CN107635956A - 一种用于甲醇合成的新方法 - Google Patents

一种用于甲醇合成的新方法 Download PDF

Info

Publication number
CN107635956A
CN107635956A CN201680026904.9A CN201680026904A CN107635956A CN 107635956 A CN107635956 A CN 107635956A CN 201680026904 A CN201680026904 A CN 201680026904A CN 107635956 A CN107635956 A CN 107635956A
Authority
CN
China
Prior art keywords
gas
make
methanol
mole
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680026904.9A
Other languages
English (en)
Other versions
CN107635956B (zh
Inventor
P·J·达尔
H·莫达雷斯
M·托尔豪格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topsoe AS
Original Assignee
Haldor Topsoe AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haldor Topsoe AS filed Critical Haldor Topsoe AS
Publication of CN107635956A publication Critical patent/CN107635956A/zh
Application granted granted Critical
Publication of CN107635956B publication Critical patent/CN107635956B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/1516Multisteps
    • C07C29/1518Multisteps one step being the formation of initial mixture of carbon oxides and hydrogen for synthesis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/06Flash distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/06Crystallising dishes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/04Methanol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/061Methanol production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1223Methanol
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种用于从合成气生产甲醇的方法,该方法包括以下步骤:提供含有氢气和一氧化碳的补充气体,其中在该补充气体中,二氧化碳含量为小于0.1摩尔%;将补充气体与富含氢气的再循环气体混合,并将气体混合物任选经由硫防护提供至甲醇合成反应器;和使来自合成反应器的流出物经受分离步骤,从而提供粗甲醇和富含氢气的再循环气,其中二氧化碳至所述补充气体的常规添加被水的添加所取代,该水的添加量为0.1至5摩尔%。这样,可节省二氧化碳压缩机,并且显著降低补充气体中有毒的硫的量。

Description

一种用于甲醇合成的新方法
本发明涉及用于甲醇合成的新方法。更具体地,本发明涉及用于甲醇合成回路中的补充气体的新处理。
甲醇由合成气合成,合成气由H2和碳氧化物即CO和CO2组成。来自合成气的转化可设计为一氧化碳或二氧化碳的氢化,伴随反向变换反应,并且可以通过以下反应序列来总结:
CO+2H2<->CH3OH
CO2+3H2<->CH3OH+H2O
CO2+H2<->CO+H2O
转化通过催化剂进行,催化剂通常是氧化铝载体上的铜-锌氧化物催化剂。该催化剂的实例包括申请人的催化剂MK-121和MK-151FENCETM
生产甲醇理论上需要模数M等于2的合成气(合成气)。模数M被定义为
M=(H2-CO2)/(CO+CO2)。
由于合成气通常还含有惰性化合物,所以最佳模数可能略高于2,通常为2.05,以允许吹扫惰性化合物,这也将导致吹扫反应物H2、CO和CO2。对于具有小于上述最佳模数的合成气,存在多余的碳氧化物,并且模数必须调整到所需的水平,例如通过从吹扫流中回收H2并将回收的H2再循环到合成段。在已知的方法中,这通过在分离单元例如PSA单元或膜单元(其产生用于再循环的富含H2的气体和H2贫化的废气)中从吹扫中回收H2来完成。
在典型的甲醇生产过程中,补充气体与富含H2的再循环气体混合,并且如果补充气体含有足够的硫以影响甲醇合成催化剂的寿命,则任选地通过硫保护将其送入合成反应器。将补充气体与再循环气体混合后,将合并的气体送入甲醇反应器,其中氢气和碳氧化物反应形成甲醇,如上述反应序列所示。
到现在为止,为了保持甲醇合成催化剂的充分选择性,在甲醇合成回路中向补充气体中加入二氧化碳是一般的做法。这是因为,一般而言,甲醇合成催化剂的选择性在以太高的CO/CO2比进行操作时会降低,这可以通过增加补充气体中的CO2含量来补偿。
然而,向补充气体中添加CO2可能是一个问题,特别是在基于煤的甲醇装置中,因为CO2通常来自CO2去除步骤,其中所产生的CO2在环境压力下接收。此外,这种二氧化碳通常会被硫污染。
现在令人惊奇地发现,上述问题可以通过向补充气体中添加水而不是CO2来解决。
许多现有技术的文献涉及甲醇合成。因此,EP 1 080 059 B1描述了一种方法,其中在至少两个合成阶段的合成回路中从包含氢和碳氧化物的合成气体合成甲醇。利用所述方法,可以避免使用初步合成步骤或以低再循环比操作导致相对高的分压(其又导致催化剂床中的过度反应和放热)的问题。
在US 2010/0160694 A1中描述了使用多于一种甲醇反应器,其涉及合成甲醇的方法,该方法包括使包含回路气体和补充气体的合成气混合物通过含有甲醇合成催化剂的第一合成反应器,以形成含有甲醇的混合气体;冷却含有甲醇的混合气体并使其通过包含甲醇合成催化剂的第二合成反应器,其中合成另外的甲醇以形成产物气流。将该产物气流冷却以冷凝出甲醇,未反应气体作为回路气体返回至所述第一合成反应器。该设置包括使用由作为第一甲醇反应器的压力下的沸水冷却的蒸汽提升转化器(SRC)和作为第二甲醇反应器的管冷却转化器(TCC)的组合。
在US 8.629.190 B2中也公开了使用多于一个的甲醇反应器。合成气通过第一,优选为水冷却的反应器,其中气体中的一部分碳氧化物被催化转化成甲醇,所得到的合成气和甲醇蒸汽的混合物被供应到第二,优选为气体冷却的反应器,该第二反应器与第一反应器串联。在所述第二反应器中,将另一部分碳氧化物转化为甲醇。从第一反应器取出的混合物被引导通过气体/气体热交换器,其中将混合物冷却至低于其露点的温度。随后,将甲醇从气流中分离并取出,同时将剩余的气流进料至第二反应器。
US 2009/0018220 A1描述了一种合成甲醇的方法,其中补充气体的化学计量数或模数M(M=([H2-CO2])/([CO2]+[CO]))为小于2.0,优选小于1.8,并且该补充气体与未反应的合成气合并形成气体混合物,其用于在单个合成反应器中生产甲醇。补充气体通过重整烃原料如甲烷或天然气,并从所得重整气体混合物中除去水而获得。
US 5.079.267和US 5.266.281都描述了由在蒸汽重整器中生产的合成气生产甲醇的方法。将合成气冷却,然后从气体中除去CO2和H2O。然后除去H2O以获得10ppm或更低残余量的H2O,并且除去CO2以获得500ppm,优选100ppm或更低残余量的CO2。合成气在送至甲醇合成反应器之前,经过H2/CO化学计量调节。
最后,US 7.019.039描述了从合成气生产甲醇的高效方法,其中通过从用于一系列单通过反应器(single-pass reactors)的气体混合物中排出CO2而将补充气体的化学计量数或模数M=([H2-CO2])/([CO2]+[CO])增加到约2.05。
在现有技术文献中,没有提及可通过向补充气体中添加水来替代添加CO2
因此,本发明涉及一种由合成气生产甲醇的方法,所述方法包括以下步骤:
-提供含有氢气和一氧化碳的补充气体,其中在该补充气体中,二氧化碳含量为小于0.1摩尔%;
-将补充气体与富含氢气的再循环气体混合,并将气体混合物任选经由硫防护提供至甲醇合成反应器;和
-使来自所述合成反应器的流出物经受分离步骤,从而提供粗甲醇和富含氢气的再循环气,
其中二氧化碳至补充气体的常规添加被水的添加所取代,水的添加量为使补充气体具有0.1至5摩尔%的含水量。
水的添加量优选对应为补充气体中0.5至2.5摩尔%,最优选0.8至1.2摩尔%的含水量。
通过向补充气体中添加水而不是添加二氧化碳,省略了在另外情况下所必需的CO2压缩,从而节省了CO2压缩机,有利于工艺的经济性。
同时,补充气体中有毒的硫的量也明显减少。
补充气体中存在足量的CO2仍然是必需的。本发明相对于现有技术的改进在于,水添加通过变换反应确保足够的CO2用于甲醇合成:
CO+H2O<->CO2+H2
在下文中,将参考附图进一步描述本发明,附图是示例性的并且不应解释为是对本发明的限制。该图示出了可以根据本发明使用的设备。其中将已加入水的补充气体与富含H2的再循环气体混合并送至甲醇反应器。从该反应器中取出产物流和吹扫流。吹扫流在预热器中加热并与工艺蒸汽混合以获得混合流,该混合流被送至到转换单元,其中蒸汽和CO反应生成H2和CO2。将反应的气体在冷却器中冷却至低于其露点。将冷却的物流送至工艺冷凝物分离器,将来自冷凝物分离器的蒸气流送至氢回收单元。从该单元取出富含氢气的流和氢气贫化的废气流。富含氢气的气体可以在再循环压缩机中被压缩以形成富含氢气的再循环流,其如上所述被加入到补充气体中。
在下面的实施例1-4中进一步说明本发明。这些实施例说明了具有恒定转换器压降和各种不同补充气体(MUG)组成的四种不同情况,即:
情况1:MUG中无CO2;无H2O;
情况2:MUG中有1摩尔%CO2;无H2O;
情况3:MUG中无CO2;有1摩尔%H2O;
情况4:MUG中无CO2;有2摩尔%H2O。
在实施例中列出的碳回路效率是甲醇合成效率的直接测量。
在情况1中,碳回路效率显著低于情况2至4。这说明了在补充气体中存在CO2或CO2发生器的必要性。
情况2至4表明补充气体中的二氧化碳可被H2O替代,因为可以获得相似的碳回路效率。
实施例1
该实施例示出了在基本情况下,MUG组成对合成回路性能的影响:29%CO、67%H2、3%N2和1%CH4;MUG中无CO2且无H2O。
发现以下结果:
以再循环气体组成测量的气体组成、转化器入口气体组成(CIGC)和转化器出口气体组成(COGC)如下:
RGC CIGC COGC
H2,摩尔% 66.69 66.77 66.06
CO,摩尔% 28.04 28.29 27.78
CO2,摩尔% 0.126 0.093 0.13
N2,摩尔% 3.400 3.295 3.37
CH4,摩尔% 1.132 1.097 1.12
沸水反应器(BWR)的数据:
时空产率,kg MeOH/kg催化剂/h 0.210
BWR入口床压力,kg/cm2·g 81.475
BWR出口床压力,kg/cm2·g 79.475
压降,kg/cm2 2.00
管的数量 4405
总的催化剂质量,kg 5.412
BWR的负载,MW 2.449
温度:
实施例2
该实施例示出在情况2(MUG中有1摩尔%CO2且无H2O)中,MUG组成对于合成回路性能的影响。
发现以下结果:
再循环比 2.987
蒸汽生产 6.123kg/h
BWR MeOH生产 1.479MTPD
LPS MeOH生产 1.383MTPD
HPS MeOH生产 1.426MTPD
粗MeOH中的含水量 1.525wt%
碳回路效率 95.58%
碳BWR反应器效率 62.62%
MUG 1.454Nm3/h
再循环 4.342Nm3/h
闪蒸 654.137Nm3/h
吹扫 2.176Nm3/h
总吹扫 2.241Nm3/h
以RGC、CIGC和COGC测量的气体组成如下:
沸水反应器(BWR)的数据:
时空产率,kg MeOH/kg催化剂/h 1.139
BWR入口床压力,kg/cm2·g 81.475
BWR出口床压力,kg/cm2·g 79.475
压降,kg/cm2 2.00
管的数量 4405
总的催化剂质量,kg 5.412
BWR的负载,MW 42.449
温度:
BWR温度,℃ 230
接近MeOH平衡的温度,℃ 49.67
BWR入口温度,℃ 208.00
BWR出口温度,℃ 240.95
最大催化剂温度(热点),℃ 247.85
实施例3
该实施例示出在情况3(MUG中无CO2且有1摩尔%H2O)中,MUG组成对于合成回路性能的影响。
发现以下结果:
以RGC、CIGC和COGC测量的气体组成如下:
RGC CIGC COGC
H2,摩尔% 72.71 71.35 67.20
CO,摩尔% 4.815 10.37 4.45
CO2,摩尔% 0.996 0.757 0.94
N2,摩尔% 15.838 12.763 14.64
CH4,摩尔% 5.019 4.057 4.65
沸水反应器(BWR)的数据:
时空产率,kg MeOH/kg催化剂/h 1.101
BWR入口床压力,kg/cm2·g 81.475
BWR出口床压力,kg/cm2·g 79.475
压降,kg/cm2 2.00
管的数量 4405
总的催化剂质量,kg 5.412
BWR的负载,MW 40.778
温度:
BWR温度,℃ 230
接近MeOH平衡的温度,℃ 58.97
BWR入口温度,℃ 208.00
BWR出口温度,℃ 240.70
最大催化剂温度(热点),℃ 245.90
实施例4
该实施例示出在情况4(MUG中无CO2且有2摩尔%H2O)中,MUG组成对于合成回路性能的影响。
发现以下结果:
再循环比 3.339
蒸汽生产 5.813kg/h
BWR MeOH生产 1.408MTPD
LPS MeOH生产 1.303MTPD
HPS MeOH生产 1.365MTPD
粗MeOH中的含水量 3.523wt%
碳回路效率 96.75%
碳BWR反应器效率 74.78%
MUG 1.454Nm3/h
再循环 4.854Nm3/h
闪蒸 538.024Nm3/h
吹扫 2.773Nm3/h
总吹扫 2.827Nm3/h
以RGC、CIGC和COGC测量的气体组成如下:
RGC CIGC COGC
H2,摩尔% 75.94 73.88 70.36
CO,摩尔% 2.098 7.84 1.95
CO2,摩尔% 1.121 0.863 1.06
N2,摩尔% 15.341 12.497 14.22
CH4,摩尔% 4.894 3.997 4.55
沸水反应器(BWR)的数据:
时空产率,kg MeOH/kg催化剂/h 1.084
BWR入口床压力,kg/cm2·g 81.475
BWR出口床压力,kg/cm2·g 79.475
压降,kg/cm2 2.00
管的数量 4405
总的催化剂质量,kg 5.412
BWR的负载,MW 40.270
温度:
BWR温度,℃ 230
接近MeOH平衡的温度,℃ 44.05
BWR入口温度,℃ 208.00
BWR出口温度,℃ 237.36
最大催化剂温度(热点),℃ 246.67

Claims (3)

1.一种用于从合成气生产甲醇的方法,所述方法包括以下步骤:
-提供含有氢气和一氧化碳的补充气体,其中在所述补充气体中,二氧化碳含量为小于0.1摩尔%;
-将所述补充气体与富含氢气的再循环气体混合,并将气体混合物任选经由硫防护提供至甲醇合成反应器;和
-使来自所述合成反应器的流出物经受分离步骤,从而提供粗甲醇和富含氢气的再循环气,
其中二氧化碳至所述补充气体的常规添加被水的添加所取代,水的添加量为使所述补充气体具有0.1至5摩尔%的含水量。
2.根据权利要求1所述的方法,其中所述水的添加量对应为所述补充气体中0.5至2.5摩尔%的含量。
3.根据权利要求2所述的方法,其中所述水的添加量对应为所述补充气体中0.8至1.2摩尔%的含量。
CN201680026904.9A 2015-05-11 2016-05-10 一种用于甲醇合成的新方法 Active CN107635956B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DKPA201500280 2015-05-11
DKPA201500280 2015-05-11
PCT/EP2016/060404 WO2016180812A1 (en) 2015-05-11 2016-05-10 A novel method for methanol synthesis

Publications (2)

Publication Number Publication Date
CN107635956A true CN107635956A (zh) 2018-01-26
CN107635956B CN107635956B (zh) 2020-11-13

Family

ID=55948849

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680026904.9A Active CN107635956B (zh) 2015-05-11 2016-05-10 一种用于甲醇合成的新方法

Country Status (15)

Country Link
US (1) US10308576B2 (zh)
EP (1) EP3294699B1 (zh)
KR (1) KR102662931B1 (zh)
CN (1) CN107635956B (zh)
AU (1) AU2016261285B2 (zh)
BR (1) BR112017022921B1 (zh)
CA (1) CA2985284C (zh)
EA (1) EA032789B1 (zh)
ES (1) ES2729024T3 (zh)
IL (1) IL255233B (zh)
MX (1) MX2017013762A (zh)
MY (1) MY184446A (zh)
PL (1) PL3294699T3 (zh)
WO (1) WO2016180812A1 (zh)
ZA (1) ZA201706987B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112105596A (zh) * 2018-05-17 2020-12-18 庄信万丰戴维科技有限公司 用于合成甲醇的方法
CN113784940A (zh) * 2019-06-12 2021-12-10 庄信万丰戴维科技有限公司 用于合成甲醇的工艺
CN113825736A (zh) * 2019-06-12 2021-12-21 庄信万丰戴维科技有限公司 用于合成甲醇的工艺
CN114787113A (zh) * 2019-12-03 2022-07-22 托普索公司 制备甲醇的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022238672A1 (en) 2021-05-11 2022-11-17 Johnson Matthey Davy Technologies Limited Process for synthesising methanol
AU2023391354A1 (en) * 2022-12-05 2024-10-10 Bechtel Energy Technologies & Solutions, Inc. System and methods for producing methanol using carbon dioxide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3920717A (en) * 1973-03-26 1975-11-18 Texaco Development Corp Production of methanol
CN1569785A (zh) * 2003-04-07 2005-01-26 赫多特普索化工设备公司 制备甲醇的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3872025A (en) 1969-10-31 1975-03-18 Bethlehem Steel Corp Production and utilization of synthesis gas
US3962300A (en) 1970-05-19 1976-06-08 Metallgesellschaft Aktiengesellschaft Process for producing methanol
US5079267A (en) * 1989-09-16 1992-01-07 Xytel Technologies Partnership Methanol production
US5266281A (en) 1989-09-16 1993-11-30 Xytel Technologies Partnership Catalytic reactor
GB9904649D0 (en) 1998-05-20 1999-04-21 Ici Plc Methanol synthesis
GB0510823D0 (en) * 2005-05-27 2005-07-06 Johnson Matthey Plc Methanol synthesis
US7019039B1 (en) 2005-07-14 2006-03-28 Starchem Technologies, Inc. High efficiency process for producing methanol from a synthesis gas
GB0710022D0 (en) 2007-05-25 2007-07-04 Johnson Matthey Plc Methonal process
DE102008049622B4 (de) 2008-09-30 2012-10-31 Lurgi Gmbh Verfahren und Anlage zur Herstellung von Methanol
CA2894152A1 (en) * 2012-12-21 2014-06-26 Bp Chemicals Limited Integrated process for the production of methanol and methyl acetate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3920717A (en) * 1973-03-26 1975-11-18 Texaco Development Corp Production of methanol
CN1569785A (zh) * 2003-04-07 2005-01-26 赫多特普索化工设备公司 制备甲醇的方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112105596A (zh) * 2018-05-17 2020-12-18 庄信万丰戴维科技有限公司 用于合成甲醇的方法
CN112105596B (zh) * 2018-05-17 2023-07-25 庄信万丰戴维科技有限公司 用于合成甲醇的方法
CN113784940A (zh) * 2019-06-12 2021-12-10 庄信万丰戴维科技有限公司 用于合成甲醇的工艺
CN113825736A (zh) * 2019-06-12 2021-12-21 庄信万丰戴维科技有限公司 用于合成甲醇的工艺
CN113825736B (zh) * 2019-06-12 2024-10-15 庄信万丰戴维科技有限公司 用于合成甲醇的工艺
CN114787113A (zh) * 2019-12-03 2022-07-22 托普索公司 制备甲醇的方法

Also Published As

Publication number Publication date
NZ736929A (en) 2023-11-24
MY184446A (en) 2021-04-01
US10308576B2 (en) 2019-06-04
ES2729024T3 (es) 2019-10-29
BR112017022921B1 (pt) 2021-01-12
EA201792459A1 (ru) 2018-03-30
WO2016180812A1 (en) 2016-11-17
IL255233B (en) 2019-07-31
CA2985284A1 (en) 2016-11-17
EP3294699A1 (en) 2018-03-21
EA032789B1 (ru) 2019-07-31
AU2016261285B2 (en) 2020-10-15
CN107635956B (zh) 2020-11-13
ZA201706987B (en) 2020-01-29
EP3294699B1 (en) 2019-04-10
KR20180005666A (ko) 2018-01-16
CA2985284C (en) 2024-04-30
MX2017013762A (es) 2018-03-27
KR102662931B1 (ko) 2024-05-03
PL3294699T3 (pl) 2019-10-31
AU2016261285A1 (en) 2017-11-23
US20180305281A1 (en) 2018-10-25
IL255233A0 (en) 2017-12-31
BR112017022921A2 (pt) 2018-07-24

Similar Documents

Publication Publication Date Title
CN107635956A (zh) 一种用于甲醇合成的新方法
US10308575B2 (en) Methanol process
EP3402773B1 (en) Methanol process
CN112105596B (zh) 用于合成甲醇的方法
CN108101742B (zh) 改造甲醇工艺的方法
WO2019008317A1 (en) PROCESS FOR THE SYNTHESIS OF METHANOL
AU755494B2 (en) Method of manufacturing methanol
CN117355483A (zh) 蓝色甲醇
JP2020063193A (ja) メタノールの製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant