become The output of parallel operation is unrelated with load, so its load adjusts its efficiency can be poor.And dutycycle, inductance and load can all influence DCM output voltage, so its load regulation is worse, but in the case of underloading, the efficiency of DCM patterns can be some higher.
The content of the invention
The technical problem to be solved in the present invention is to avoid above-mentioned the deficiencies in the prior art part and propose a kind of more simplified High-order N-type power transistor VThDrive circuit, can not only simplify in the prior art complicated bit level displacement electricity Road, circuit efficiency is improved, reduce circuit delay;And corresponding support circuit can be simplified.
The present invention solves the problems, such as that the technical scheme of above-mentioned technology is a kind of brilliant for DC/DC switch converters power output The integrated drive electronics of body pipe driving, including the high-order driving pre-stage buffer for high-order driving control signal input buffering, The bootstrap capacitor elevated for signal potential, for the Capacitance Coupled drive circuit of signal coupling, believe for high-order buffered-display driver Number the second reverse phase inverter;High-order driving control signal is that the second pulse-width signal drives the defeated of pre-stage buffer from high-order Enter terminal input;The high-order negative plate for driving the high-order buffered-display driver signal of pre-stage buffer output to bootstrap capacitor, at the same it is high-order Pre-stage buffer is driven to export high-order buffered-display driver signal to the input terminal of the second phase inverter;The positive plate and electricity of bootstrap capacitor Hold the first input end electrical connection of coupling drive circuit;The output end of second phase inverter and the second of Capacitance Coupled drive circuit Input terminal electrically connects;3rd input terminal of Capacitance Coupled drive circuit is used to accessing the of outside 3rd external input power Three d. c. voltage signals;The first lead-out terminal of Capacitance Coupled drive circuit electrically connects with high-order N-type power transistor grid, electricity The second lead-out terminal for holding coupling drive circuit electrically connects with high-order N-type power transistor source electrode;Second phase inverter, bootstrap capacitor Cooperate, the signal potential of high-order buffered-display driver signal is raised, in high-order N-type electric power crystal with Capacitance Coupled drive circuit After pipe conducting, the first lead-out terminal of Capacitance Coupled drive circuit can be made persistently to provide the high-order N-type electric power crystal of suitable potential Tube grid drive signal, i.e., high-order drive signal.
The Capacitance Coupled drive circuit includes first switch, second switch, the first coupled capacitor and the second N-type metal-oxide-semiconductor; One end of second switch is used as the 3rd input terminal of Capacitance Coupled drive circuit, that is, accesses the 3rd of the 3rd external input power D. c. voltage signal;The other end of second switch and one end electrical connection of first switch, while the other end of the second switch is also The positive plate electrical connection of first input end as Capacitance Coupled drive circuit, the first input end and bootstrap capacitor, connects Enter coupling drive circuit control signal;The other end of first switch is used as the first lead-out terminal of Capacitance Coupled drive circuit, defeated Go out high-order N-type power transistor gate drive signal uGPTo the grid of high-order N-type power transistor;Meanwhile the first switch The other end also electrically connects with the drain electrode of the second N-type metal-oxide-semiconductor;The first d. c. voltage signal of coupling drive circuit control signal and input The switch of first switch described in co- controlling;The source electrode of second N-type metal-oxide-semiconductor is used as the second output end of Capacitance Coupled drive circuit The sub source electrode with high-order N-type power transistor electrically connects;The grid of second N-type metal-oxide-semiconductor and one end of the first coupled capacitor are electrically connected Connect;The other end of first coupled capacitor is used as the second input terminal of Capacitance Coupled drive circuit, and the output of the second phase inverter End electrical connection;One end of second switch from bootstrap capacitor positive plate access coupling drive circuit control signal, second switch it is another The 3rd d. c. voltage signal is accessed in one end, and coupling drive circuit control signal and the 3rd d. c. voltage signal co- controlling second are opened The switch of pass.
The first switch is the first p-type metal-oxide-semiconductor, the leakage of the grid of the first p-type metal-oxide-semiconductor and high-order N-type power transistor Pole electrically connects, and the drain electrode of the first p-type metal-oxide-semiconductor and the drain electrode of the second N-type metal-oxide-semiconductor electrically connect, and the source electrode of the first p-type metal-oxide-semiconductor is used as The first input end of Capacitance Coupled drive circuit;
The source electrode of first p-type metal-oxide-semiconductor electrically connects with the positive plate of bootstrap capacitor, accesses coupling drive circuit control signal; The grid of first p-type metal-oxide-semiconductor accesses the first d. c. voltage signal;Coupling drive circuit control signal and the first d. c. voltage signal The on off state of co- controlling the first p-type metal-oxide-semiconductor.
The second switch is the first diode, and the positive pole the as Capacitance Coupled drive circuit the 3rd of the first diode is defeated Enter terminal, access the 3rd d. c. voltage signal of the 3rd external input power;The negative pole and bootstrap capacitor of first diode are just Pole plate electrical connection access coupling drive circuit control signal;Coupling drive circuit control signal and the 3rd d. c. voltage signal are common Control the switch of the first diode.
The second switch includes the 4th N-type metal-oxide-semiconductor, the second coupled capacitor and the second diode, and the second diode is just Pole is used as the 3rd input terminal of Capacitance Coupled drive circuit, accesses the 3rd d. c. voltage signal of the 3rd external input power; Meanwhile second diode positive pole and the 4th N-type metal-oxide-semiconductor source electrode electrical connection;The negative pole of second diode and the 4th N-type MOS The grid electrical connection of pipe;The grid of 4th N-type metal-oxide-semiconductor also electrically connects with one end of the second coupled capacitor;Second coupled capacitor One end of the other end and the first coupled capacitor electrically connects, and the connection terminal is used as the second input of Capacitance Coupled drive circuit The lead-out terminal electrical connection of son, the connection terminal and the second phase inverter;The drain electrode of 4th N-type metal-oxide-semiconductor drives as Capacitance Coupled The first input end of circuit, and the positive plate electrical connection of bootstrap capacitor, access coupling drive circuit control signal;Coupling driving The on off state of second switch described in circuit control signal and the 3rd d. c. voltage signal co- controlling.
The clamp circuit of gate source voltage control, the clamp circuit bag are provided between the grid and source electrode of second N-type metal-oxide-semiconductor Include the first resistor and second resistance being connected between the grid and source electrode of the second N-type metal-oxide-semiconductor;The clamp circuit also includes setting Put the 3rd N-type metal-oxide-semiconductor between the grid and source electrode of the second N-type metal-oxide-semiconductor;The drain electrode of 3rd N-type metal-oxide-semiconductor and the second N-type MOS The source electrode electrical connection of the grid electrical connection of pipe, the source electrode of the 3rd N-type metal-oxide-semiconductor and the second N-type metal-oxide-semiconductor, the grid of the 3rd N-type metal-oxide-semiconductor Pole while and first resistor and second resistance electrical connection.
The integrated drive electronics for the driving of DC/DC switch converters power output transistor, in addition to first is anti- Phase device, low level driving control signal level displacement circuit and low level driving buffer;Low level driving control signal is the first pulsewidth Modulated signal is " logic NOT " signal of the second pulse-width signal;Low level driving control signal is that the first pulse-width signal is defeated Enter to low level driving control signal level displacement circuit to carry out the displacement of signal potential, by the pulse electricity of the first pulse-width signal Position is transformed into the 4th d. c. voltage signal current potential of outside 4th external input power from the first input power high potential, while low Position driving control signal level displacement circuit turns the space current potential of the first pulse-width signal from the first input power ground potential Change to the source potential of low level N-type power transistor;Low level driving control signal level displacement circuit outputs signal to low level drive Dynamic buffer, low level driving buffer exports low level drive signal to the grid of low level N-type power transistor, for low level N-type The driving of power transistor;It is anti-phase to the first phase inverter, first that low level driving control signal is that the first pulse-width signal inputs It is that the second pulse-width signal a to high position drives pre-stage buffer that device, which exports high-order driving control signal,.
The integrated drive electronics for the driving of DC/DC switch converters power output transistor, in addition to ZCD moulds Block, for detecting the zero current cross of the i.e. high-order N-type power transistor of rectifying tube and/or low level N-type power transistor;When applying The DC/DC switch converters of the integrated drive electronics, when being operated in BUCK patterns and being used as BUCK systems, the both ends of ZCD modules Drain electrode with low level N-type power transistor and source electrode electrical connection respectively;Low level N-type power transistor is rectifying tube, then ZCD modules The current signal between the drain electrode of low level N-type power transistor and the source electrode of low level N-type power transistor can be detected;
It is used as BOOST systems when being operated in BOOST patterns in the DC/DC switch converters for applying the integrated drive electronics During system, the both ends drain electrode with high-order N-type power transistor and the source electrode electrical connection respectively of ZCD modules;High-order N-type power transistor For rectifying tube, ZCD modules will be detected between the drain electrode of high-order N-type power transistor and the source electrode of high-order N-type power transistor Between current signal;When being operated in BUCK-BOOST patterns in the DC/DC switch converters for applying the integrated drive electronics When being used as BUCK-BOOST systems, the drain electrode with low level N-type power transistor and source electrode are electrically connected respectively at the both ends of ZCD modules Connect;Low level N-type power transistor is rectifying tube, then ZCD modules can detect the drain electrode of low level N-type power transistor and low level N-type electricity Current signal between the source electrode of power transistor.
The integrated drive electronics for the driving of DC/DC switch converters power output transistor also includes ring and eliminated Module, the both ends of the both ends of ring cancellation module respectively with external inductors L1 electrically connect, for removing with DC/DC switch converters Ring caused by the external inductors L1 self-oscillations of connection;When the DC/DC switching converter operations of the application integrated drive electronics In dcm mode, and by ZCD modules to detect rectification tube current be zero when, now high-order N-type power transistor and low level N When type power transistor is all closed, ring cancellation module is removed in external inductors L1 due to ring caused by self-oscillation.
The technical scheme that the present invention solves the problems, such as above-mentioned technology can also be a kind of DC/DC of above-mentioned integrated drive electronics Switch converters, including anti-gang up circuit list for prevent that high-order N-type power transistor and low level N-type power transistor from ganging up Member;It is anti-gang up circuit unit include the 3rd level displacement circuit, the 3rd phase inverter, first with door, the 4th phase inverter and second with Door;Low level drive signal inputs from the input terminal of the 3rd level displacement circuit, the lead-out terminal of the 3rd level displacement circuit with The input terminal electrical connection of 3rd phase inverter, the lead-out terminal of the 3rd phase inverter are electrically connected with first with the first input end of door Connect, first is used to inputting low level driving control signal i.e. the first pulse-width signal with the second input terminal of door, and first and door Output signal to the first phase inverter;High-order buffered-display driver signal inputs from the input terminal of the 4th phase inverter, the 4th phase inverter Lead-out terminal electrically connects with second with the first input end of door, and second is used to input low level driving with the second input terminal of door Control signal is the first pulse-width signal, and second outputs signal to low level driving control signal level displacement circuit with door.
Compared with the existing technology compared with, the beneficial effects of the invention are as follows:1st, bit level complicated in the prior art is simplified Shift circuit, circuit efficiency is improved, reduce circuit delay;2nd, the drive circuit drives the circuit of buffering will to high-order prime Ask lower so that high-order prime driving buffering need not be reduced the requirement to device, reduced integrated electricity using isolation class device The area on road;3rd, to applying the DC/DC switch converters of the drive circuit, its periphery prevents high-order N-type power transistor VThWith low level N-type power transistor VTlThe circuit structure ganged up is also due to the change of high bit driver circuit, can simplify and fall low level drive Level displacement circuit before dynamic circuit.
Brief description of the drawings
Fig. 1 is the excellent of the integrated drive electronics of the present invention for the driving of DC/DC switch converters output transistor Select the circuit block diagram of one of embodiment;
Fig. 2 is the partial circuit schematic diagram of the two of the preferred embodiment of the present invention, and the part of high-order driving is illustrate only in figure Circuit;
Fig. 3 is the partial circuit schematic diagram of the three of the preferred embodiment of the present invention, and the part of high-order driving is illustrate only in figure Circuit;
Fig. 4 is the stable state for applying the DC/DC switch converters of integrated drive electronics shown in Fig. 1 in CCM working methods Signal timing diagram;
Fig. 5 is the stable state for applying the DC/DC switch converters of integrated drive electronics shown in Fig. 1 in DCM working methods Signal timing diagram;In Fig. 4 and Fig. 5 the part of left, center, right three represent respectively DC/DC switching converter operations BUCK patterns, Steady-state signal timing diagram under BOOST patterns and BUCK-BOOST patterns these three patterns;
Fig. 6 is the circuit block diagram of typical double NMOS power transistor drive circuits in the prior art;
When Fig. 7 is the steady-state signal for applying shown in Fig. 6 double NMOS power transistors drive circuits in CCM working methods Sequence figure;
When Fig. 8 is the steady-state signal for applying shown in Fig. 6 double NMOS power transistors drive circuits in DCM working methods Sequence figure;The part of left, center, right three represents DC/DC switching converter operations in BUCK patterns, BOOST respectively in Fig. 7 and Fig. 8 Steady-state signal timing diagram under pattern and BUCK-BOOST patterns these three patterns;
Fig. 9 is the detailed of bit level shift circuit 61 in the double NMOS power transistor drive circuit structures of prior art typical case Thin circuit theory diagrams;
Figure 10 is to prevent DC/DC from opening based on the double NMOS power transistor drive circuits of typical case shown in Fig. 4 in the prior art Closing in converter prevents high-order N-type power transistor VThWith low level N-type power transistor VTlThe circuit theory diagrams ganged up;
Figure 11 is the DC/DC switch converters for applying the integrated drive electronics that the present invention designs, therein to prevent high-order N Type power transistor VThWith low level N-type power transistor VTlThe circuit theory diagrams ganged up.
Embodiment
Embodiments of the present invention are further described below in conjunction with each accompanying drawing.
The embodiment of the integrated drive electronics 200 driven shown in Fig. 1 for DC/DC switch converters power output transistor In, including for high-order driving control signalThe high-order driving pre-stage buffer 260 of input buffering, for signal potential The bootstrap capacitor C elevatedBOOT, for the Capacitance Coupled drive circuit 230 of signal coupling, for high-order buffered-display driver signal uDRP The second reverse phase inverter 268;High-order driving control signal is the second pulse-width signalDelay from high position driving prime Rush the input terminal input of device 260;High position driving pre-stage buffer 260 exports high-order buffered-display driver signal uDRPTo bootstrap capacitor CBOOTNegative plate, while high-order driving pre-stage buffer 260 exports high-order buffered-display driver signal uDRPTo the second phase inverter 268 Input terminal;Bootstrap capacitor CBOOTPositive plate and Capacitance Coupled drive circuit 230 first input end electrical connection;Second The output end of phase inverter 268 and the second input terminal electrical connection of Capacitance Coupled drive circuit 230;Capacitance Coupled drive circuit 230 the 3rd input terminal is used for the 3rd d. c. voltage signal u for accessing the 3rd external input power VREG of outsideREG;Electric capacity coupling Close the first lead-out terminal of drive circuit 230 and high-order N-type power transistor VThGrid electrically connects, Capacitance Coupled drive circuit 230 the second lead-out terminal and high-order N-type power transistor VThSource electrode electrically connects;Second phase inverter 268, bootstrap capacitor CBOOTWith Capacitance Coupled drive circuit 230 cooperates, by high-order buffered-display driver signal uDRPSignal potential raise, in high-order N-type electric power Transistor VThAfter conducting, the first lead-out terminal of Capacitance Coupled drive circuit 230 can be made persistently to provide the high-order N of suitable potential Type power transistor VThGate drive signal, i.e., high-order drive signal uGP
In embodiment shown in Fig. 1, the Capacitance Coupled drive circuit 230 includes first switch K1, second switch K2, the One coupled capacitor CBC1With the second N-type metal-oxide-semiconductor Q2;Second switch K2 one end the as Capacitance Coupled drive circuit 230 the 3rd is defeated Enter terminal, that is, access the 3rd external input power VREG the 3rd d. c. voltage signal uREG;The second switch K2 other end and One switch K1 one end electrical connection, while the second switch K2 other end also serves as the first of Capacitance Coupled drive circuit 230 Input terminal, and bootstrap capacitor CBOOTPositive plate electrical connection;The first switch K1 other end is used as Capacitance Coupled drive circuit 230 first lead-out terminal, export high-order N-type power transistor VThGate drive signal uGPTo high-order N-type power transistor VThGrid;Meanwhile drain electrode of the first switch K1 other end also with the second N-type metal-oxide-semiconductor Q2 electrically connects;Coupling driving electricity Road control signal uVBOOTWith the first d. c. voltage signal u of inputP1First switch K1 switch described in co- controlling;Second N-type Metal-oxide-semiconductor Q2 source electrode is used as the second lead-out terminal of Capacitance Coupled drive circuit 230 and high-order N-type power transistor VThSource Pole electrically connects;Second N-type metal-oxide-semiconductor Q2 grid and the first coupled capacitor CBC1One end electrical connection;First coupled capacitor CBC1's The other end is used as the second input terminal of Capacitance Coupled drive circuit 230, and the output end electrical connection of the second phase inverter 268;The Two switch K2 one end is from bootstrap capacitor CBOOTPositive plate access coupling drive circuit control signal uVBOOT, second switch K2's The other end accesses the 3rd d. c. voltage signal uREG, coupling drive circuit control signal uVBOOTWith the 3rd d. c. voltage signal uREGAltogether With control second switch K2 switch.
In embodiment shown in Fig. 2 and 3, the first switch K1 is the first p-type metal-oxide-semiconductor Q1, the first p-type metal-oxide-semiconductor Q1's Grid and high-order N-type power transistor VThDrain electrode electrical connection, the first p-type metal-oxide-semiconductor Q1 drain electrode and the second N-type metal-oxide-semiconductor Q2 Drain electrode electrical connection, the first p-type metal-oxide-semiconductor Q1 source electrode are used as the first input end and bootstrapping electricity of Capacitance Coupled drive circuit 230 Hold CBOOTPositive plate electrical connection;First p-type metal-oxide-semiconductor Q1 source electrode and bootstrap capacitor CBOOTPositive plate electrical connection, access coupling Drive circuit control signal uVBOOT;First p-type metal-oxide-semiconductor Q1 grid accesses the first DC voltage to be transformed from circuit node P1 Signal uP1;Coupling drive circuit control signal uVBOOTWith the first d. c. voltage signal uP1Co- controlling the first p-type metal-oxide-semiconductor Q1's On off state.
In embodiment shown in Fig. 2, the second switch K2 is the first diode D1, and the first diode D1 positive pole is used as 3rd input terminal of Capacitance Coupled drive circuit 230, access the 3rd external input power VREG the 3rd d. c. voltage signal uREG;First diode D1 negative pole and bootstrap capacitor CBOOTPositive plate electrical connection access coupling drive circuit control signal uVBOOT;Coupling drive circuit control signal uVBOOTWith the 3rd d. c. voltage signal uREGCo- controlling the first diode D1's opens Close.
In embodiment shown in Fig. 3, the second switch K2 includes the 4th N-type metal-oxide-semiconductor Q4, the second coupled capacitor CBC2With Second diode D2, the second diode D2 positive pole is used as the 3rd input terminal of Capacitance Coupled drive circuit 230, access the 3rd External input power VREG the 3rd d. c. voltage signal uREG;Meanwhile second diode D2 positive pole and the 4th N-type metal-oxide-semiconductor Q4 Source electrode electrical connection;Second diode D2 negative pole and the 4th N-type metal-oxide-semiconductor Q4 grid electrically connect;4th N-type metal-oxide-semiconductor Q4's Grid also with the second coupled capacitor CBC2One end electrical connection;Second coupled capacitor CBC2The other end and the first coupled capacitor CBC1 One end electrical connection, the connection terminal be used as Capacitance Coupled drive circuit 230 the second input terminal, the connection terminal and second The lead-out terminal electrical connection of phase inverter 268;4th N-type metal-oxide-semiconductor Q4 drain electrode first as Capacitance Coupled drive circuit 230 is defeated Enter terminal, and bootstrap capacitor CBOOTPositive plate electrical connection, access coupling drive circuit control signal uVBOOT;Coupling drive circuit Control signal uVBOOTWith the 3rd d. c. voltage signal uREGSecond switch K2 on off state described in co- controlling.
It is visible in signal timing diagram shown in Figure 4 and 5, as the voltage signal u on circuit node DRPDRPAbove earth potential is VDD When, by the second phase inverter 268, the voltage signal u on circuit node DRP_NDRP-NAbove earth potential is zero potential VGND, voltage letter Number uDRP-NIt is connected to the first coupled capacitor CBC1Negative plate, then due to the first coupled capacitor CBC1Coupling, the second N-type Metal-oxide-semiconductor Q2 grid above earth potential is zero potential VGND, the second N-type metal-oxide-semiconductor Q2 closings;Bootstrap capacitor CBOOTPositive plate current potential V is lifted to by bootstrappingREG+VDD;In this case, second switch K2 disconnects, the electrical connection open circuit of its two terminal circuit, first switch K1 closures turn on, now bootstrap capacitor CBOOTPositive plate is that circuit node VBOOT directly connects with circuit node GP, bootstrap capacitor CBOOTThe voltage signal u of positive plateVBOOTIt is directly inputted to high-order N-type power transistor VThGrid turn into high-order drive signal uGP, now high-order drive signal uGPSignal above earth potential be VREG+VDD, can be by high-order N-type power transistor VThOpen, and After the conducting of high-order N-type power transistor, high-order driving letter of the Capacitance Coupled drive circuit output with high driving ability can be made Number to high-order N-type power transistor grid.
It is visible in signal timing diagram shown in Figure 4 and 5, as the voltage signal u on circuit node DRPDRPAbove earth potential is zero Current potential VGNDWhen, bootstrap capacitor CBOOTNegative plate current potential be pulled down to zero potential VGND, bootstrap capacitor CBOOTPositive plate it is electric over the ground Position is coupled to VREG, first switch K1 disconnects, second switch K2 closures, now bootstrap capacitor CBOOTPositive plate be circuit section Point VBOOT and circuit node GP disconnect, by the second phase inverter 268, the voltage signal u on circuit node DRP_NDRP-NIt is electric over the ground Position is VDD, meet the first coupled capacitor CBC1Negative plate, then due to the first coupled capacitor CBC1Coupling, the second N-type Metal-oxide-semiconductor Q2 grid above earth potential is VDD, the second N-type metal-oxide-semiconductor Q2 openings, high-order N-type power transistor VThGate source voltage it is poor It is pulled low, high-order N-type power transistor VThClose.
As shown in figure 5, when DC/DC switching converter operations are in BUCK patterns, circuit node P1 is an externally input straight Flow voltage signal uINInput terminal, circuit node P1 voltage signal uP1=uIN;Circuit node P2 signal is designated as uP2, its Current potential is ground potential VGND;Circuit node P3 signal is designated as uP3, circuit node P3 is DC/DC switch converters output voltages Terminal, it is the d. c. voltage signal u passed through after conversion that it, which is exported,OUT, i.e. uP3=uOUT.Its course of work is is exactly on the whole First pulse-width signal u of DC/DC switch converters control loop outputPWMAs high-order driving control signal, with the first arteries and veins Wide modulated signal uPWMImpulse phase and the current potential height of space phase control high-order N-type power transistor VThWith low level N Type power transistor VTlAlternate conduction.First pulse-width signal uPWMWith the second pulse-width signalPulse electricity Position is the first input power VDD high potential VDD, its space current potential is the first input power VDD ground potential VGND;Second pulsewidth Modulated signalWith the first pulse-width signal uPWMLogic non-signal each other.
As shown in figure 5, in the first pulse-width signal uPWMFirst phase be the first pulse-width signal uPWMCurrent potential For space current potential when, the first pulse-width signal uPWMSignal potential be zero potential VGND, it is defeated after the first phase inverter 264 Go out the second pulse-width signalSecond pulse-width signalSignal potential be high potential VDD;Second pulsewidth Modulated signalAfter a high position drives pre-stage buffer 260, high position driving pre-stage buffer 260 exports high bit buffering and driven Dynamic signal uDRP;High-order buffered-display driver signal uDRPWith the second pulse-width signalSame-phase, high-order buffered-display driver signal uDRPPulse potential be high potential VDD, space current potential is zero potential VGND;First switch K1 and second switch K2 control signal Anti-phase each other, i.e. first switch K1 and second switch K2 on off state is mutual exclusion, controls of two switches in control signal Under, a closing, another opening;As high-order buffered-display driver signal uDRPIt is that signal potential is high potential in pulse potential VDDWhen, due to bootstrap capacitor CBOOTCoupling, bootstrap capacitor CBOOTThe current potential of positive plate is coupled to VREG+VDD, now One switch K1 closures, second switch K2 are disconnected, and the second N-type metal-oxide-semiconductor Q2 is closed, bootstrap capacitor CBOOTPositive plate and circuit node GP Directly connect, bootstrap capacitor CBOOTThe voltage signal u of positive plateVBOOTIt is directly inputted to high-order N-type power transistor VThGrid As high-order drive signal uGP, its current potential is VREG+VDD, high-order N-type power transistor VThOpen;Similarly, the first pulsewidth modulation Signal uPWMAfter level displacement circuit 265 and low level driving buffer 266, u is obtainedGN, in uGPAbove earth potential is VREG+ VDDWhen, uGNAbove earth potential be zero potential VGND, low level N-type power transistor VTlClose;Therefore in the first pulse-width signal uPWMFirst phase when, circuit node SW voltage signal is circuit node P1 voltage signal uP1, external inductors L1 flows through Electric current enters rise period.
As shown in figure 5, in the first pulse-width signal uPWMSecond phase be the first pulse-width signal uPWMCurrent potential For pulse potential when, the first pulse-width signal uPWMSignal potential be high potential VDD, after the first phase inverter 264, output Second pulse-width signalSecond pulse-width signalSignal potential be zero potential VGND;Second pulsewidth is adjusted Signal processedAfter a high position drives pre-stage buffer 260, high position driving pre-stage buffer 260 exports high-order buffered-display driver Signal uDRP;High-order buffered-display driver signal uDRPWith the second pulse-width signalSame-phase, high-order buffered-display driver signal uDRP Pulse potential be high potential VDD, space current potential is zero potential VGND;Now high-order buffered-display driver signal uDRPIn space current potential For zero potential VGND;As high-order buffered-display driver signal uDRPIt is that signal potential is zero potential V in pulse potentialGNDWhen, first switch K1 is disconnected, second switch K2 closures, and the second N-type metal-oxide-semiconductor Q2 is opened, high-order N-type power transistor VThGrid potential drawn It is low, high-order N-type power transistor VThClose;Meanwhile bootstrap capacitor CBOOTThe above earth potential of positive plate is VREG, second switch K2 Closure, will supplement energy to bootstrap capacitor CBOOTOn positive plate;Similarly, the first pulse-width signal uPWMBy level shift After circuit 265 and low level driving buffer 266, low level drive signal u is obtainedGN, low level drive signal uGNAbove earth potential be Current potential VVNCLP, low level N-type power transistor VTlOpen;Therefore in the first pulse-width signal uPWMSecond phase when, circuit Node SW voltage signal is circuit node P1 voltage signal uP1, electric current that external inductors L1 flows through, which enters, declines the period.
As shown in figure 5, in the first pulse-width signal uPWMSecond phase after be third phase, in third phase, the One pulse-width signal uPWMRemain in that the pulse potential V of second phaseDD;When ZCD modules 105 detect that inductive current declines During to 0, other control circuits in ZCD modules 105 or DC/DC switch converters can control low level N-type power transistor VTl Close, now high-order drive signal uGPWith low level drive signal uGNCurrent potential be zero potential VGND, circuit node SW signal For uP3, inductive current 0.
In embodiment as shown in Figures 2 and 3, the grid that first switch K1 is the first p-type metal-oxide-semiconductor Q1 is accessed from circuit node First d. c. voltage signal u of P1 inputsP1.It is visible in signal timing diagram with reference to shown in Figure 4 and 5, when on circuit node DRP Voltage signal uDRPAbove earth potential is VDD, bootstrap capacitor CBOOTPositive plate is circuit node VBOOT voltage signal uVBOOTIt is coupled To than the first d. c. voltage signal uP1Higher above earth potential, the first p-type metal-oxide-semiconductor Q1 are closed automatically, bootstrap capacitor CBOOTPositive pole Plate directly connects with circuit node GP, bootstrap capacitor CBOOTThe voltage signal u of positive plateVBOOTIt is directly inputted to high-order N-type electric power Transistor VThGrid turn into high-order drive signal uGP;As the voltage signal u on circuit node DRPDRPAbove earth potential is zero electricity Position VGND, bootstrap capacitor CBOOTThe voltage signal u of positive plateVBOOTCurrent potential is pulled down to the 3rd d. c. voltage signal uREGIt is electric over the ground Position VREG, above earth potential VREGLess than the first d. c. voltage signal uP1Above earth potential VP1;First p-type metal-oxide-semiconductor Q1 is from dynamic circuit breaker Open, bootstrap capacitor CBOOTConnection between positive plate and circuit node GP is in off state.
In embodiment as shown in Figures 2 and 3, second switch K2 is the first diode D1, or second switch K2 is by the Four N-type metal-oxide-semiconductor Q4, the second coupled capacitor CBC2With the switch module of the second diode D2 compositions.Signal with reference to shown in Figure 4 and 5 Visible in timing diagram, second switch K2 effect is to realize the 3rd d. c. voltage signal uREGInput terminal and bootstrap capacitor CBOOT Single-phase conducting between positive plate;3rd d. c. voltage signal uREGInput terminal and bootstrap capacitor CBOOTList between positive plate It is conducted, for supplementing each cycle due to bootstrap capacitor C in switching processBOOTEnergy loss on positive plate.
As shown in Fig. 2 the reality of the integrated drive electronics 200 for the driving of DC/DC switch converters power output transistor Apply in example, when DC/DC switch converters normal work is in first phase Phase1, that is, high-order driving control signal is When two pulse-width signals are in pulse potential, circuit node VBOOT current potential VVBOOTIt can be elevated, work as VVBOOT>VP1+VTHWhen, Wherein VP1For circuit node P1 current potential, VTHThreshold value for the first p-type metal-oxide-semiconductor Q1 is the absolute value of grid source cut-in voltage, high-order Drive signal uGPCurrent potential is by circuit node VBOOT current potential VVBOOTDraw high, make high-order N-type power transistor VThOpen;Meanwhile Due to the first coupled capacitor CBC1Coupling, the second N-type metal-oxide-semiconductor Q2 signal is circuit node SW signal, makes the 2nd N Type metal-oxide-semiconductor Q2 is closed;DC/DC switch converters normal work is in second phase Phase2, that is, high-order drive control letter Number i.e. the second pulse-width signal is when being in pulse potential, circuit node VBOOT current potential VVBOOTAgain V is dropped toREG-VD1, VD1Numerical value be the first diode D1 forward conduction voltage, now the second switch K2 be the first p-type metal-oxide-semiconductor Q1 be close , circuit node VBC signal potential is opened coupled to a high position, the second N-type metal-oxide-semiconductor Q2, high-order drive signal uGPCurrent potential is drawn It is low, make high-order N-type power transistor VThClose.
In an embodiment as illustrated in figure 2, as bootstrap capacitor CBOOTThe above earth potential of positive plate is less than VREG-VD1When, will Energy is supplemented to bootstrap capacitor CBOOTOn positive plate;Wherein VREGFor the 3rd d. c. voltage signal uREGAbove earth potential, VD1For The cut-in voltage of one diode D1 forward conductions;The advantages of embodiment scheme is simple, is had about on diode during shortcoming 0.7V pressure drop, efficiency and driving voltage can be influenceed.
As shown in figure 3, the reality of the integrated drive electronics 200 for the driving of DC/DC switch converters power output transistor Apply in example, the first switch K1 includes the 4th N-type metal-oxide-semiconductor Q4, the second coupled capacitor CBC2With the second diode D2, the two or two Pole pipe D2 positive pole is used as the 3rd lead-out terminal of Capacitance Coupled drive circuit 230, accesses the second DC voltage of outside input Signal uREG;Meanwhile second diode D2 positive pole and the 4th N-type metal-oxide-semiconductor Q4 source electrode electrical connection, the second diode D2's is negative Pole and the 4th N-type metal-oxide-semiconductor Q4 grid electrically connect;4th N-type metal-oxide-semiconductor Q4 grid also with the second coupled capacitor CBC2One end Electrical connection;Second coupled capacitor CBC2The other end and the first coupled capacitor CBC1One end electrical connection, the connection terminal be used as electricity Hold the second input terminal of coupling drive circuit 230, and the output end electrical connection of the second phase inverter 268;The second switch K2 For the first p-type metal-oxide-semiconductor Q1, the first p-type metal-oxide-semiconductor Q1 grid and high-order N-type power transistor VThDrain electrode electrical connection, the first P Type metal-oxide-semiconductor Q1 drain electrode and the second N-type metal-oxide-semiconductor Q2 drain electrode electrically connect, and the first p-type metal-oxide-semiconductor Q1 source electrode is used as Capacitance Coupled The first input end and bootstrap capacitor C of drive circuit 230BOOTPositive plate electrical connection;Second N-type metal-oxide-semiconductor Q2 grid and The first resistor R1 and second resistance R2 of series connection are provided between source electrode, is also set between the second N-type metal-oxide-semiconductor Q2 grid and source electrode It is equipped with the 3rd N-type metal-oxide-semiconductor Q3;3rd N-type metal-oxide-semiconductor Q3 drain electrode and the second N-type metal-oxide-semiconductor Q2 grid electrically connect, the 3rd N-type Metal-oxide-semiconductor Q3 source electrode and the second N-type metal-oxide-semiconductor Q2 source electrode electrically connect, the 3rd N-type metal-oxide-semiconductor Q3 grid while and first resistor R1 and second resistance R2 electrical connections.
In embodiment as shown in Figure 3, using the 4th controlled N-type metal-oxide-semiconductor Q4, the second coupled capacitor CBC2With the two or two Pole pipe D2 realizes second switch K2 switch control;When circuit node DRP above earth potential is VDDWhen, the second coupled capacitor CBC2 Electric capacity can make the 4th N-type metal-oxide-semiconductor Q4 grid above earth potential the 4th N-type metal-oxide-semiconductor Q4 be closed, as circuit node DRP toward lower coupling Above earth potential be zero potential VGNDWhen, the second coupled capacitor CBC2The 4th N-type metal-oxide-semiconductor Q4 grid can be made to be coupled toward high potential, The 4th N-type metal-oxide-semiconductor Q4 is opened completely, can make bootstrap capacitor CBOOTPositive plate and the 3rd d. c. voltage signal uREGInput terminal Directly turn on, bootstrap capacitor CBOOTIt is able to supplement energy.Fig. 3 is with the second coupled capacitor CBC2And the two or two pole for voltage stabilizing Pipe D2 and the 4th N-type metal-oxide-semiconductor Q4 compositions, its operation principle are when needing the 4th N-type metal-oxide-semiconductor Q4 openings, pass through the second coupling electricity Hold CBC2Coupling Q4 is opened, this implementation advantage is that the 4th N-type metal-oxide-semiconductor Q4 is to open completely, to efficiency and drive Dynamic voltage is without influence.
As shown in figure 3, the reality of the integrated drive electronics 200 for the driving of DC/DC switch converters power output transistor Apply in example, when DC/DC switch converters normal work is in first phase Phase1, that is, high-order driving control signal is When two pulse-width signals are in pulse potential, circuit node VBOOT current potential VVBOOTIt can be elevated, work as VVBOOT>VP1+VTHWhen, Wherein VP1For circuit node P1 current potential, VTHThreshold value for the first p-type metal-oxide-semiconductor Q1 is grid source cut-in voltage absolute value, and a high position is driven Dynamic signal uGPCurrent potential is by circuit node VBOOT current potential VVBOOTDraw high, make high-order N-type power transistor VThOpen;Meanwhile by In the first coupled capacitor CBC1Coupling, the second N-type metal-oxide-semiconductor Q2 signal current potential is VREG-VD2, make the second N-type metal-oxide-semiconductor Q2 Close;DC/DC switch converters normal work is in second phase Phase2, that is, high-order driving control signal is the second arteries and veins When wide modulated signal is in pulse potential, circuit node VBOOT current potential VVBOOTAgain V is dropped toREG, now the first p-type MOS Pipe Q1 is to close, and circuit node VBC signal potential is opened coupled to a high position, the second N-type metal-oxide-semiconductor Q2, high-order drive signal uGPCurrent potential is pulled low, and makes high-order N-type power transistor VThClose.
Fig. 2 and Fig. 3 embodiment is different to be, second switch K2 is simply real with diode in embodiment illustrated in fig. 2 It is existing, second switch K2 the 4th N-type metal-oxide-semiconductor Q4, the second coupled capacitor C in embodiment illustrated in fig. 3BC2It is total to the second diode D2 With composition;Specifically difference is bootstrap capacitor C to two embodimentsBOOTThe above earth potential of upper precharge is in different size;Fig. 2 institutes It is V to show the precharge potential size in embodimentREG-VD2, the precharge level in embodiment illustrated in fig. 3 is VREG, cause most rear-guard Move high-order N-type power transistor VThGate source voltage absolute value it is different, respectively VREG-VD2And VREG, due to shown in Fig. 3 High-order N-type power transistor VT in embodimenthGate source voltage be higher than embodiment illustrated in fig. 2 in high-order N-type power transistor VTh Gate source voltage, therefore with high-order N-type power transistor VT in embodiment illustrated in fig. 3hDuring conducting state, its conducting resistance phase To smaller.
The embodiment of the integrated drive electronics 200 driven shown in Fig. 1 for DC/DC switch converters power output transistor It is middle to complete high-order N-type power transistor VT with more simplified circuithWith low level N-type power transistor VTlDriving, with respect to Fig. 4 The drive circuit of shown prior art simplifies bit level shift circuit complicated in the prior art, improves circuit efficiency, Reduce circuit delay;The drive circuit drives the circuit requirement of buffering lower high-order prime so that high-order prime driving is slow Punching need not be reduced the requirement to device, reduced the area of integrated circuit using isolation class device.
In the double NMOS power transistor drive circuit structures of the typical case of prior art shown in Fig. 6, the first pulse-width signal uPWM It is being controlled for switching tube switch for the closed control circuit output in the DC/DC switch converters for apply the circuit framework Square-wave signal;In high-order N-type power transistor VThSwitch driving circuit in, pulse-width signal uPWMInput to phase inverter 64, phase inverter exports " non-" signal i.e. the second pulse-width signal of first pulse-width signalSecond pulsewidth is adjusted Signal processedIt is input to bit level shift circuit 61, the second pulse-width signalPulse potential for outside first Portion input power VDD high potential VDD, the second pulse-width signalSpace current potential be the first external input power VDD Ground potential VGND;Bit level shift circuit 61 is by the second pulse-width signalPulse potential from first outside it is defeated Enter power vd D high potential VDDIt is transformed into bootstrap capacitor positive plate current potential VBOOT, while bit level shift circuit 61 is by second Pulse-width signalSpace current potential from the first external input power VDD ground potential VGNDIt is transformed into high-order N-type electric power Transistor VThSource potential VSW;The output u of bit level shift circuit 61DRPSignal buffers to high position driving buffer 60, Signal u of the high position driving output of buffer 60 with strong driving forceGPTo high-order N-type power transistor VThGrid, carry out high Position N-type power transistor VThSwitch drive.Second pulse-width signalSignal potential integral raising to suitable Level, particularly in high-order N-type power transistor VThSource potential VSWWith respect to the first external input power VDD ground potential VGNDWhen higher, preferably to carry out high-order N-type power transistorSwitch drive.
Low level N-type power transistor VT in the double NMOS power transistor circuits frameworks of typical case shown in Fig. 6hSwitch drive In circuit, the first pulse-width signal uPWMIt is input to low level level displacement circuit 65, the first pulse-width signal uPWMPulse Current potential is the first external input power VDD high potential VDD, pulse-width signal uPWMSpace current potential for the first outside input electricity Source VDD ground potential VGND;Low level level displacement circuit 65 is by the first pulse-width signal uPWMPulse potential outside first Input power VDD high potential VDDIt is transformed into the current potential V of the 4th external input power VNCLP high potentialNCLP, while low level electricity Prosposition shift circuit 65 is by the first pulse-width signal uPWMSpace current potential from the first external input power VDD ground potential VGNDTurn Change to low level N-type power transistor VTlSource potential VP2;The output signal u of low level level displacement circuit 65DRNIt is input to low Position driving buffer 66 buffers, drive signal u of the low level driving output of buffer 66 with strong driving forceGNTo low level N-type electricity Power transistor VTlGrid, carry out low level N-type power transistor VTlSwitch drive.
In Fig. 1 and Fig. 6, the 4th d. c. voltage signal u of the 4th external input power VNCLP inputsNCLPIt is to be used for low level Drive the power supply signal of buffer, under Buck patterns, the 4th d. c. voltage signal uNCLPEqual to the voltage to be transformed of outside input Signal is the first d. c. voltage signal uP1Voltage signal caused by LDO either inside DC/DC switch converters;Boost patterns Under, the 4th d. c. voltage signal uNCLPIt is the voltage signal u from circuit node P3 inputsP3, can also be signal node P1 outputs Voltage signal uP1-out, or voltage signal caused by LDO inside DC/DC switch converters;Under Buck-BOOST patterns, 4th d. c. voltage signal uNCLPIt is the difference letter of voltage signal caused by LDO and signal node P2 inside DC/DC switch converters Number, the difference signal is that fixed level drives buffer power supply as low level.
Bootstrap capacitor C in Fig. 6BOOTPositive plate simultaneously and bit level shift circuit 61 input terminal, a height The negative pole electrical connection of the input terminal, diode D1 of position driving buffer 60;Bootstrap capacitor CBOOTNegative plate and high-order N Type power transistor VThSource electrode electrical connection;uREGIt is the 3rd straight to be that the LDO that is set from DC/DC switch converters is obtained for signal Flow voltage signal uREG, its above earth potential is VREG, uREGSignal for high bit driver circuit after diode D1 decompressions by providing work Power supply.
In Fig. 1 and Fig. 6, the 3rd d. c. voltage signal uREGIt is to be used to supplement each switch periods of CBOOT because switch causes Energy loss, under Buck patterns, the 3rd d. c. voltage signal uREGVoltage signal to be transformed equal to outside input is first straight Flow voltage signal uP1Or voltage signal caused by LDO inside DC/DC switch converters;Under Boost patterns, the 3rd DC voltage Signal uREGEqual to the voltage signal u inputted from circuit node P3P3, also can be the first d. c. voltage signal uP1Or DC/DC is opened Close voltage signal caused by LDO inside converter;Under Buck-BOOST patterns, VREG signal is inside DC/DC switch converters Voltage signal caused by LDO.
As shown in Fig. 7 to 8, when DC/DC switching converter operations are in BUCK patterns, in the drive circuit of prior art, The d. c. voltage signal u that circuit node P1 is an externally inputINInput terminal, circuit node P1 the first d. c. voltage signal uP1=uIN;Circuit node P2 signal is designated as uP2, its current potential is ground potential VGND;Circuit node P3 signal is designated as uP3, circuit Node P3 is the terminal of DC/DC switch converters output voltages, and it is the d. c. voltage signal u passed through after conversion that it, which is exported,OUT, That is uP3=uOUT
As shown in Fig. 6 to 8, when DC/DC switching converter operations are in BOOST patterns, in the drive circuit of prior art, The d. c. voltage signal u that circuit node P3 is an externally inputINInput terminal, circuit node P3 voltage signal uP3=uIN;Electricity Circuit node P2 signal is designated as uP2, its current potential is ground potential VGND;Circuit node P1 signal is designated as uP1, circuit node P1 is The terminal of DC/DC switch converters output voltages, it is the d. c. voltage signal u passed through after conversion that it, which is exported,OUT, i.e. uP1= uOUT
As shown in Fig. 6 to 8, when DC/DC switching converter operations are in BUCK-BOOST patterns, the driving electricity of prior art The d. c. voltage signal u that Lu Zhong, circuit node P1 are an externally inputINInput terminal, circuit node P1 voltage signal uP1= uIN;Its current potential is ground potential VGND;Circuit node P3 signal is designated as uP3, its current potential is ground potential VGND;Circuit node P2 letter Number it is designated as uP2, circuit node P2 is the terminal of DC/DC switch converters output voltages, and it is the direct current passed through after conversion that it, which is exported, Voltage signal uOUT, i.e. uP2=uOUT
As shown in Fig. 6 to 8, in the drive circuit of prior art, by taking BUCK patterns as an example, circuit node SW voltage signal It is designated as uSW, the signal is switching signal when inductive current is not zero.When DC/DC switch converters operate in CCM working methods When, there are the first operating phase and the second operating phase both phase states to correspond to the first pulse-width signal u respectivelyPWMSky Lattice phase and impulse phase.As the first pulse-width signal uPWMWhen being in space phase, high-order N-type power transistor VThBeat Open, low level N-type power transistor VTlClose, circuit node SW signals uSWCurrent potential is equal to circuit node P1 input signals UP1Electricity Position VP1, bootstrap capacitor CBOOTPositive plate is that circuit node VBOOT above earth potential is VREG-VD1+VP1, bootstrap capacitor CBOOTTwo Terminal voltage difference is VREG-VD1, wherein VREGFor the d. c. voltage signal u inputted from diode positive poleREGAbove earth potential, VD1For Voltage on one diode D1, VP1It is high-order N-type power transistor VThDrain electrode above earth potential, due to high-order N-type electric power crystal Pipe VThConducting, high-order N-type power transistor VThSource electrode above earth potential be exactly high-order N-type power transistor VThDrain electrode over the ground Current potential VP1, therefore high-order N-type power transistor VThGrid and source electrode between voltage VGS=VREG-VD1.When the first pulsewidth is adjusted Signal u processedPWMWhen being switched to space phase from impulse phase, circuit node SW signal uSWCurrent potential from circuit node P2 over the ground Current potential VP2Under BUCK patterns, the current potential is ground potential VP2=VGNDIt is rapidly switched to circuit node P1 current potential VP1;Bootstrapping electricity Hold CBOOTPositive plate on current potential elevated to VREG-VD1+VP1, bootstrap capacitor CBOOTNegative plate on current potential be high-order N-type Power transistor VThDrain potential VP1, bootstrap capacitor CBOOTOn voltage remain in that as VREG-VD1;So that high-order driving is slow Rush the drive signal u of outputGNAbove earth potential be VREG-VD1+VP1, so as to high-order N-type power transistor VThGrid and source electrode it Between gate source voltage VGS=VREG-VD1, such gate source voltage can be maintained at high-order N-type power transistor VThCut-in voltage it On so that high-order N-type power transistor VThIt is able to continue to maintain conducting state.
As shown in Fig. 6 to 8, in the drive circuit of prior art, by taking BUCK patterns as an example, when DC/DC switch converters are transported Row has the first operating phase, the second operating phase and the 3rd operating phase these three phase states in DCM working methods;Its In the corresponding first pulse-width signal u of the first operating phasePWMSpace phase;Second operating phase and the 3rd operating phase pair Answer the first pulse-width signal uPWMImpulse phase.Wherein the first operating phase, the second operating phase circuit work schedule and CCM working methods are identicals;In DCM working methods the 3rd operating phase state is only presented on different from CCM working methods; In the 3rd operating phase state, the electric current of outside energy storage inductor can drop to zero, ZCD modules and detect that inductive current drops to 0, so After can close low level N-type power transistor VTl, circuit node SW signal uSWCurrent potential is equal to now circuit node P3 electricity over the ground Position VP3
Fig. 9 show bit level shift circuit 61 in the double NMOS power transistor drive circuit structures of prior art typical case Detailed circuit, the circuit structure is complicated, has used 8 transistors;Need to incite somebody to action by the collaborative work of 8 transistors The pulse-width signal u of inputPWMIt is lifted to suitable high-order N-type power transistor VThThe current potential of raster data model;Bit level position Not only itself the meeting consumed energy, and signal delay can be introduced of shift circuit 61.
Figure 10 show commonly used in the double NMOS power transistor drive circuit structures of prior art prevent high-order N-type electric power Transistor VThWith low level N-type power transistor VTlThe circuit structure block diagram ganged up, in order to ensure that high bit driver circuit and low level drive Dynamic circuit is operated in sequential in correspondence with each other, therefore in fig. 8, and circuit unit that power tube is ganged up is prevented marked as 80 In, level displacement circuit is provided with before high bit driver circuit and before low level drive circuit, circuit structure is complicated.
With respect to Fig. 6 drive circuits of the prior art, without the bit level displacement of complexity in the embodiment shown in Fig. 1 Circuit 61, and circuit is more simple used by realizing related circuit, the chip area that circuit element occupies also is substantially reduced;It is existing There is the bit level shift circuit 61 in technology to need matched high-order prime to drive the circuit in buffering to need higher Pressure-resistant performance, the drive circuit drives the circuit requirement of buffering lower high-order prime so that high-order prime driving buffering nothing Isolation class device need to be used, the requirement to device is reduced, further reduces the area of integrated circuit;Moreover, this hair In bright integrated drive electronics, due to eliminating bit level shift circuit 61 of the prior art shown in Fig. 4, to applying this The DC/DC switch converters of drive circuit, its periphery prevent high-order N-type power transistor VThWith low level N-type power transistor VTlThe circuit structure ganged up is also due to the change of high bit driver circuit, can simplify the level shift before falling low level drive circuit Circuit so that the area of integrated circuit can further reduce.
The integrated drive electronics 200 for being used for the driving of DC/DC switch converters power output transistor as shown in Figure 1 is implemented In example, the clamp circuit of gate source voltage control, the clamp circuit bag are provided between the second N-type metal-oxide-semiconductor Q2 grid and source electrode Include the first resistor R1 and second resistance R2 being connected between the second N-type metal-oxide-semiconductor Q2 grid and source electrode;The clamp circuit also wraps Include the 3rd N-type metal-oxide-semiconductor Q3 being arranged between the second N-type metal-oxide-semiconductor Q2 grid and source electrode;3rd N-type metal-oxide-semiconductor Q3 drain electrode and Second N-type metal-oxide-semiconductor Q2 grid electrical connection, the 3rd N-type metal-oxide-semiconductor Q3 source electrode and the second N-type metal-oxide-semiconductor Q2 source electrode electrical connection, 3rd N-type metal-oxide-semiconductor Q3 grid electrically connects with first resistor R1 and second resistance R2 simultaneously.The effect of the clamp circuit is to be used for Second N-type metal-oxide-semiconductor Q2 gate source voltage clamp, it is ensured that when first phase switchs to the switching of the second operating phase, the second N-type MOS Pipe Q2 is now changed into open mode by closing, due to circuit node SW signal uSWThe rapid decrease of current potential, the second N-type MOS Pipe Q2 grid voltage can not follow quickly, the second N-type metal-oxide-semiconductor Q2 gate source voltage difference can be made to become big, to ensure the second N-type Metal-oxide-semiconductor Q2 gate source voltage not over process devices working range, it is necessary to make clamper to Q2 gate source voltages, its clamp voltage For VTH× (R1+R2)/R2, wherein VTHFor the 3rd N-type metal-oxide-semiconductor Q3 turn-on threshold voltage.
The integrated drive electronics 200 for being used for the driving of DC/DC switch converters power output transistor as shown in Figure 1 is implemented In example, in addition to the first phase inverter 264, low level driving control signal level displacement circuit 265 and low level driving buffer 266; Low level driving control signal is the first pulse-width signal uPWMFor the second pulse-width signal" logic NOT " signal; Low level driving control signal is the first pulse-width signal uPWMInput to low level driving control signal level displacement circuit 265 enters The displacement of row signal potential, by the first pulse-width signal uPWMPulse potential from the first input power VDD high potentials VDDConversion To the 4th external input power VNCLP of outside the 4th d. c. voltage signal uNCLPCurrent potential VNCLP, while low level drive control is believed Number level displacement circuit 265 is by the first pulse-width signal uPWMSpace current potential from the first input power VDD ground potentials VGNDTurn Change to low level N-type power transistor VTlSource potential VP2;The output signal of low level driving control signal level displacement circuit 265 Buffer 266 is driven to low level, low level driving buffer 266 exports low level drive signal uGNTo low level N-type power transistor VTl Grid, for low level N-type power transistor VTlDriving;Low level driving control signal is the first pulse-width signal uPWMIt is defeated Enter to the first phase inverter 264, the first phase inverter 264 and export high-order driving control signal i.e. the second pulse-width signalExtremely High position driving pre-stage buffer 260.
As shown in figure 1, the reality of the integrated drive electronics 200 for the driving of DC/DC switch converters power output transistor Apply in example, in addition to ZCD modules 105 are used to detect the i.e. high-order N-type power transistor VT of rectifying tubehAnd/or low level N-type electric power is brilliant Body pipe VTlZero current cross;When being operated in BUCK patterns in the DC/DC switch converters for applying the integrated drive electronics 200 When being used as BUCK systems, low level N-type power transistor VTlFor rectifying tube, then ZCD modules 105 can detect low level N-type electric power crystalline substance Body pipe VTlDrain electrode and low level N-type power transistor VTlSource electrode between current signal;When applying the integrated drive electronics When BOOST patterns be operated in 200 DC/DC switch converters being used as BOOST systems, high-order N-type power transistor VThFor Rectifying tube, ZCD modules 105 will detect high-order N-type power transistor VThDrain electrode and high-order N-type power transistor VThSource Current signal between pole;When being operated in BUCK- in the DC/DC switch converters for applying the integrated drive electronics 200 When BOOST patterns are used as BUCK-BOOST systems, low level N-type power transistor VTlFor rectifying tube, then ZCD modules 105 can be examined Survey low level N-type power transistor VTlDrain electrode and low level N-type power transistor VTlSource electrode between current signal.
As shown in figure 1, the reality of the integrated drive electronics 200 for the driving of DC/DC switch converters power output transistor Apply in example, in addition to ring cancellation module 101 is used to remove in external inductors L1 due to ring caused by self-oscillation;When the collection Worked in into the DC/DC switch converters of drive circuit 200 under DCM patterns, and rectifying tube is detected by ZCD modules 105 When electric current is 0, now high-order N-type power transistor VThAnd/or low level N-type power transistor VTlWhen all closing, ring eliminates mould Block 101 is removed in external inductors L1 due to ring caused by self-oscillation.
As shown in Fig. 2 the reality of the integrated drive electronics 200 for the driving of DC/DC switch converters power output transistor Apply in example, the positive pole that the first switch K1 is the first diode D1, the first diode D1 is used as Capacitance Coupled drive circuit 230 The 3rd lead-out terminal, access the second d. c. voltage signal u of outside inputREG;First diode D1 negative pole and the first p-type Metal-oxide-semiconductor Q1 source electrode electrical connection;The second switch K2 is the first p-type metal-oxide-semiconductor Q1, the first p-type metal-oxide-semiconductor Q1 grid and a high position N-type power transistor VThDrain electrode electrical connection, the first p-type metal-oxide-semiconductor Q1 drain electrode and the second N-type metal-oxide-semiconductor Q2 drain electrode are electrically connected Connect, the first p-type metal-oxide-semiconductor Q1 source electrode is used as the first input end and bootstrap capacitor C of Capacitance Coupled drive circuit 230BOOT's Positive plate electrically connects;The first resistor R1 and second resistance of series connection are provided between second N-type metal-oxide-semiconductor Q2 grid and source electrode R2, the 3rd N-type metal-oxide-semiconductor Q3 is additionally provided between the second N-type metal-oxide-semiconductor Q2 grid and source electrode;3rd N-type metal-oxide-semiconductor Q3 drain electrode Electrically connected with the second N-type metal-oxide-semiconductor Q2 grid, the 3rd N-type metal-oxide-semiconductor Q3 source electrode and the second N-type metal-oxide-semiconductor Q2 source electrode are electrically connected Connect, the 3rd N-type metal-oxide-semiconductor Q3 grid electrically connects with first resistor R1 and second resistance R2 simultaneously.
It is another it should be noted that, the negative pole of outside power supply source is the zero-potential point of circuit in the present invention, other electricity in the present invention The potential value of circuit node is all the numerical value of the relative zero-potential point;Battery or externally fed source voltage are its positive pole and negative pole Potential difference.For convenience, part of module employs one, second-class serial number, and these serial numbers do not represent its position Or restriction sequentially, it is convenient to be intended merely to description.
Embodiments of the invention are the foregoing is only, above-described circuit topological structure is only that one kind of the present invention is specific Embodiment, it is not intended to limit the scope of the invention, every equivalent knot made using description of the invention and accompanying drawing content Structure or equivalent flow conversion, or other related technical areas are directly or indirectly used in, similarly it is included in the special of the present invention In sharp protection domain.

Claims (10)

1. a kind of integrated drive electronics (200) for the driving of DC/DC switch converters power output transistor, including:
For high-order driving control signalThe high-order driving pre-stage buffer (260) of input buffering, for signal electricity Bootstrap capacitor (the C that position elevatesBOOT), for the Capacitance Coupled drive circuit (230) of signal coupling, believe for high-order buffered-display driver Number (uDRP) reverse the second phase inverter (268);
High-order driving control signal is the second pulse-width signalFrom the input of high-order driving pre-stage buffer (260) Terminal inputs;High position driving pre-stage buffer (260) exports high-order buffered-display driver signal (uDRP) to bootstrap capacitor (CBOOT) it is negative Pole plate, while high-order driving pre-stage buffer (260) exports high-order buffered-display driver signal (uDRP) to the second phase inverter (268) Input terminal;
Bootstrap capacitor (CBOOT) positive plate and Capacitance Coupled drive circuit (230) first input end electrical connection;Second is anti-phase The output end of device (268) and the second input terminal electrical connection of Capacitance Coupled drive circuit (230);Capacitance Coupled drive circuit (230) the 3rd input terminal is used for the 3rd d. c. voltage signal (u for accessing outside 3rd external input power (VREG)REG); The first lead-out terminal of Capacitance Coupled drive circuit (230) and high-order N-type power transistor (VTh) grid electrical connection, electric capacity coupling Close the second lead-out terminal of drive circuit (230) and high-order N-type power transistor (VTh) source electrode electrical connection;
Second phase inverter (268), bootstrap capacitor (CBOOT) and Capacitance Coupled drive circuit (230) collaborative work, high bit buffering is driven Dynamic signal (uDRP) signal potential raise, in high-order N-type power transistor (VTh) after conducting, Capacitance Coupled drive circuit can be made (230) first lead-out terminal persistently provides the high-order N-type power transistor (VT of suitable potentialh) gate drive signal, i.e., it is high Position drive signal (uGP)。
2. it is used for the integrated drive electronics of DC/DC switch converters power output transistor driving according to claim 1 (200), it is characterised in that:
The Capacitance Coupled drive circuit (230) includes first switch (K1), second switch (K2), the first coupled capacitor (CBC1) With the second N-type metal-oxide-semiconductor (Q2);
One end of second switch (K2) is used as the 3rd input terminal of Capacitance Coupled drive circuit (230), that is, accesses outside the 3rd 3rd d. c. voltage signal (u of input power (VREG)REG);The other end of second switch (K2) and the one of first switch (K1) End electrical connection, while the other end of the second switch (K2) also serves as the first input end of Capacitance Coupled drive circuit (230), The first input end and bootstrap capacitor (CBOOT) positive plate electrical connection, access coupling drive circuit control signal (uVBOOT); The other end of first switch (K1) is used as the first lead-out terminal of Capacitance Coupled drive circuit (230), and it is brilliant to export high-order N-type electric power Body pipe (VTh) gate drive signal uGPTo high-order N-type power transistor (VTh) grid;Meanwhile the first switch (K1) is another One end also electrically connects with the drain electrode of the second N-type metal-oxide-semiconductor (Q2);Coupling drive circuit control signal (uVBOOT) and the first direct current of input Voltage signal (uP1) switch of first switch (K1) described in co- controlling;
The source electrode of second N-type metal-oxide-semiconductor (Q2) is used as the second lead-out terminal and high-order N-type electricity of Capacitance Coupled drive circuit (230) Power transistor (VTh) source electrode electrical connection;The grid and the first coupled capacitor (C of second N-type metal-oxide-semiconductor (Q2)BC1) one end be electrically connected Connect;First coupled capacitor (CBC1) the other end be used as the second input terminal of Capacitance Coupled drive circuit (230), and second is anti- The output end electrical connection of phase device (268);
One end of second switch (K2) is from bootstrap capacitor (CBOOT) positive plate access coupling drive circuit control signal (uVBOOT), the The other end of two switches (K2) accesses the 3rd d. c. voltage signal (uREG), coupling drive circuit control signal (uVBOOT) and the 3rd D. c. voltage signal (uREG) co- controlling second switch (K2) switch.
3. it is used for the integrated drive electronics of DC/DC switch converters power output transistor driving according to claim 2 (200), it is characterised in that:
The first switch (K1) is the first p-type metal-oxide-semiconductor (Q1), and the grid of the first p-type metal-oxide-semiconductor (Q1) and high-order N-type electric power are brilliant Body pipe (VTh) drain electrode electrical connection, the drain electrode of the first p-type metal-oxide-semiconductor (Q1) and the drain electrode of the second N-type metal-oxide-semiconductor (Q2) electrical connection, the The source electrode of one p-type metal-oxide-semiconductor (Q1) is used as the first input end of Capacitance Coupled drive circuit (230);
The source electrode of first p-type metal-oxide-semiconductor (Q1) and bootstrap capacitor (CBOOT) positive plate electrical connection, access coupling drive circuit control Signal (uVBOOT);The grid of first p-type metal-oxide-semiconductor (Q1) accesses the first d. c. voltage signal (uP1);Coupling drive circuit control letter Number (uVBOOT) and the first d. c. voltage signal (uP1) co- controlling the first p-type metal-oxide-semiconductor (Q1) on off state.
4. it is used for the integrated drive electronics of DC/DC switch converters power output transistor driving according to claim 2 (200), it is characterised in that:
The second switch (K2) is the first diode (D1), and the positive pole of the first diode (D1) is used as Capacitance Coupled drive circuit (230) the 3rd input terminal, the 3rd d. c. voltage signal (u of the 3rd external input power (VREG) is accessedREG);One or two The negative pole of pole pipe (D1) and bootstrap capacitor (CBOOT) positive plate electrical connection access coupling drive circuit control signal (uVBOOT);
Coupling drive circuit control signal (uVBOOT) and the 3rd d. c. voltage signal (uREG) the first diode of co- controlling (D1) Switch.
5. it is used for the integrated drive electronics of DC/DC switch converters power output transistor driving according to claim 2 (200), it is characterised in that:
The second switch (K2) includes the 4th N-type metal-oxide-semiconductor (Q4), the second coupled capacitor (CBC2) and the second diode (D2), the The positive pole of two diodes (D2) is used as the 3rd input terminal of Capacitance Coupled drive circuit (230), access the 3rd outside input electricity 3rd d. c. voltage signal (the u in source (VREG)REG);Meanwhile second diode (D2) positive pole and the 4th N-type metal-oxide-semiconductor (Q4) Source electrode electrically connects;The grid of the negative pole of second diode (D2) and the 4th N-type metal-oxide-semiconductor (Q4) electrically connects;4th N-type metal-oxide-semiconductor (Q4) grid also with the second coupled capacitor (CBC2) one end electrical connection;Second coupled capacitor (CBC2) the other end and the first coupling Close electric capacity (CBC1) one end electrical connection, the connection terminal be used as Capacitance Coupled drive circuit (230) the second input terminal, should The lead-out terminal of connection terminal and the second phase inverter (268) electrically connects;The drain electrode of 4th N-type metal-oxide-semiconductor (Q4) is used as Capacitance Coupled The first input end of drive circuit (230), and bootstrap capacitor (CBOOT) positive plate electrical connection, access coupling drive circuit control Signal (u processedVBOOT);Coupling drive circuit control signal (uVBOOT) and the 3rd d. c. voltage signal (uREG) described in co- controlling The on off state of two switches (K2).
6. it is used for the integrated drive electronics of DC/DC switch converters power output transistor driving according to claim 2 (200), it is characterised in that:
The clamp circuit of gate source voltage control, the clamp circuit bag are provided between the grid and source electrode of second N-type metal-oxide-semiconductor (Q2) Include first resistor (R1) and the second resistance (R2) being connected between the grid and source electrode of the second N-type metal-oxide-semiconductor (Q2);The clamp Circuit also includes the 3rd N-type metal-oxide-semiconductor (Q3) being arranged between the grid and source electrode of the second N-type metal-oxide-semiconductor (Q2);3rd N-type MOS Manage the drain electrode of (Q3) and the grid electrical connection of the second N-type metal-oxide-semiconductor (Q2), the source electrode and the second N-type MOS of the 3rd N-type metal-oxide-semiconductor (Q3) Manage the source electrode electrical connection of (Q2), the grid of the 3rd N-type metal-oxide-semiconductor (Q3) is electrically connected with first resistor (R1) and second resistance (R2) simultaneously Connect.
7. it is used for the integrated drive electronics of DC/DC switch converters power output transistor driving according to claim 6 (200), it is characterised in that:
Also include the first phase inverter (264), low level driving control signal level displacement circuit (265) and low level driving buffer (266);Low level driving control signal is the first pulse-width signal (uPWM) it is the second pulse-width signal" patrol Collect non-" signal;
Low level driving control signal is the first pulse-width signal (uPWM) input to low level driving control signal level displacement circuit (265) displacement of signal potential is carried out, by the first pulse-width signal (uPWM) pulse potential from the first input power (VDD) High potential (VDD) it is transformed into the 4th d. c. voltage signal (u of outside 4th external input power (VNCLP)NCLP) current potential VNCLP, while low level driving control signal level displacement circuit (265) is by the first pulse-width signal (uPWM) space current potential from First input power (VDD) ground potential (VGND) it is transformed into low level N-type power transistor (VTl) source potential (VP2);
Low level driving control signal level displacement circuit (265) outputs signal to low level driving buffer (266), and low level driving is slow Rush device (266) output low level drive signal (uGN) to low level N-type power transistor (VTl) grid, it is brilliant for low level N-type electric power Body pipe (VTl) driving;Low level driving control signal is the first pulse-width signal (uPWM) input to the first phase inverter (264), It is the second pulse-width signal that first phase inverter (264), which exports high-order driving control signal,Prime is driven to a high position Buffer (260).
8. it is used for the integrated drive electronics of DC/DC switch converters power output transistor driving according to claim 7 (200), it is characterised in that:
Also include ZCD modules (105), for detecting the i.e. high-order N-type power transistor (VT of rectifying tubeh) and/or low level N-type electric power Transistor (VTl) zero current cross;
When the DC/DC switch converters for applying the integrated drive electronics (200), it is operated in BUCK patterns and is used as BUCK systems When, the both ends of ZCD modules (105) respectively with low level N-type power transistor (VTl) drain electrode and source electrode electrical connection;Low level N-type electricity Power transistor (VTl) be rectifying tube, then ZCD modules (105) can detect low level N-type power transistor (VTl) drain and low level N-type Power transistor (VTl) source electrode between current signal;
It is used as BOOST when being operated in BOOST patterns in the DC/DC switch converters for applying the integrated drive electronics (200) During system, the both ends of ZCD modules (105) respectively with high-order N-type power transistor (VTh) drain electrode and source electrode electrical connection;High-order N Type power transistor (VTh) it is rectifying tube, ZCD modules (105) will detect high-order N-type power transistor (VTh) drain electrode with it is high Position N-type power transistor (VTh) source electrode between current signal;
It is used as when being operated in BUCK-BOOST patterns in the DC/DC switch converters for applying the integrated drive electronics (200) During BUCK-BOOST systems, the both ends of ZCD modules (105) respectively with low level N-type power transistor (VTl) drain electrode and source electrode electricity Connection;Low level N-type power transistor (VTl) be rectifying tube, then ZCD modules (105) can detect low level N-type power transistor (VTl) Drain electrode and low level N-type power transistor (VTl) source electrode between current signal.
9. it is used for the integrated drive electronics of DC/DC switch converters power output transistor driving according to claim 8 (200), it is characterised in that:
Also include ring cancellation module (101), the both ends of the both ends of ring cancellation module (101) respectively with external inductors L1 are electrically connected Connect, for removing with ring caused by the external inductors L1 self-oscillations of DC/DC switch converters connection;
When the application integrated drive electronics (200) DC/DC switching converter operations in dcm mode, and pass through ZCD modules (105) when to detect rectification tube current be zero, now high-order N-type power transistor (VTh) and low level N-type power transistor (VTl) When all closing, ring cancellation module (101) is removed in external inductors L1 due to ring caused by self-oscillation.
10. one kind includes the DC/DC switch converters of integrated drive electronics (200) described in claim 1 to 9 any one,
Including for preventing high-order N-type power transistor (VTh) and low level N-type power transistor (VTl) gang up anti-gang up circuit Unit (300);
Anti- circuit unit (300) of ganging up includes the 3rd level displacement circuit (391), the 3rd phase inverter (393), first and door (395), the 4th phase inverter (394) and second and door (396);
Low level drive signal (uGN) inputted from the input terminal of the 3rd level displacement circuit (391), the 3rd level displacement circuit (391) lead-out terminal electrically connects with the input terminal of the 3rd phase inverter (393), the lead-out terminal of the 3rd phase inverter (393) with First electrically connects with the first input end of door (395), and first is used to input low level driving with the second input terminal of door (395) Control signal is the first pulse-width signal (uPWM), first outputs signal to the first phase inverter (264) with door (395);
High-order buffered-display driver signal (uDRP) inputted from the input terminal of the 4th phase inverter (394), the 4th phase inverter (394) it is defeated Go out terminal to electrically connect with second with the first input end of door (396), second is used to input with the second input terminal of door (396) Low level driving control signal is the first pulse-width signal (uPWM), second outputs signal to low level drive control letter with door (396) Number level displacement circuit (265).
CN201710547844.1A 2017-07-06 2017-07-06 DC/DC switching converter power output transistor integrated drive circuit Active CN107659128B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710547844.1A CN107659128B (en) 2017-07-06 2017-07-06 DC/DC switching converter power output transistor integrated drive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710547844.1A CN107659128B (en) 2017-07-06 2017-07-06 DC/DC switching converter power output transistor integrated drive circuit

Publications (2)

Publication Number Publication Date
CN107659128A true CN107659128A (en) 2018-02-02
CN107659128B CN107659128B (en) 2023-07-07

Family

ID=61126629

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710547844.1A Active CN107659128B (en) 2017-07-06 2017-07-06 DC/DC switching converter power output transistor integrated drive circuit

Country Status (1)

Country Link
CN (1) CN107659128B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106411136A (en) * 2016-08-25 2017-02-15 浙江大学 High-voltage capacitance coupling based control chip of isolated type power converter
CN112564458A (en) * 2019-09-10 2021-03-26 苏州捷芯威半导体有限公司 Isolation driving circuit
US20220209654A1 (en) * 2020-12-30 2022-06-30 Texas Instruments Incorporated Power converter control
CN114696614A (en) * 2020-12-30 2022-07-01 圣邦微电子(北京)股份有限公司 Bootstrap switch converter and driving circuit thereof
CN113394978B (en) * 2021-06-03 2024-05-03 拓尔微电子股份有限公司 Through circuit applied to buck converter

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06284705A (en) * 1993-03-08 1994-10-07 Motorola Inc Charge pump for controlling rate of climb
JPH1141801A (en) * 1997-07-17 1999-02-12 Nec Corp Voltage clamp circuit
CN1601748A (en) * 2003-09-26 2005-03-30 松下电器产业株式会社 Semiconductor device provided with overheat protection circuit and electronic circuit using the same
US20050285661A1 (en) * 2004-06-28 2005-12-29 Wittenbreder Ernest H Jr Gate drive circuits for high efficiency power converters
US20060001459A1 (en) * 2004-07-01 2006-01-05 Analog Devices, Inc. Anti-cross conduction drive control circuit and method
JP2006293344A (en) * 2005-03-18 2006-10-26 Semiconductor Energy Lab Co Ltd Semiconductor device, display, and driving method and electronic apparatus thereof
US20070182390A1 (en) * 2006-02-07 2007-08-09 Takuya Ishii Drive circuit and switching regulator comprising the same
US20110089993A1 (en) * 2009-10-16 2011-04-21 Texas Instruments Deutschland Gmbh Electronic device and method for dc-dc conversion
US20110090208A1 (en) * 2009-10-21 2011-04-21 Boe Technology Group Co., Ltd. Voltage-driving pixel unit, driving method and oled display
CN102378437A (en) * 2010-08-20 2012-03-14 张伟 Low-power consumption and high-efficiency power control power management integrated circuit (PMIC) driving circuit
US20140015501A1 (en) * 2012-07-10 2014-01-16 Samsung Electronics Co., Ltd. Circuit for driving gate of power mos transistor
CN204244063U (en) * 2014-10-24 2015-04-01 意法半导体研发(深圳)有限公司 Anti-phase buck-boost type inverter drive circuit
US20150256075A1 (en) * 2014-03-10 2015-09-10 Realtek Semiconductor Corporation DC voltage generation circuit and pulse generation circuit thereof
CN104917359A (en) * 2015-06-01 2015-09-16 矽力杰半导体技术(杭州)有限公司 Upper switch tube driving circuit and synchronization boost circuit using the same
CN205232331U (en) * 2015-12-24 2016-05-11 惠州市盛微电子有限公司 Image sensor pixel protection circuit that resets firmly
CN105896944A (en) * 2014-10-24 2016-08-24 意法半导体研发(深圳)有限公司 Anti-phase boost-buck converter driving circuit and method thereof
CN207010539U (en) * 2017-07-06 2018-02-13 深圳市华芯邦科技有限公司 DC/DC switch converters power output transistor integrated drive electronics

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06284705A (en) * 1993-03-08 1994-10-07 Motorola Inc Charge pump for controlling rate of climb
JPH1141801A (en) * 1997-07-17 1999-02-12 Nec Corp Voltage clamp circuit
CN1601748A (en) * 2003-09-26 2005-03-30 松下电器产业株式会社 Semiconductor device provided with overheat protection circuit and electronic circuit using the same
US20050285661A1 (en) * 2004-06-28 2005-12-29 Wittenbreder Ernest H Jr Gate drive circuits for high efficiency power converters
US20060001459A1 (en) * 2004-07-01 2006-01-05 Analog Devices, Inc. Anti-cross conduction drive control circuit and method
JP2006293344A (en) * 2005-03-18 2006-10-26 Semiconductor Energy Lab Co Ltd Semiconductor device, display, and driving method and electronic apparatus thereof
US20070182390A1 (en) * 2006-02-07 2007-08-09 Takuya Ishii Drive circuit and switching regulator comprising the same
US20110089993A1 (en) * 2009-10-16 2011-04-21 Texas Instruments Deutschland Gmbh Electronic device and method for dc-dc conversion
US20110090208A1 (en) * 2009-10-21 2011-04-21 Boe Technology Group Co., Ltd. Voltage-driving pixel unit, driving method and oled display
CN102378437A (en) * 2010-08-20 2012-03-14 张伟 Low-power consumption and high-efficiency power control power management integrated circuit (PMIC) driving circuit
US20140015501A1 (en) * 2012-07-10 2014-01-16 Samsung Electronics Co., Ltd. Circuit for driving gate of power mos transistor
US20150256075A1 (en) * 2014-03-10 2015-09-10 Realtek Semiconductor Corporation DC voltage generation circuit and pulse generation circuit thereof
CN204244063U (en) * 2014-10-24 2015-04-01 意法半导体研发(深圳)有限公司 Anti-phase buck-boost type inverter drive circuit
CN105896944A (en) * 2014-10-24 2016-08-24 意法半导体研发(深圳)有限公司 Anti-phase boost-buck converter driving circuit and method thereof
CN104917359A (en) * 2015-06-01 2015-09-16 矽力杰半导体技术(杭州)有限公司 Upper switch tube driving circuit and synchronization boost circuit using the same
CN205232331U (en) * 2015-12-24 2016-05-11 惠州市盛微电子有限公司 Image sensor pixel protection circuit that resets firmly
CN207010539U (en) * 2017-07-06 2018-02-13 深圳市华芯邦科技有限公司 DC/DC switch converters power output transistor integrated drive electronics

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JING ZHU,等: ""An Integrated Bootstrap Diode Emulator for 600-V High Voltage Gate Drive IC With P-Sub/P-Epi Technology"" *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106411136A (en) * 2016-08-25 2017-02-15 浙江大学 High-voltage capacitance coupling based control chip of isolated type power converter
CN112564458A (en) * 2019-09-10 2021-03-26 苏州捷芯威半导体有限公司 Isolation driving circuit
CN112564458B (en) * 2019-09-10 2021-12-31 苏州捷芯威半导体有限公司 Isolation driving circuit
US20220209654A1 (en) * 2020-12-30 2022-06-30 Texas Instruments Incorporated Power converter control
CN114696614A (en) * 2020-12-30 2022-07-01 圣邦微电子(北京)股份有限公司 Bootstrap switch converter and driving circuit thereof
US11804769B2 (en) * 2020-12-30 2023-10-31 Texas Instruments Incorporated Power converter control
CN113394978B (en) * 2021-06-03 2024-05-03 拓尔微电子股份有限公司 Through circuit applied to buck converter

Also Published As

Publication number Publication date
CN107659128B (en) 2023-07-07

Similar Documents

Publication Publication Date Title
CN207010539U (en) DC/DC switch converters power output transistor integrated drive electronics
CN203206197U (en) Delay circuit and circuit system with same
CN104410252B (en) Source electrode drive circuit and its control method
CN101572485B (en) Intelligent driving control method and device for secondary synchronous rectifier
CN101521459B (en) Resonant switched capacitor direct current voltage converter
CN103580475B (en) Charge-restoring in power converter driving stage
CN107659128A (en) DC/DC switch converters power output transistor integrated drive electronics
CN110149042A (en) A kind of power tube gate driving circuit with drive part by part function
CN103248221B (en) Step-down controller
CN108306489A (en) Drive circuit, control circuit and drive method of buck-boost switching converter
CN101976940A (en) Drive bootstrap circuit for switching tube of switching power supply converter
CN106992670B (en) Adaptive turn-on time control circuit for PFM mode boost type DC-DC converter
CN105915063A (en) Synchronous step-down topological circuit with isolated output
CN103501115A (en) Interleaved and parallel working direct-current (DC) step-down circuit
CN106357108A (en) DC boost high-voltage output circuit and DC boost power supply
CN103715870B (en) Voltage adjuster and resonant gate driver thereof
CN109742964A (en) Control circuit and method for AC/DC converter with input power limitation
CN107172767A (en) A kind of New LED controls drive circuit
CN110138207A (en) It can be used for the two-way DC/DC converter of the high voltage gain of energy storage device
CN107863878B (en) A kind of switch power source driving circuit based on PWM control
CN106100295B (en) A kind of switching device driving circuit kept based on charge
CN116260315A (en) Step-up-down converter with week current detection type failure protection and gallium nitride direct drive capability
CN204334375U (en) Two end rectifying devices and there is the circuit of two end rectifying devices
CN105871232A (en) Power source control device capable of dynamically adjusting driving ability
CN101888171B (en) No bridge type power factor corrector with logical control

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant