CN107635649A - 用于提高膜的水通量的化学添加剂的组合 - Google Patents

用于提高膜的水通量的化学添加剂的组合 Download PDF

Info

Publication number
CN107635649A
CN107635649A CN201680022152.9A CN201680022152A CN107635649A CN 107635649 A CN107635649 A CN 107635649A CN 201680022152 A CN201680022152 A CN 201680022152A CN 107635649 A CN107635649 A CN 107635649A
Authority
CN
China
Prior art keywords
weight
acac
aqueous phase
film
f6acac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680022152.9A
Other languages
English (en)
Other versions
CN107635649B (zh
Inventor
杰夫·凯勒
亚历克西斯·福斯特
宋根元
李暎周
申程圭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG NanoH2O LLC
Original Assignee
LG NanoH2O LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG NanoH2O LLC filed Critical LG NanoH2O LLC
Publication of CN107635649A publication Critical patent/CN107635649A/zh
Application granted granted Critical
Publication of CN107635649B publication Critical patent/CN107635649B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1214Chemically bonded layers, e.g. cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/1251In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction by interfacial polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/1411Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/1411Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix
    • B01D69/14111Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix with nanoscale dispersed material, e.g. nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/145Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing embedded catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • B01D71/0281Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/60Polyamines
    • B01D71/601Polyethylenimine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2189Metal-organic compounds or complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/40Details relating to membrane preparation in-situ membrane formation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

提供了用于制备高度可渗透薄膜复合膜的界面聚合方法,所述高度可渗透薄膜复合膜可用于纳滤、或者正向渗透或反渗透,用于自来水、海水和半咸水,特别地用于低能量条件下的半咸水。所述方法包括使多孔支撑膜接触包含多胺和通量提高组合的水相以形成经涂覆的支撑膜,所述通量提高组合包含二烷基亚砜以及含有二齿配体和金属原子或金属离子的金属螯合物添加剂;以及将包含多官能酰卤的有机相施加至经涂覆的支撑膜以使多胺与多官能酰卤界面聚合形成薄膜复合膜的区别层。还提供了通过所述方法制备的膜和包括所述膜的反渗透模块。

Description

用于提高膜的水通量的化学添加剂的组合
相关申请
本申请要求于2015年6月3日在USPTO提交的美国专利申请第14/730,151号的优先权和权益,其全部内容通过引用并入本文。
技术领域
本发明涉及薄膜复合(TFC)膜,包括用于纳滤、反渗透或正向渗透,例如以净化水(包括自来水、半咸水和海水)的膜,并且更特别地涉及用于生产这样的膜的方法,所述方法包括添加提高膜的水通量同时保持或改善截留特性的化学添加剂。
背景技术
薄膜复合(TFC)膜是具有连接在一起形成单个膜的不同材料的层的膜。这种分层结构允许使用优化膜的性能和耐久性的材料组合。
TFC膜用于纳滤,以及用于处理自来水、半咸水和海水的反渗透膜和正向渗透膜。这种膜可以通过在多孔支撑膜上非极性(例如,有机)相中的单体与极性(例如,水)相中的单体一起的界面聚合来制备。TFC膜用于其中需要通量和显著的截留特性中,例如在水的净化中。已经将多种材料和化学添加剂添加至TFC膜中以增加通量而不降低截留特性并且满足有限的成功。这样的膜也会受到污染,导致通量随着堆积在TFC膜的表面上的污染物,例如来自待净化的半咸水或海水的材料而增加。
需要用于进一步改善通量同时保持或改善截留特性、抵抗污染效果的技术,以及用于改善这样的经改善的TFC膜的商业加工的技术。
发明内容
因此,本发明涉及提高薄膜复合膜的通量同时保持或改善盐截留率并且基本上消除了由于相关技术的限制和缺点的一个或更多个问题的用于薄膜复合膜的化学添加剂。
在一方面中,提供了用于生产具有增加的通量的TFC膜的方法,其中所述方法包括:提供多孔支撑膜;以及在所述多孔支撑膜上使包含多胺,例如1,3-二氨基苯的第一溶液接触包含多官能酰卤,例如均苯三甲酰氯的第二溶液,其中第一溶液或第二溶液或两种溶液还包含通量添加剂的组合,所述通量添加剂的组合包含二烷基亚砜以及含有二齿配体和金属原子或金属离子的金属螯合物添加剂,其中当所述溶液接触时,多胺与多官能酰卤之间的界面聚合在多孔支撑膜上形成区别层,从而形成具有增加的通量、截留和防污特性的高度可渗透反渗透膜。
本发明的一个目的提供了用于制备高度可渗透TFC膜,例如RO膜的界面聚合方法,包括:在多孔支撑膜上使a)包含1,3-二氨基苯的第一溶液和b)包含均苯三甲酰氯的第二溶液接触,其中当溶液第一次接触时溶液a)和b)中的至少一者包含通量添加剂的组合,所述通量添加剂的组合包含二烷基亚砜以及含有二齿配体和金属原子或金属离子的金属螯合物添加剂;以及回收高度可渗透RO膜。在一些实施方案中,第一溶液包含极性溶剂。在一些实施方案中,极性溶剂包含水。在一些实施方案中,第一溶液是水性溶液。在一些实施方案中,包含二烷基亚砜以及含有二齿配体和金属原子或金属离子的金属螯合物添加剂的通量添加剂的组合在第一溶液中。在一些实施方案中,第二溶液包含非极性有机溶剂。在一些实施方案中,包含二烷基亚砜以及含有二齿配体和金属原子或金属离子的金属螯合物添加剂的通量添加剂的组合在第二溶液中。
本发明的一个优点是由所提供的方法生产的高度可渗透TFC膜,例如RO膜可以在低压下净化含有2000ppm或更少NaCl的半咸水。例如,包括使用本文所述的方法生产的膜的模块可用于在相对低压条件下,即不大于约225psi下,并且在一些实施方案中,在约150psi或更低的压力下由半咸水产生饮用水流。
这些低压条件的优点是可以使用具有比反渗透系统通常所需的更中等压力额定的压力容器、泵、阀和管道,由此避免昂贵的高压额定系统的成本。这基本上降低了脱盐系统的初始资本成本。
另一个优点是与标准高压海水脱盐系统相比降低了操作成本。由于操作压力低于常规高压海水RO脱盐装置所需的操作压力,所以功率成本较低。
本发明的另外特征和优点将在下面描述中阐述,并且部分地从描述中变得明显,或者可以由本发明的实践了解到。本发明的目的和其他优点将由在书面描述及其权利要求书以及附图中具体指出的结构而实现并获得。
提供了用于制备反渗透膜的方法。一个示例性方法包括制备包含多胺和通量提高组合的水相,所述通量提高组合包含二烷基亚砜以及含有二齿配体和金属原子或金属离子的金属螯合物添加剂;以及制备包含多官能酰卤的有机相。当使水相和有机相彼此接触时,在水相层与有机相层之间的界面上发生界面聚合,从而形成区别层。区别层可为通过用多官能胺单体涂覆多孔支撑膜制备的复合聚酰胺膜,最通常地由水相溶液涂覆。虽然水是优选的极性溶剂,但是可以使用其他溶剂,例如低级一元醇、酮和乙腈。随后多官能酰卤可以施加至支撑膜,通常由有机相溶液施加。
在一些实施方案中,极性溶液是包含多胺的水相,并且首先涂覆在多孔支撑上以形成经涂覆的支撑膜,然后施加包含酰卤溶液的有机相。单体可以在接触时反应,由此聚合以在支撑膜的上表面产生聚合物(例如,聚酰胺)区别层。多胺与多官能酰卤的界面聚合形成区别层,由此形成反渗透(RO)膜,其中RO膜包括多孔支撑膜和区别层。通过所述方法制备的反渗透膜的特征可为通量和盐截留率大于在没有通量提高组合的情况下制备的膜的通量和盐截留率。
在一些实施方案中,所述方法中使用的多胺可选自二氨基苯、三氨基苯、间苯二胺、对苯二胺、1,3,5-二氨基苯甲酸、2,4-二氨基甲苯、2,4-二氨基苯甲醚、二甲苯-二胺、乙二胺、丙二胺、哌嗪和三(2-二氨基乙基)胺。在一些实施方案中,所述方法中使用的多官能酰卤可选自均苯三甲酰氯、偏苯三酸酰氯、异酞酰氯和对酞酰氯。
在一些实施方案中,所述方法中使用的二齿配体可选自:
其中R1、R2、R3、R4和R5中的每一者分别选自C1-C10烷基、卤代C1-C10烷基、5-元芳香环或6-元芳香环、包含两个稠合6-元环的芳香族双环环系统、以及包含与6-元芳香环稠合的5-元环的芳香族双环环系统。R1、R2、R3、R4和R5中的每一者分别可选自C1-C6烷基和卤代C1-C6烷基。R1、R2、R3、R4或R5中的任一者可选自苯基,苄基,含有1至4个选自N、O和S的杂原子的C1-C5芳香环,以及含有1至4个选自N、O和S的杂原子的C5-C9双环芳香环系统。R1、R2、R3、R4或R5中的任一者可选自呋喃基、吡咯基、噻吩基、咪唑基、吡唑基、唑基、异唑基、噻唑基、苯基、吡啶基、吡嗪基、嘧啶基、哒嗪基、嘌呤基、苯并唑基、苯并噻唑基、苯并异唑基、苯并咪唑基、苯并噻吩基、吲唑基、苯并[c]-噻吩基、异吲哚基、异苯并呋喃基、萘基、喹啉基、喹喔啉基、喹唑啉基和异喹啉基。
二齿配体可为乙酰丙酮根(acac)或氟化乙酰丙酮根。在一些实施方案中,含有二齿配体和金属原子或金属离子的金属螯合物添加剂可选自Al(acac)3、Al(F6acac)3、Be(acac)2、Be(F6acac)2、Ca(acac)2、Ca(F6acac)2、Cd(acac)2、Cd(F6acac)2、Ce(acac)3、Ce(F6acac)3、Cr(acac)3、Co(acac)3、Cu(acac)2、Cu(F6acac)2、Dy(acac)3、Er(acac)3、Fe(acac)2、Fe(acac)3、Ga(acac)3、Hf(acac)4、In(acac)3、K(acac)、Li(acac)、Mg(acac)2、Mg(F6acac)2、Mn(acac)2、Mn(acac)3、MoO2(acac)2、MoO2(F6acac)2、Na(acac)、Nd(acac)3、Nd(F6acac)3、Ni(acac)2、Ni(F6acac)2、Pd(acac)2、Pr(acac)3、Pr(F6acac)3、Ru(acac)3、Ru(F6acac)3、Sc(acac)2、Sc(F6acac)2、Sm(acac)3、Sn(acac)2、Sn(acac)2Cl2、叔丁基-Sn(acac)2、叔丁基-Sn(acac)2Cl2、Sn(F6acac)2、Sr(acac)2、Sr(F6acac)2、Tb(acac)3、V(acac)3、Y(acac)3、Y(F6acac)3、Zn(acac)2、Zn(F6acac)2和Zr(acac)4,其中F6acac是指1,1,1,5,5,5-六氟乙酰丙酮根。
在一些实施方案中,所述方法中使用的二齿配体可为β-二酮根或氟化β-二酮根。例如,二齿配体可选自戊烷-2,4-二酮根、1,5-二氟戊烷-2,4-二酮根、1,1,5,5-四氟戊烷-2,4-二酮根、1,1,1,5,5,5-六氟戊烷-2,4-二酮根、丙烷-1,3-二酮根、丁烷-1,3-二酮根、4-氟代丁烷-1,3-二酮根、4,4-二氟丁烷-1,3-二酮根、4,4,4-三氟丁烷-1,3-二酮根、庚烷-3,5-二酮根、1-氟己烷-2,4-二酮根、1,5-二氟戊烷-2,4-二酮根、1,1,5-三氟戊烷-2,4-二酮根、1,1,5,5-四氟戊烷-2,4-二酮根、1,1,1,5,5-五氟戊烷-2,4-二酮根、1,1,1,5,5,5-六氟戊烷-2,4-二酮根和辛烷-3,5-二酮根及其组合。在所述方法的一些实施方案中,基于水相的重量,金属螯合物添加剂中的二齿配体的量可以使得水相中的二齿配体的浓度为约0.001重量%至约1重量%。
在本文提供的方法中,金属螯合物添加剂的金属原子或金属离子可选自周期表的第2族或第13族。在一些实施方案中,金属原子或金属离子是碱土金属。例如,金属原子或金属离子可选自铍(Be)、镁(Mg)、钙(Ca)、锶(Sr)和钡(Ba)。在一些实施方案中,金属原子或金属离子选自铝(Al)、镓(Ga)和铟(In)。基于水相的重量,金属螯合物添加剂中的金属原子或金属离子的量可以使得水相中的金属原子或金属离子的浓度为约0.00001重量%至约1重量%。
基于水相的重量,添加至水相的通量提高组合中的金属螯合物添加剂的量可以使得水相中的金属螯合物添加剂的浓度为约0.001重量%至约1重量%。
在本文提供的方法中,基于水相的重量,存在于通量提高组合中的二烷基亚砜的量使得水相中的二烷基亚砜的浓度为约0.5重量%至约5重量%或者约1重量%至约4.25重量%。可以选择任何二烷基亚砜。在一些实施方案中,可以选择二(C1-C6-烷基)亚砜,例如二甲基亚砜或二乙基亚砜。
在一些实施方案中,所述方法还包括在将水相施加至多孔支撑膜之前将表面活性剂添加至水相。表面活性剂可选自非离子表面活性剂、阳离子表面活性剂、阴离子表面活性剂和两性离子表面活性剂。示例性表面活性剂包括月桂基硫酸钠(SLS)、烷基醚硫酸盐/酯、烷基硫酸盐/酯、烯烃磺酸盐/酯、烷基醚羧酸盐/酯、磺基琥珀酸盐/酯、芳香族磺酸盐/酯、辛基酚乙氧基化物、乙氧基化的壬基酚、烷基聚(环氧乙烷)、聚(环氧乙烷)与聚(环氧丙烷)的共聚物(商业上称作泊洛沙姆(poloxamer)或泊洛沙胺(poloxamine))、烷基聚葡糖苷例如辛基葡糖苷或癸基麦芽糖苷、脂肪醇例如鲸蜡醇或油醇、椰油酰胺MEA、椰油酰胺DEA、烷基羟乙基二甲基氯化铵、鲸蜡基三甲基溴化铵或鲸蜡基三甲基氯化铵、十六烷基三甲基溴化铵或十六烷基三甲基氯化铵、以及烷基甜菜碱。其中优选的是SLS、辛基酚乙氧基化物和乙氧基化的壬基酚。当存在时,基于水相的重量,水相中的表面活性剂的量可为约0.005重量%至约0.5重量%。
所述方法还可包括在将水相施加至多孔支撑膜之前将选自表面活性剂、助溶剂、干燥剂、催化剂或其任意组合的加工助剂添加至水相。基于水相的重量,水相中的加工助剂的量可为约0.001重量%至约10重量%。
助溶剂可为极性非质子溶剂。示例性极性非质子溶剂包含二甲基甲酰胺、二甲基乙酰胺、四氢呋喃、六甲基磷酰胺、1,3-二甲基-2-咪唑烷酮、二乙醚、N-甲基-2-吡咯烷酮、二氯甲烷、乙酸乙酯、乙酸甲酯、乙酸异丙酯、丙酮、甲基乙基酮、甲基异丁基酮、乙腈及其任意组合。在一些实施方案中,极性非质子溶剂包含六甲基磷酰胺。六甲基磷酰胺可以以约0.05重量%至约5重量%的量存在于极性相,例如水相中。
加工助剂可包含干燥剂。可以包含干燥剂以防止在干燥时区别层的渗透损失。可以使用不干扰界面聚合的任何干燥剂。示例性干燥剂包含烃、醚、甘油、柠檬酸、二醇、葡萄糖、蔗糖、柠檬酸钠、樟脑磺酸三乙铵、苯磺酸三乙铵、甲苯磺酸三乙铵、甲磺酸三乙铵、樟脑磺酸铵、和苯磺酸铵、及其任意组合。当存在时,基于水相的重量,干燥剂以约0.001重量%至约10重量%的量存在于水相中。
在本文提供的方法中,水相或有机相或两者可包含纳米颗粒。纳米颗粒可为沸石或碳纳米颗粒(例如,富勒烯或碳纳米管)或其组合。当存在时,基于溶液的重量,纳米颗粒可以以约0.001重量%至约0.5重量%的量存在于水相或有机相或两者中。
还提供了根据本文提供的方法制备的反渗透膜。在一些情况中,在25℃的温度和150psi的压力下,通过将所述膜暴露于含有2000ppm NaCl的去离子水确定,所述膜可表现出至少20gfd的通量。在一些情况中,在25℃的温度和150psi的压力下,通过将所述膜暴露于含有2000ppm NaCl的去离子水确定,所述膜可表现出为至少99.3%的盐截留率。
还提供了净化海水或半咸水的方法。海水的盐度为约35000ppm NaCl,而且可从约32000ppm至约39000ppm NaCl变化。半咸水可包含2000ppm或更少的NaCl。在一些情况中,所述方法包括使半咸水接触通过本文所述的方法制备的反渗透膜。通过待净化的水将流体静压施加至膜。在一些情况中,通过海水或半咸水向膜施加约225psi或更小的流体静压。还提供了低功率方法。在这些方法中,通过海水或半咸水向膜施加约150psi或更小的流体静压。使用通过本文提供的方法制备的膜,净化海水或半咸水的方法可产生至少20gfd的通量。
还提供了包括通过本文所述的任何方法制备的反渗透膜的反渗透元件。在元件中,反渗透膜可以螺旋缠绕在中心多孔渗透收集管周围。
附图说明
包括以提供对本发明的进一步理解并且并入并构成本说明书的一部分的附图举例说明了本发明的实施方案并与描述一起用来解释本发明的原理。
在附图中:
图1是缠绕的模块的一个示例性实施方案。
图2是水相中没有二烷基亚砜或金属螯合物添加剂制备的膜的扫描电子显微照片(SEM)。
图3是用水相中3重量%二甲基亚砜制备的膜的SEM。
图4是用水相中3重量%的二甲基亚砜和0.05重量%的Sr(F6acac)2的组合制备的膜的SEM,其中“F6acac”是指1,1,1,5,5,5-六氟乙酰丙酮根。%Sr(F6acac)2,其中F6acac”是指1,1,1,5,5,5-六氟乙酰丙酮根。
具体实施方式
A.限定
除非另外说明,否则本文使用的所有技术和科学术语具有与本发明所属领域的技术人员通常理解的相同含义。除非另外指出,否则在本文全部公开内容中所涉及到的所有专利、专利申请、公开的申请和出版物、网站和其他公开的材料通过引用整体并入。在对本文的术语有多种限定的情况中,本节的这些限定优先。在参考URL或其他该类标识符或地址的情况中,应理解该类标识符可能变化并且因特网上的特定信息也可能变来变去,但是可以通过搜索因特网找到等同的信息。另外参考文献证实了这些信息的可用性和公众传播。
如本文所使用的单数形式包括复数指代物,除非上下文清楚地另外说明。
如本文所使用的范围和量可以表示为“约”特定值或范围。“约”还包括精确的量。因此“约5%”意指“约5%”并且还意指“5%”。“约”意指落在预期的应用或目的的一般实验误差内。
如本文所使用的“任选的”或“任选地”意指随后描述的事件或情形可发生或可不发生,并且该描述包括所述事件或情形发生的情况以及不发生的情况。例如,系统中的任选的组分是指所述组分可以存在或可以不存在于所述系统中。
如本文所使用的术语“烷基”是指包含至少一个碳原子并且在碳原子之间不包含双键或三键的直链、支化或环状链。碳原子数可以是指例如,1至6个碳原子、2至5个碳原子、3至4个碳原子、2至6个碳原子、3至6个碳原子、2至4个碳原子和1至5个碳原子。碳原子数可以表示为,例如C1-C6
如本文所使用的C1-Cx包括C1-C2、C1-C3、C1-C4、C2-C4、...C1-Cx
如本文所使用的“芳香环”是指包含由4n+2个电子占据的π-分子轨道阵列的环,其中n是整数。许多芳香环或环系统具有6个π-电子。芳香环可为5-元单环或6-元单环,或者可为双环系统,例如包含两个或更多个稠合5-元环或6-元环。
如本文所使用的“通量”是指每单位时间流过单位面积的材料的量,例如在给定时间期间流过给定膜面积的液体的量。通常地,通量取决于膜的厚度、进料组成、进料的温度、下游真空和进料侧压力。
如本文所使用的“组合”是指两个项目之间或多于两个项目中的任何关联。所述关联可以是空间的或者是指出于一般目的使用两个或更多个项目。
如本文所使用的“通量提高组合”是指一起改善膜的通量的至少两种组分的组合。
如本文所使用的“螯合物”是指包含金属原子或金属离子和螯合剂的组合。
如本文所使用的“螯合剂”是指可以形成到单个金属原子或金属离子的两个或更多个键的化学品。
如本文所使用的“二齿配体”是指可以形成到单个金属原子或金属离子的两个键的螯合剂。
如本文所使用的“金属螯合物添加剂”是包含至少一种二齿配体和金属原子或金属离子的添加剂。
如本文所使用的术语“表面活性剂”是指在空气/水、油/水和/或油/水界面处吸收,显著降低其表面能的分子。表面活性剂一般根据表面活性部分的电荷分类,并且可分为阳离子表面活性剂、阴离子表面活性剂、非离子表面活性剂和两性表面活性剂。
如本文所使用的“薄膜复合膜”是指具有连接在一起以形成单个膜的不同材料的层的膜。
如本文所使用的“卤代”是指存在一种或更多种卤素取代基,例如氟、氯、溴、或碘或其任意组合。例如,卤代C1烷基可为-CH2Cl、-CHCl2、-CCl3、-CH2F、-CHF2、-CF3、-CH2Br、-CHBr2、-CBr3、-CH2I、-CHI2或-CI3中的任一者。
如本文所使用的术语“接触”是指使两种或更多种材料足够接近,由此他们可以相互作用。
如本文所使用的“二烷基亚砜”是指具有结构:的化合物。
其中Ra和Rb中的每一者独立地为烷基或羟基烷基。
如本文所使用的“DMSO”是指二甲基亚砜。
如本文所使用的“gfd”是指加仑/英尺2/天。
B.反渗透
现在将详细参照本发明的一个实施方案,其实例在附图中进行举例说明。
海水淡化行业面临着实现高盐截留和高通量膜的问题,特别是在较低压力,例如150psi或更小(低能量条件)下可用于半咸水的膜。这些膜需要对低盐度水具有高盐截留率,在长时间内(例如,在实验室中平坦片测试至少一周)是稳定的,并且具有高通量以在低能量半咸水条件下成功地工作。本文提供的方法生产在低能量半咸水条件(例如,150psi,2000ppm盐度)下实现高通量和高盐截留率的膜,并且所述膜在实验室中平坦片测试至少一周是稳定的。本文提供的方法使用二烷基亚砜以及含有二齿配体和金属原子或金属离子的金属螯合物添加剂的组合增强聚酰胺膜以增加通量,并对盐截留率具有可忽略的负面影响。本文提供的包含二烷基亚砜以及含有二齿配体和金属原子或金属离子的金属螯合物添加剂的通量提高组合增加了膜的通量,比改变膜的通量的任一组分单独多。
二甲基亚砜(DMSO)是二烷基亚砜。先前已经在使用正己烷作为溶剂制备的反渗透膜中测试了DMSO作为通量提高剂(参见Kwak等,Environ.Sci.Technol.(2001)35:4334-4340;Gohil等,Desalination and Water Treatment(2014)52:28-30,5219-5228,DOI:10.1080/19443994.2013.809025;以及Kim等,Environ.Sci.Technol.(2005)39:1764-1770)。设计这样的膜用于标准半咸水条件(2000ppm盐度和225psi)。二酮根和金属添加剂被描述为能够增加反渗透膜中的通量(参见例如美国专利第8,177,978号)。
C.通量提高组合
本文提供的是包含二烷基亚砜以及含有二齿配体和金属原子或金属离子的金属螯合物添加剂的添加剂的组合,当包含时,在水相或有机相或两者中,导致形成具有增加的通量和盐截留率的区别层。本文提供的通量提高组合得到协同的通量提高—通量的提高远大于通过单独添加剂实现的通量提高。使用本文提供的方法(包括将包含二烷基亚砜以及含有二齿配体和金属原子或金属离子的金属螯合物添加剂的添加剂的组合添加至水相或有机相或两者)制备的膜可以在标准半咸水条件(2000ppm盐度和225psi)以及低能量的半咸水条件(2000ppm和150psi)下使用。使用本文提供的方法制备的膜还可用于海水并且最多至800psi的压力。所述膜还可用于自来水过滤,其中压力可为150psi或更小,或者100psi或更小,例如约25psi至约75psi。所述膜还可用于纳滤。
可以将组合的组分一起添加至一个相中,例如可将两种组分添加至水相中或者可以将两种组分添加至有机相中,或者可以将组分分别添加至不同相中。例如,在一些实施方案中,将二烷基亚砜以及含有二齿配体和金属原子或金属离子的金属螯合物添加剂两者添加至水相。在一些实施方案中,将二烷基亚砜以及含有二齿配体和金属原子或金属离子的金属螯合物添加剂两者添加至有机相。在一些实施方案中,将二烷基亚砜以及含有二齿配体和金属原子或金属离子的金属螯合物添加剂两者添加至水相和有机相,在一些实施方案中,将二烷基亚砜添加至水相并且将含有二齿配体和金属原子或金属离子的金属螯合物添加剂添加至有机相。在一些实施方案中,将二烷基亚砜添加至有机相并且将含有二齿配体和金属原子或金属离子的金属螯合物添加剂添加至水相。
1.二烷基亚砜
本文提供的通量提高添加剂的组合包含二烷基亚砜。二烷基亚砜可具有式:
其中Ra和Rb中的每一者独立地选自C1-C25烷基和C1-C20羟基烷基。烷基或羟基烷基可为线性或支化的,并且当C3或更大时可为环状的。在一些实施方案中,Ra和Rb中的每一者独立地选自C1-C10烷基和C1-C10羟基烷基。在一些实施方案中,Ra和Rb中的每一者独立地选自C1烷基、C2烷基、C3烷基、C4烷基、C5烷基和C6烷基。示例性亚砜包括但不限于二甲基亚砜、二乙基亚砜、甲基乙基亚砜、二丙基亚砜、二异丙基亚砜、二正戊基亚砜、二正己基亚砜、二-(2-甲基-戊基)亚砜、二辛基亚砜、甲基辛基亚砜、乙基辛基亚砜、2-羟乙基己基亚砜、2-羟乙基庚基亚砜、2-羟乙基辛基亚砜、2-羟乙基壬基亚砜、2-羟乙基癸基亚砜、2-羟乙基十一烷基亚砜、2-羟乙基十二烷基亚砜、2-羟乙基十三烷基亚砜、2-羟乙基十四烷基亚砜、2-羟乙基十五烷基亚砜、2-羟乙基十六烷基亚砜、2-羟乙基十七烷基亚砜、2-羟乙基十八烷基亚砜、2-羟乙基十九烷基亚砜、2-羟乙基二十烷基亚砜、2-羟乙基二十一烷基亚砜、2-羟乙基二十二烷基亚砜、2-羟丙基己基亚砜、2-羟丙基庚基亚砜、2-羟丙基辛基亚砜、2-羟丙基壬基亚砜、2-羟丙基癸基亚砜、2-羟丙基十一烷基亚砜、2-羟丙基十二烷基亚砜、2-羟丙基十三烷基亚砜、2-羟丙基十四烷基亚砜、2-羟丙基十五烷基亚砜、2-羟丙基十六烷基亚砜、2-羟丙基十七烷基亚砜、2-羟丙基十八烷基亚砜、2-羟丙基十九烷基亚砜、2-羟丙基二十烷基亚砜、2-羟丙基二十一烷基亚砜、2-羟丙基二十二烷基亚砜、3-羟丙基己基亚砜、3-羟丙基十二烷基亚砜、3-羟丙基十六烷基亚砜、2-羟基-2-甲基丙基十二烷基亚砜、2-羟基-2-甲基-十二烷基十二烷基亚砜、2-羟基-2-辛基-十二烷基十二烷基亚砜、双(2-羟乙基)亚砜、双(2-羟基十二烷基)亚砜、2-羟乙基2-羟丙基亚砜、2-羟乙基2-羟基-十二烷基亚砜、2-羟基-乙基5-羟苯基亚砜、2-羟基环己基十二烷基亚砜、2-羟基-环己基十二烷基亚砜、二环己基亚砜、环戊基甲基亚砜、环戊基乙基亚砜、和环庚基丙基亚砜及其组合。可以使用两种或更多种亚砜的混合物。
在一些实施方案中,Ra和Rb中的至少一者是C1-C25烷基。在一些实施方案中,Ra和Rb中的至少一者是C1-C20羟基烷基。在一些实施方案中,Ra和Rb中的每一者为C1-C25烷基。在一些实施方案中,Ra和Rb中的至少一者是C1-C10烷基。在一些实施方案中,Ra和Rb中的每一者为C1-C10烷基。在一些实施方案中,二烷基亚砜是二-(C1-C6-烷基)-亚砜。在一些实施方案中,优选二甲基亚砜和二乙基亚砜。
已知多种方法用于制备亚砜。例如,参见美国专利第6,437,189B1号和第7,064,214B2号。一种方法涉及相应硫化物的氧化。反应可以在有机、溶剂介质,例如乙酸、丙酮或甲醇中进行。通常在约0℃至200℃范围的温度下,将接近理论量的氧化剂添加到反应混合物中。过氧化氢通常用作氧化剂;然而,可以使用其他试剂,例如过酸、硝酸、铬酸和高锰酸钾中的任一种。所得的亚砜可以从反应混合物中回收,通常通过将其溶解或萃取在合适的溶剂中。亚砜还可通过结晶来纯化。
当将正己烷用作溶剂以增加通量而不负面影响盐截留率时,在区别层的界面聚合期间,已经将二甲基亚砜(DMSO)包含在水相中(参见Gohil等,Desalination and WaterTreatment(2014)52:28-30,5219-5228,DOI:10.1080/19443994.2013.809025);Kwak等,Environ.Sci.Technol.(2001)35:4334-4340;以及Kim等,Environ.Sci.Technol.(2005)39:1764-1770)。存在多个DMSO怎样增加通量的理论。例如,Kim等(Environ.Sci.Technol.(2005)39:1764-1770)阐述了当将DMSO包含在水相中时表面粗糙度和表面积增加。Kim等阐述了DMSO减少了水相层与有机相层之间的溶解度的差异,促进水相中的成分扩散到有机相中。Gohil等(Desalination and Water Treatment(2014)52:28-30,5219-5228,DOI:10.1080/19443994.2013.809025)提出DMSO引起网络孔的大小和数量以及聚集体孔的大小的增加。Kwak等(Environ.Sci.Technol.(2001)35:4334-4340)阐述了将DMSO包含在水相中得到扩大的表面积并且增加了表面的粗糙度,其组合允许膜与更多水分子相互作用,其可以得到更高的渗透性。与通过添加含有二齿配体和金属原子或金属离子的金属螯合物添加剂获得的效果组合的这些效果的任意组合得到在低能量半咸水条件下具有高通量和高盐截留率的膜。
二烷基亚砜通常以这样的量存在于本文提供的通量提高组合中:当将所述组合添加至水相或有机相时使得水相或有机相中的二烷基亚砜的浓度为约0.5重量%至约5重量%(基于水相或有机相的重量)。在一些实施方案中,基于水相的重量,存在于所述组合中的二烷基亚砜,例如DMSO的量使得水相或有机相中的二烷基亚砜的浓度为约1重量%至4.25重量%。基于水相或有机相的重量,可以选择组合中的二烷基亚砜的量以使得水相或有机相中的浓度为约0.5重量%、0.75重量%,、1重量%、1.25重量%、1.5重量%、1.75重量%、2重量%、2.25重量%、2.5重量%、2.75重量%、3重量%、3.25重量%、3.5重量%、3.75重量%、4重量%、4.25重量%、4.5重量%、4.75重量%或5重量%,或者使得水相或有机相中的浓度在为或为约a至为或约为b的范围中,其中a是二烷基亚砜的前述重量%值的任一者,b是二烷基亚砜的前述重量%值的>a的任一者,例如约0.5重量%至约4重量%,或约1重量%至约4.5重量%,或约0.75重量%至约3.75重量%等。
通量提高组合中的二烷基亚砜与含有二齿配体和金属原子或金属离子的金属螯合物添加剂之比可为约5:1至约200:1。在一些实施方案中,二烷基亚砜与金属螯合物添加剂之比为约10:1至约100:1。在一些实施方案中,二烷基亚砜与金属螯合物添加剂之比为约20:1至约70:1。在一些实施方案中,二烷基亚砜与金属螯合物添加剂之比为20:1、21:1、22:1、23:1、24:1、25:1、26:1、27:1、28:1、29:1、30:1、31:1、32:1、33:1、34:1、35:1、36:1、37:1、38:1、39:1、40:1、41:1、42:1、43:1、44:1、45:1、46:1、47:1、48:1、49:1、50:1、51:1、52:1、53:1、54:1、55:1、56:1、57:1、58:1、59:1、60:1、61:1、62:1、63:1、64:1、65:1、66:1、67:1、68:1、69:1、或70:1。
将二烷基亚砜单独添加到水相中可以导致具有增加通量的膜。然而所实现的通量增加远不如使用包含通量添加剂的组合的水相或有机相或两者制备的膜中实现的通量增加,所述通量添加剂的组合包含二烷基亚砜以及含有二齿配体和金属原子或金属离子的金属螯合物添加剂。此外,与水相中使用包含二烷基亚砜以及含有二齿配体和金属原子或金属离子的金属螯合物添加剂的通量添加剂的组合制备的膜相比,在水相中单独使用二烷基亚砜制备的膜表现出更大的盐截留率值降低。在一些实施方案中,除了包含二烷基亚砜以及含有二齿配体和金属原子或金属离子的金属螯合物添加剂的通量添加剂的组合以外,水相包含间苯二胺(MPD)、月桂基硫酸钠(SLS)和樟脑磺酸三乙铵(TEACSA)。在一些实施方案中,水相或有机相或水相和有机相两者还可包含六甲基磷酰胺(HMPA)。有机相或水相中的HMPA的量可为约0.05重量%至约5重量%。在一些实施方案中,HMPA可以以约0.1重量%至约4重量%的范围存在于每个相中。
在一些实施方案中,水相包含间苯二胺(MPD)、月桂基硫酸钠(SLS)、六甲基磷酰胺(HMPA)和樟脑磺酸三乙铵(TEACSA),有机相包含均苯三甲酰氯(TMC)和IsoparTMG(石脑油,低气味低芳香族C10-C12异烷烃溶剂,ExxonMobil,Irving,TX)中的均三甲苯。使用本文提供的方法制备的膜(用水相或有机相或两者中的包含二烷基亚砜以及含有二齿配体和金属原子或金属离子的金属螯合物添加剂的通量添加剂的组合制备)可用于标准半咸水过滤(通常使用约225psi的压力)。使用本文提供的方法制备的膜还可用于低压半咸水过滤(150psi)。在一些应用中,膜在低压(150psi)下使用时比在高压下使用时的盐截留率值高。在一些应用中,使用本文提供的方法制备的膜可用于海水反渗透应用。在一些应用中,膜可用于自来水过滤或纳滤。
2.金属螯合物添加剂
本文所提供的通量提高添加剂的组合包含含有二齿配体和金属原子或金属离子的金属螯合物添加剂。可以形成与金属原子或金属离子的配合物的任何二齿配体可用于金属螯合物添加剂。二齿配体可为可以向金属原子或金属离子给电子的路易斯碱。示例性二齿配体包含:
其中R1、R2、R3、R4和R5中的每一者分别选自C1-C10烷基、卤代C1-C10烷基、5-元芳香环或6-元芳香环、包含两个稠合6-元环的芳香族双环环系统、以及包含与6-元芳香环稠合的5-元环的芳香族双环环系统。在一些实施方案中,R1、R2、R3、R4和R5中的每一者分别选自C1-C6烷基和卤代C1-C6烷基。在一些实施方案中,R1、R2、R3、R4或R5中的任一个可选自苯基,苄基,含有1至4个选自N、O和S的杂原子的C1-C5芳香环,以及含有1至4个选自N、O和S的杂原子的C5-C9双环芳香环系统。在一些实施方案中,R1、R2、R3、R4或R5中的任一个可选自呋喃基、吡咯基、噻吩基、咪唑基、吡唑基、唑基、异唑基、噻唑基、苯基、吡啶基、吡嗪基、嘧啶基、哒嗪基、嘌呤基、苯并唑基、苯并噻唑基、苯并异唑基、苯并咪唑基、苯并噻吩基、吲唑基、苯并[c]噻吩基、异吲哚基、异苯并呋喃基、萘基、喹啉基、喹喔啉基、喹唑啉基和异喹啉基。
其中优选的二齿配体是未经取代和经卤素取代的式1的β-二酮根,例如乙酰丙酮根离子(通常简称为“acac”并且也称为戊烷-2,4-二酮根)或者卤代乙酰丙酮根离子。一个或更多个二齿配体可以与金属离子相互作用以形成金属螯合物。例如,当金属离子是碱土金属时,两个二齿配体可以与金属原子或金属离子相互作用以形成金属螯合物。示例性金属螯合物添加剂包含:i)两个乙酰丙酮根配体和Sr原子(结构A);ii)两个氟代乙酰丙酮根配体和Sr原子(结构B);以及iii)两个草酸盐配体和Sr原子(结构C):
在一些实施方案中,选择金属种类和配体以形成在水相层中可以溶解成一定程度的螯合物。在一些应用中,螯合物包含至少一种二齿配体。
在一些实施方案中,金属配合物包含未经取代或经卤素取代的β-二酮根。示例性β-二酮根配体包含戊烷-2,4-二酮根(乙酰丙酮根,通常简称为“acac”)、1,5-二氟戊烷-2,4-二酮根、1,1,5,5-四氟戊烷-2,4-二酮根、1,1,1,5,5,5-六氟戊烷-2,4-二酮根、丙烷-1,3-二酮根、丁烷-1,3-二酮根、4-氟丁烷-1,3-二酮根、4,4-二氟丁烷-1,3-二酮根、4,4,4-三氟丁烷-1,3-二酮根、庚烷-3,5-二酮根、1-氟己烷-2,4-二酮根、1,5-二氟戊烷-2,4-二酮根、1,1,5-三氟戊烷-2,4-二酮根、1,1,5,5-四氟戊烷-2,4-二酮根、1,1,1,5,5-五氟戊烷-2,4-二酮根、1,1,1,5,5,5-六氟戊烷-2,4-二酮根和辛烷-3,5-二酮根配体。
配体可以与选自周期表(IUPAC)的第2族至第15族的任何元素结合以形成螯合物。在一些实施方案中,配体与选自周期表(IUPAC)的第3族至第15族和第3行至第6行,优选周期表的第3族至第14族和第3行至第6行中的元素结合。在一些实施方案中,配体与选自以下的金属原子或金属离子结合:铝、铍、镉、钙、铈、铬、钴、铜、镝、铒、镓、铪、铟、铁、锂、镁、锰、钼、钕、镍、钯、钾、镨、钌、钐、钪、钠、锶、铽、锡、钒、钇、镱、锌和锆。在一些实施方案中,金属可为第2族(碱土金属,例如铍(Be)、镁(Mg)、钙(Ca)、锶(Sr)和钡(Ba))金属离子或金属原子或者第13族(铝(Al)、镓(Ga)、铟(In)或铊(Tl))金属离子或金属原子。
含有二齿配体和金属原子或金属离子的金属螯合物在本领域中是公知的,用于形成金属螯合物的方法也是本领域中公知的(例如,参见美国专利第3,231,597号;第3,291,660号和第7,282,573号;以及国际专利申请公开WO 2004/056737,其每个公开内容通过引用并入)。例如,金属乙酰丙酮化物可以通过过量的乙酰丙酮或乙酰丙酮的固体盐的溶液在惰性溶剂中反应,随后用金属氧化物、金属氢氧化物、金属碳酸盐或金属的碱性碳酸盐回流形成。如果金属盐可溶于非水性溶剂中,则金属乙酰丙酮化物还可以在非水性溶液中通过金属盐和乙酰丙酮的反应制备。金属乙酰丙酮化物还可以在具有或没有pH控制或者添加的热的情况下通过乙酰丙酮与金属氧化物、金属氢氧化物、金属碳酸盐或金属碱性碳酸盐在水性溶液中的反应形成。金属乙酰丙酮化物还可以在包含配体和金属,特别是碱金属和碱土金属的无水惰性介质中制备。这些合成技术的任何种可用于制备具有本文提供的通量提高组合的金属螯合物。
基于水相或有机相的重量,可以选择在金属螯合物添加剂中的金属原子或金属离子的量以使得水相或有机相中的浓度为约0.00001重量%至约1重量%。在一些实施方案中,基于水相或有机相的重量,可以选择在金属螯合物添加剂中的金属原子或金属离子的量以使得水相或有机相中的浓度为约0.0001重量%至约1重量%、或者0.001重量%至约0.5重量%。
在一些实施方案中,含有二齿配体和金属原子或金属离子的金属螯合物添加剂的优选种类包含Al(acac)3、Al(F6acac)3、Be(acac)2、Be(F6acac)2、Ca(acac)2、Ca(F6acac)2、Cd(acac)2、Cd(F6acac)2、Ce(acac)3、Ce(F6acac)3、Cr(acac)3、Co(acac)3、Cu(acac)2、Cu(F6acac)2、Dy(acac)3、Er(acac)3、Fe(acac)2、Fe(acac)3、Ga(acac)3、Hf(acac)4、In(acac)3、K(acac)、Li(acac)、Mg(acac)2、Mg(F6acac)2、Mn(acac)2、Mn(acac)3、MoO2(acac)2、MoO2(F6acac)2、Na(acac)、Nd(acac)3、Nd(F6acac)3、Ni(acac)2、Ni(F6acac)2、Pd(acac)2、Pr(acac)3、Pr(F6acac)3、Ru(acac)3、Ru(F6acac)3、Sc(acac)2、Sc(F6acac)2、Sm(acac)3、Sn(acac)2、Sn(acac)2Cl2、叔丁基-Sn(acac)2、叔丁基-Sn(acac)2Cl2、Sn(F6acac)2、Sr(acac)2、Sr(F6acac)2、Tb(acac)3、V(acac)3、Y(acac)3、Y(F6acac)3、Zn(acac)2、Zn(F6acac)2和Zr(acac)4,其中F6acac是指1,1,1,5,5,5-六氟戊烷-2,4-二酮根或1,1,1,5,5,5-六氟乙酰丙酮根。
基于水相或有机相的重量,可以选择本文提供的通量提高组合中的含有二齿配体和金属原子或金属离子的金属螯合物添加剂的量以使得水相或有机相中的浓度为约0.001重量%至约1重量%。在一些实施方案中,基于水相或有机相的重量,可以选择组合中含有二齿配体和金属原子或金属离子的金属螯合物添加剂的量以使得水相或有机相中的浓度为约0.001重量%、0.005重量%、0.01重量%、0.0125重量%、0.015重量%、0.0175重量%、0.02重量%、0.0225重量%、0.025重量%、0.0275重量%、0.03重量%、0.0325重量%、0.035重量%、0.0375重量%、0.04重量%、0.0425重量%、0.045重量%、0.0475重量%、0.05重量%、0.0525重量%、0.055重量%、0.0575重量%、0.06重量%、0.0625重量%、0.065重量%、0.0675重量%、0.07重量%、0.0725重量%、0.075重量%、0.0775重量%、0.08重量%、0.0825重量%、0.085重量%、0.0875重量%、0.09重量%、0.0925重量%、0.095重量%、0.0975重量%、0.1重量%、0.2重量%、0.3重量%、0.4重量%、0.5重量%、0.6重量%、0.7重量%、0.8重量%、0.9重量%或1重量%,或者使得水相或有机相中的浓度在为或约为c至为或约为d的范围中,其中c是金属螯合物添加剂的前述重量%值的任一者,d是金属螯合物添加剂的前述重量%值的>c的任一者,例如约0.005重量%至约0.0625重量%、或者约0.025重量%至约0.575重量%、或者约0.01重量%至约0.07重量%、或者约0.04重量%至约0.4重量%等。在一些实施方案中,至少0.01重量%的含有二齿配体和金属原子或金属离子的金属螯合物添加剂存在于水相中。在一些实施方案中,至少0.05重量%的含有二齿配体和金属原子或金属离子的金属螯合物添加剂存在于水相中。在一些实施方案中,至少0.01重量%的含有二齿配体和金属原子或金属离子的金属螯合物添加剂存在于有机相中。在一些实施方案中,至少0.05重量%的含有二齿配体和金属原子或金属离子的金属螯合物添加剂存在于有机相中。
本文提供的通量提高组合中的含有二齿配体和金属原子或金属离子的金属螯合物添加剂与二烷基亚砜之比可为约1:5至约1:200。在一些实施方案中,含有二齿配体和金属原子或金属离子的金属螯合物添加剂与二烷基亚砜之比为约1:10至约1:100。在一些实施方案中,金属螯合物添加剂与二烷基亚砜之比为约1:20至约1:70。在一些实施方案中,金属螯合物添加剂与二烷基亚砜之比为1:20、1:21、1:22、1:23、1:24、1:25、1:26、1:27、1:28、1:29、1:30、1:31、1:32、1:33、1:34、1:35、1:36、1:37、1:38、1:39、1:40、1:41、1:42、1:43、1:44、1:45、1:46、1:47、1:48、1:49、1:50、1:51、1:52、1:53、1:54、1:55、1:56、1:57、1:58、1:59、1:60、1:61、1:62、1:63、1:64、1:65、1:66、1:67、1:68、1:69、或1:70。
可以将包含二烷基亚砜以及含有二齿配体和金属原子或金属离子的金属螯合物添加剂的组合添加至水相或有机相或两者。二烷基亚砜和金属螯合物添加剂可以组合或以任何顺序依次添加。
D.其他添加剂
在本文提供的方法中,除了本文所述的包含二烷基亚砜以及含有二齿配体和金属原子或金属离子的金属螯合物添加剂的通量提高组合以外,界面聚合期间所使用的水相或有机相可以包含其他添加剂。例如,水相可包含纳米颗粒,载体(包含不溶性载体)和加工助剂,例如表面活性剂、助溶剂如极性非质子溶剂、干燥剂、催化剂、共反应物或其任意组合。干燥剂可包含例如,疏水性有机化合物,例如烃或醚、甘油、柠檬酸、二醇、葡萄糖、蔗糖、柠檬酸钠、樟脑磺酸三乙铵、苯磺酸三乙铵、甲苯磺酸三乙铵、甲磺酸三乙铵、樟脑磺酸铵和苯磺酸铵,以及在美国专利第4,855,048号;第4,948,507号;第4,983,291号;和第5,658,460号中所述的那些。抗氧化剂还可包含在水相或有机相或两者中。例如,1010(空间位阻酚抗氧化剂,CAS No.6683-19-8,来自BASF Schweiz AG,Basel,瑞士)可以包含在有机相中。纳米颗粒和非极性有机溶剂还可包含在有机相中。
1.纳米颗粒
在一些实施方案中,可将纳米颗粒或载体包含在TFC膜中。纳米颗粒或相对不溶的载体或两者在添加至水相或有机相或两者之前可使用剪切、气蚀(cavitation)或冲击力进行处理。还可将纳米颗粒或载体在使用之前在200℃或更高下煅烧至少1小时。还可将载体在使用之前使其经受超声波能来进行处理。
在使用之前可以处理纳米颗粒或载体以调节pH。例如,纳米颗粒或载体或两者可以在pH低于约6的溶液中处理至少30秒或者在pH低于约5的溶液中处理至少30秒。纳米颗粒或载体可以在pH大于约8的溶液中处理至少30秒或者在pH大于约9的溶液中处理至少30秒。在40℃或更高的温度下,纳米颗粒或载体或两者还可以在溶液中用热处理至少5分钟。
可以将纳米颗粒或载体包含在支撑层、有机相、水相、水相和有机相两者中,或者在支撑层、水相和有机相中。在水相中的单体与有机相中的单体的界面聚合之前,纳米颗粒或载体还可存在于支撑膜的水湿润表面中。可以将纳米颗粒,例如沸石,特别地LTA添加至支撑膜以改善功能性,例如,使膜更耐压实。
纳米颗粒或载体可包含金属颗粒,例如金、银、铜、锌、钛、铁、铝、锆、铟、锡、镁、或钙或其合金或其氧化物或其组合。他们还可以是非金属种类,例如Si3N4、SiC、BN、B4C、或TiC或其合金或其组合。他们可以是基于碳的种类,例如石墨、碳玻璃、至少C2的碳簇、碳纳米管、碳纳米颗粒、巴克敏斯特富勒烯(buckminsterfullerene)、高级富勒烯、或其组合,例如美国专利第5,641,466号;第6,783,745号;第7,078,007号;第7,422,667号;第7,648.765号;第7,816,564号;第8,173,211号和第8,828,533号中描述的那些。
用作纳米颗粒的合适沸石包含LTA(林德A型)、LTL(林德L型)、OFF(菱钾沸石,offretite)、RHO、PAU和KFI。这种沸石具有不同的Si/Al比,表现出不同的特征电荷和亲水性,因此在不同的情况下可以选择包含在RO膜中。纳米颗粒还可包含沸石前体或无定形硅铝酸盐。
沸石可以是具有完全交联的开口框架结构的结晶硅铝酸盐,其由角共享SiO4和AlO4四面体组成。沸石的代表性经验式是M2/nO·Al2O3xSiO2yH2O,其中M表示n价的可交换阳离子。M通常是第I族或第II族离子,但是其他金属、非金属和有机阳离子也可以平衡由结构中Al的存在产生的负电荷。框架可以包括互连的笼和离散尺寸的通道,其可以被水占据。除了Si4+和Al3+以外,其他元素也可以存在于沸石框架中。他们不需要具有Si4+或Al3+的等电子,但是能够占据框架位点。硅铝酸盐沸石通常显示净负框架电荷,但其他分子筛框架可以是电中性的。
优选Si:Al比小于1.5:1的硅铝酸盐沸石。其他优选的矿物包含矾石、明矾石、氨明矾、蠕陶土(anauxite)、锰明矾、羟铝矾、透鳞绿泥石(batavite)、铝土矿、贝德石、勃姆石、氯羟铝石、富铁皂石(Cardenite)、铜明矾、锥冰晶石、氯矾石、冰晶石、碳钠铝石、水铝石、地开石、氟钙铝石、三水铝石、多水高岭石、水基性矾、水铝钙石、水滑石、伊利石、纤钾明矾、高岭石、蜜蜡石、蒙脱石、钠明矾石、绿脱石、霜晶石、葡萄石、氟铝钙石、氟钠镁铝石、铜铁矾、皂石、方霜晶石、氟铝镁钠石、磷钙铝矾、和锌明矾及其组合。
沸石和其他无机矿物化合物也可以基于结晶度来选择。纳米颗粒的无定形部分通常比纳米颗粒的结晶部分更易溶,并且处理可以增加溶解度。结晶材料的量可以通过几种技术来确定,包括x-射线晶体学。纳米颗粒可以具有颗粒内按质量计大于0.5%、1%或5%无定形材料的结构并且可具有包含至少40%的铝原子或者与铝原子直接结合的氧原子的表面。
具有类似于沸石的笼状框架结构或具有相似性质的矿物包含磷酸盐:土磷锌铝石、磷铍锂石(pahasapaite)和水磷铍钠石(tiptopite);和硅酸盐:香花石、铍硅钠石(lovdarite)、磷方沸石、帕水钙石(partheite)、葡萄石、水硅铝碱石、鱼眼石、白钙沸石(gyrolite)、水钙铅矿(maricopaite)、水硅钙石、易变硅钙石和雪硅钙石。因此,类似于沸石的矿物还可为基于AlPO4的分子筛。这些铝磷酸盐、硅铝磷酸盐、金属铝磷酸盐和金属硅铝磷酸盐分别表示为AlPO4-n、SAPO-n、MeAPO-n和MeAPSO-n,其中n是表明结构类型的整数。AlPO4分子筛可具有已知沸石的结构或其他结构。当将Si并入AlPO4-n框架中时,产物可以称为SAPO。MeAPO或MeAPSO筛可通过将金属原子(Me)并入AlPO4-n或SAPO框架中来形成。示例性金属原子包含Li、Be、Mg、Co、Fe、Mn、Zn、B、Ga、Fe、Ge、Ti和As。
大多数经取代的AlPO4-n具有与AlPO4-n的相同结构,但是几个新结构仅在SAPO、MeAPO和MeAPSO材料中发现。他们的框架通常携带电荷。
非沸石纳米颗粒和或其他相对不溶载体可选自具有使得可以实现溶解的分子添加剂的优选浓度的溶度积的无机矿物化合物的列表。对于许多化合物,这些溶度积(Ksp)是众所周知的。对于其中这些在实验中未知的化合物,分子添加剂释放或其他相对不溶载体也可以通过其抗衡离子来选择。在这种情况下,可以基于硫酸盐、氢氧化物或氧化物抗衡离子的存在来选择化合物。这些非沸石纳米颗粒或其他相对不溶载体的溶解度可以使用处理来增强。
颗粒大小通常以平均流体动力学直径来描述,假设球形的纳米颗粒或载体。纳米颗粒载体的平均流体动力学直径可为约0.1nm至约1000nm、约10nm至约1000nm、约20nm至约1000nm、约50nm至约1000nm、约0.11nm至约500nm、约10nm至约500nm、约50nm至约250nm、约200nm至约300nm、或者约50nm至约500nm。
纳米颗粒或载体可以分散在与将在界面聚合期间使用的水性或极性溶剂相容的溶液中。在一些应用中,水可以用作纳米颗粒或载体的分散溶剂,和用作在界面聚合期间使用的水性溶剂两者。这种分散体主要包括分离和单独的纳米颗粒或载体。用于分散的合适方法包括搅拌、超声波、振动、使用表面活性剂或助溶剂、使用MicrofluidizerTM高剪切流体加工器(Microfluidics Corp.,Westwood,MA,USA)、使用均化器、使用研钵和杵、使用球磨机或使用罐磨机。在一些应用中,一些纳米颗粒或载体可能仍然与其他纳米颗粒或载体颗粒相结合成聚集体。这些聚集体可以留在溶液中,或者可以通过合适的技术(例如过滤)除去。
当存在时,基于水相或有机相的重量,水相或有机相中的纳米颗粒的量为约0.001重量%至约0.5重量%。在一些实施方案中,基于水相或有机相的重量,水相或有机相包含量为约0.005重量%至约0.1重量%的纳米颗粒。
2.加工助剂
在一些实施方案中,水相或有机相可包含加工助剂,例如表面活性剂、助溶剂如水相中的极性非质子溶剂或有机相中的非极性有机溶剂、干燥剂、催化剂、共反应物或其任意组合。当存在时,基于水相或有机相的重量,加工助剂可以以约0.001重量%至约10重量%的量存在于水相或有机相中。
a.表面活性剂
在一些实施方案中,界面聚合期间使用的水相可包含一种表面活性剂或多种表面活性剂的组合。表面活性剂可以例如,帮助水相润湿支撑层或者可以帮助材料(例如纳米颗粒)在水相中的分散。根据其他添加剂的化学性质,表面活性剂可选自非离子表面活性剂、阳离子表面活性剂、阴离子表面活性剂和两性离子表面活性剂。例如,当使用阴离子添加剂时,将不选择阳离子表面活性剂。示例性表面活性剂包含月桂基硫酸钠(SLS)、烷基醚硫酸盐/酯、烷基硫酸盐/酯、烯烃磺酸盐/酯、烷基醚羧酸盐/酯、磺基琥珀酸盐/酯、芳香族磺酸盐/酯、辛基酚乙氧基化物、乙氧基化的壬基酚、烷基聚(环氧乙烷)、聚(环氧乙烷)和聚(环氧丙烷)的共聚物(商业上称作泊洛沙姆或泊洛沙胺)、烷基聚葡糖苷例如辛基葡糖苷或癸基麦芽糖苷、脂肪醇例如鲸蜡醇或油醇、椰油酰胺MEA、椰油酰胺DEA、烷基羟乙基二甲基氯化铵、鲸蜡基三甲基溴化铵或鲸蜡基三甲基氯化铵、十六烷基三甲基溴化铵或十六烷基三甲基氯化铵、以及烷基甜菜碱。其中优选的是SLS、辛基酚乙氧基化物和乙氧基化的壬基酚。
当存在时,基于水相的重量,水相中表面活性剂的量可为至多10重量%,但是通常地小于5重量%,通常小于1重量%,例如约0.005重量%至约0.5重量%。在一些实施方案中,水相不包含表面活性剂。在一些实施方案中,基于水相的重量,水相包含量为约0.01重量%至约0.1重量%的表面活性剂。
b.樟脑磺酸三乙铵(TEACSA)
在一些实施方案中,界面聚合期间使用的水相可包含樟脑磺酸三乙铵(TEACSA)。当存在时,基于水相的重量,TEACSA以约4重量%至约10重量%的量存在。在一些实施方案中,TEACSA以约5重量%至约7.5重量%的量存在于水相中。在一些实施方案中,基于水相的重量,水相中TEACSA的量为约4重量%、4.25重量%、4.5重量%、4.75重量%、5重量%、5.25重量%、5.5重量%,、5.75重量%、6重量%、6.25重量%、6.5重量%、6.75重量%、7重量%、7.25重量%、7.5重量%、7.75重量%、8重量%、8.25重量%、8.5重量%、8.75重量%、9重量%、9.25重量%、9.5重量%、9.75重量%、或10重量%,或者量在为或约为e至为或约为f的范围中,其中e是TEACSA的前述重量%值的任一者,并且f是TEACSA的前述重量%值的>e的任一者,例如约5重量%至约10重量%、或约4.25重量%至约7.75重量%、或约5重量%至约7重量%等。在一些实施方案中,TEACSA以约6.75重量%的量存在于水相中。
c.催化剂
可以将催化剂包含在水相中。在一些实施方案中,催化剂可以包含二乙胺、三乙胺、乙二胺、三乙醇胺、二乙醇胺、乙醇胺、二甲基氨基吡啶或其组合。在一些实施方案中,催化剂可为酸催化剂或碱催化剂。酸催化剂可以是无机酸,有机酸,路易斯酸或者氨或伯胺、仲胺或叔胺的酸性盐或季铵盐。示例性酸性催化剂包含盐酸、硝酸、硫酸、脂肪族磺酸、芳香族磺酸、羧酸、氟化羧酸例如三氟乙酸、脂环族磺酸、硼酸、四氟硼酸、三卤化铝、三烷醇铝、三卤化硼例如三氟化硼、四卤化锡例如四氯化锡和四氟硼酸锌。
示例性碱催化剂包括醇盐,例如乙醇钠;氢氧化物盐,例如氢氧化钠和氢氧化钾;碳酸盐,例如碳酸钾;磷酸盐,例如磷酸三钠;酚盐,例如苯酚钠;硼酸盐,例如硼酸钠;羧酸盐,例如乙酸钾;氨;以及伯胺、仲胺和叔胺。
当存在时,基于水相的重量,水相中催化剂的量为约0.001重量%至约0.5重量%。在一些实施方案中,基于水相的重量,水相包含量为约0.005重量%至约0.25重量%的催化剂。
d.极性非质子溶剂
在一些实施方案中,在界面聚合期间使用的水相可包含一种或更多种极性非质子溶剂。可以选择与其他组分相容的任何极性非质子溶剂。示例性极性非质子溶剂包含二甲基甲酰胺、二甲基乙酰胺、四氢呋喃、六甲基磷酰胺(HMPA)、1,3-二甲基-2-咪唑烷酮、二乙醚、N-甲基-2-吡咯烷酮、二氯甲烷、乙酸乙酯、乙酸甲酯、乙酸异丙酯、丙酮、甲基乙基酮、甲基异丁基酮、和乙腈及其任意组合。在一些实施方案中,包含在水相中的极性非质子溶剂是六甲基磷酰胺。
在一些实施方案中,包含在水相中的极性非质子溶剂的量为约0.05重量%至约5重量%。在一些实施方案中,包含在水相中的极性非质子溶剂的量为约0.1重量%至约1重量%。在一些实施方案中,基于水相的重量,存在于水相中的极性非质子溶剂的量为约0.05重量%、0.1重量%、0.125重量%、0.15重量%、0.175重量%、0.2重量%、0.225重量%、0.25重量%、0.275重量%、0.3重量%、0.325重量%、0.35重量%、0.375重量%、0.4重量%、0.425重量%、0.45重量%、0.475重量%、0.5重量%、0.525重量%、0.55重量%、0.575重量%、0.6重量%、0.625重量%、0.65重量%、0.675重量%、0.7重量%、0.725重量%、0.75重量%、0.775重量%、0.8重量%、0.825重量%、0.85重量%,、0.875重量%、0.9重量%、0.925重量%、0.95重量%、0.975重量%、1重量%、1.5重量%、2重量%、2.5重量%、3重量%、3.5重量%、4重量%、4.5重量%或5重量%,或者量在为或约为g至为或约为h的范围中,其中g是极性非质子溶剂的前述重量%值的任一者,h是极性非质子溶剂的前述重量%值的>g的任一者,例如约0.15重量%至约1.5重量%,或者约0.35重量%至约3.5重量%,或者约0.25重量%至约0.75重量%等。在一些实施方案中,极性非质子溶剂是六甲基磷酰胺并且以约0.5重量%的量存在于水相中。
可以包含其他助溶剂。其他助溶剂的实例包括但不限于乙醇、丙醇、异丙醇、丁醇、乙二醇、丙二醇、甘油及其与水的混合物,单独地或者以其任意组合。在一些实施方案中,存在于水相中的助溶剂的总量在约0.05重量%至约10重量%的范围中。
E.TFC膜的制备
薄膜复合(TFC)膜可用于,例如反渗透(RO)和正向渗透(FO)应用、自来水过滤和纳滤中。对于RO应用,所述膜包括支撑层,优选为多孔支撑层。支撑层可以是亲水的或疏水的。在一些应用中,支撑层是亲水性的。TFC膜还包括在支撑层的表面上的至少一个区别层。TFC膜可以包括沉积在TFC膜的一个或两个表面上的防污层。TFC膜还可以包括沉积在TFC膜的一个或两个表面上或防污层上的保护层。为了防止膜表面划伤或改变吸附,例如,可以将亲水性聚合物层施加到区别层或防污层的表面。例如,可以将聚乙烯醇在水中的溶液施加到区别层的表面,然后施加热以提供亲水性聚合物层的热固化。
1.支撑层
支撑层通常包括聚合物微孔支撑膜,其反过来通常由非织造或织造网状织物支撑,以改善膜的操作性或机械强度或两者。支撑层可以包括聚砜或其他合适的多孔膜,例如包含聚醚砜、聚(醚砜酮)、聚(醚乙基酮)、聚(酞嗪酮醚砜酮)、聚丙烯腈、聚氯乙烯、聚酯、聚苯乙烯、聚砜、聚丙烯、硝酸纤维素、乙酸纤维素、二乙酸纤维素或三乙酸纤维素的膜。支撑层的厚度通常为约25微米至250微米。支撑层是多孔的,并且通常支撑层的最小孔非常接近上表面。表面的孔隙率可能是低的,例如总表面积的5%至15%。
支撑层的制备可以包括将聚合物溶液喷涂或浇铸到织造或非织造织物层上。形成支撑层的本领域已知的示例性方法公开在例如,美国专利第3,926,798号;第4,039,440号;第4,337,154号;和第8,177,978号;以及美国专利申请公开第2011/0174728号和第2014/0014575号中,其每个公开内容通过引用并入本文。织造或非织造材料或其组合和由聚合物纤维制成的一个或多于一个的增强织物层可以包括在TFC膜中。当存在时,织物层优选是可渗透水的,平面的,并且没有能够穿透支撑层或区别层的杂散纤维。织物层通常是薄的以降低成本并且最大化膜面积,抵抗外延力,并且机械地抵抗高压力下的变形。
支撑层的制备通常包括在气密玻璃瓶中将N-甲基吡咯烷酮(NMP)溶剂(AcrosOrganics,Waltham,MA,USA)添加到透明珠形式的聚砜聚合物(Mn-26000(Mn为数均分子量),来自Aldrich,USA)中。
或者,可以使用二甲基甲酰胺(DMF)作为溶剂。然后将混合物搅拌数小时直到达到聚砜聚合物的完全溶解,形成掺杂或浇铸溶液。浇铸溶液可以浇铸或铺展在织造或非织造网状织物层上,其任选地可以通过刃形边缘(knife-edge)连接到玻璃板。在一些实施方案中,具有网状织物层和浇铸溶液的玻璃板可以立即浸入已经保持在所需温度(例如约4℃至约30℃)的去矿物质水中。立即开始相转化并且在几分钟之后,支撑聚砜膜的织造或非织造织物层可以与玻璃板分离形成支撑层。支撑层然后可以用去离子水彻底洗涤,并在冷条件下储存直到使用。在用于生产支撑层的连续涂覆方法(例如,使用与美国专利第4,214,994号;第4,277,344号;第6,153,133号;第7,490,725号;和第8,580,341号;美国专利申请公开第US2009/0050558A1号和第US2012/0292249A1号;以及国际专利申请公开第WO 2014/080426A1号中所述那些相似的设备和/方法,其描述了用于连续制备反渗透膜的涂覆方法)中,将不需要玻璃板。多孔支撑层通常保持湿润直到使用。
支撑层的浇铸溶液可以包含添加剂。例如,浇铸溶液可以包含纳米颗粒,例如沸石或碳纳米管或球形富勒烯或其组合、亚烷基二醇、聚亚烷基二醇、N-甲基-2-吡咯烷酮、二甲基乙酰胺或这些添加剂的任意组合。示例性亚烷基二醇包括乙二醇、二甘醇、三甘醇、丙二醇、二丙二醇和三丙二醇及其组合。示例性聚亚烷基二醇包括聚乙二醇(PEG)和聚丙二醇。分子量为400至20000,优选600至2000的聚乙二醇(PEG)可以包含在浇铸溶液中。
2.区别层
包含聚酰胺的至少一个区别层形成在支撑层的表面上,由此形成薄膜复合膜。在多孔支撑膜上可以使用界面聚合方法合成区别层。在区别层的合成中,通常使用两种不混溶的溶剂,通常是水相溶液和有机相溶液,使得一种溶剂中的单体与另一种溶剂中的单体反应聚合并形成区别层。聚合反应非常快并且得到相对高分子量的聚合物。
区别层是可以包含任何材料的可渗透膜,只要区别层允许过滤需要过滤的流体即可。在一个示例性实施方案中,区别层可以是聚酰胺层。虽然区别层的化学性质不被认为是限制性的,但是在一个示例性实施方案中,聚酰胺层可以通过极性溶液和非极性溶液的界面聚合形成。可以将本文所述的通量提高添加剂的组合添加到极性溶液或非极性溶液或两者中。示例性极性溶液可为包含多胺,例如间苯二胺(MPD)的水相。示例性非极性溶液可为包含多官能酰卤,例如均苯三甲酰氯(TMC)的有机相。
通过本领域已知的方法和化学反应,例如,美国专利第8,177,978号;第4,277,344号;第4,902,424号;第5,108,607号;第5,543,046号;第6,337,018号;和第7,109,140号(其全部通过引用并入本文)中任一个公开的制备区别层的化学反应和方法制备的区别层通常在形成在支撑层的表面上以生产薄膜复合膜之后通常不会表现出足够的盐截留率和通量。如本文所示,可以改进本领域已知的方法和化学反应以在区别层的形成期间包含本文所述的通量提高添加剂的组合,例如通过将本文所述的通量提高添加剂的组合添加至水相或有机相或两者,产生表现出良好通量和盐截留率的薄膜复合膜,由此克服已知膜的缺陷。
在一些实施方案中,区别层通常包含通过一种或更多种二官能或多官能胺与一种或更多种二官能或多官能酰氯之间的界面聚合形成的聚酰胺。二官能或多官能胺可以是芳香族和/或脂肪族的。二官能或多官能酰氯可以是芳香族和/或脂肪族的。
通常地,形成区别层的聚合物基体可以通过两种或更多种单体的反应来制备。第一单体可以是双亲核单体或多亲核单体而第二单体可以是二亲电单体或多亲电单体。即,每个单体可以具有两个或更多个反应性(例如,亲核或亲电)基团。亲核体和亲电体都是本领域公知的,并且本领域技术人员可以选择合适的单体用于该用途。也可以选择第一单体和第二单体使得当接触时能够进行界面聚合反应以形成聚合物基体(即三维聚合物网络)。也可以选择第一单体和第二单体使得当接触时能够进行聚合反应以形成能够通过例如暴露于热、光辐射或化学交联剂进行后续交联的聚合物产物。
可以选择第一单体以可溶于极性液体,优选水中以形成极性混合物。通常地,二官能亲核单体或多官能亲核单体可以具有伯氨基或仲氨基并且可为芳香族(例如,二氨基苯、三氨基苯、间苯二胺、对苯二胺、1,3,5-三氨基苯、1,3,4-三氨基苯、3,5-二氨基苯甲酸、2,4-二氨基-甲苯、2,4-二氨基苯甲醚和苯二甲胺)或脂肪族(例如,乙二胺、丙二胺、哌嗪和三(2-二氨基-乙基)胺)。在另一个实例中,极性液体和第一单体可以是相同的化合物;也就是说,可以提供第一单体并且不溶解在单独的极性液体中。
合适的胺种类的实例包括具有两个或三个氨基的伯芳香族胺,例如间苯二胺,和具有两个氨基的仲脂肪族胺,例如哌嗪。在一些实施方案中,两个或更多个不同种类的胺单体可以包含在极性液体(例如,水相)中以形成极性混合物。通常可将胺施加至微孔载体作为极性液体,例如水中的溶液。所得的极性混合物通常包含约0.1重量%至约20重量%、优选约0.5重量%至约6重量%的胺。一旦涂覆在多孔支撑层上,任选地可以除去过量的极性混合物。极性混合物不需要是水性的,但是极性液体应该与非极性液体不混溶。虽然水是优选的溶剂,但是可以使用非水极性溶剂,例如乙腈,低级一元醇和酮。可以使用水和一种或更多种极性溶剂的组合。
在一些实施方案中,可以选择第二单体以与形成极性混合物的极性液体(即,水相)可混溶。任选地还可以选择第二单体以与非极性液体不混溶。第二单体单体可以是双亲核单体或多亲核单体。亲核单体可以每分子中包含两个或更多个,例如三个亲核基团。
极性混合物通常可以通过浸渍、浸没、涂覆、喷涂或任何其他施加技术施加至多孔支撑层。一旦涂覆在多孔支撑层上,任选地可以通过蒸发、排水、气刀、橡胶刮片、压辊、海绵或其他装置或工艺除去过量的极性混合物。
在本文提供的方法的一些实施方案中,将包含通量添加剂的组合(包含二烷基亚砜以及含有二齿配体和金属原子或金属离子的金属螯合物添加剂)的水相施加至支撑层的表面上,然后施加有机相层,其组分与水相的组分互相作用,并且在这些层之间的界面发生聚合,导致形成区别层。
在多孔支撑层的表面上形成区别层的方法可以包括在水相的表面漂浮多孔支撑层,或者在多孔支撑层的表面上浇铸水相;或者将水相喷涂到多孔支撑层的表面上;或将多孔支撑层浸入水相中。在包括将多孔支撑体漂浮或浸入在水相中的方法中,处理时间可以在约1秒至约24小时或更长的范围内非常广泛地变化,但是这样的处理时间不是关键的。处理一次通常是足够的,但可以进行两次或更多次处理。
胺(例如,MPD)与亲电体(例如,TMC)反应形成聚酰胺薄膜复合膜的代表性条件包括使用范围为约10:1至约40:1的MPD浓度与TMC浓度之比,其中MPD浓度为极性相(水相)的约1重量%至约6重量%。在一些实施方案中,MPD浓度与TMC浓度之比为约10:1、或约11:1、或约12:1、或约13:1、或约14:1、或约15:1、或约16:1、或约17:1、或约18:1、或约19:1、或约20:1、约21:1、或约22:1、或约23:1、或约24:1、或约25:1、或约26:1、或约27:1、或约28:1、或约29:1、或约30:1、或约31:1、或约32:1、或约33:1、或约34:1、或约35:1、或约36:1、或约37:1、或约38:1、或约39:1、或约40:1。聚合反应可以在室温下在开放环境下进行,或者极性液体或非极性液体或两者的温度可以被调节或控制,例如在高于室温(20℃至25℃)的温度或低于室温的温度。一旦形成,区别层可以作为抑制反应物之间的接触并减缓反应的屏障。区别层通常非常薄且对水是可渗透的,但对于溶解的、分散的或悬浮的固体,例如在使用中从盐水或半咸水中除去以产生净化的水的盐则相对不可渗透。
在一些实施方案中,选择用于极性相,例如水相或有机相的通量提高添加剂的组合的量使得MPD浓度与二烷基亚砜浓度之比在约1:1至约2:1的范围中,其中MPD浓度为极性相或有机相的约1重量%至约6重量%。在一些实施方案中,MPD浓度与二烷基亚砜浓度之比的范围为约1.25:1至约2:1,或者约1.25:1至约1.75:1,或者约1.3:1至约1.6:1。
在一些实施方案中,金属螯合物可以释放金属离子或金属原子,例如第2族(碱土金属,例如Be、Mg、Ca、Sr和Ba)或第13族(铝、镓、铟或铊)金属离子或金属原子。金属螯合物可以与二烷基亚砜分散在水相或有机相或两者内。纳米颗粒或载体或加工助剂,例如催化剂、共反应物和助溶剂或其任意组合,还可以存在于水相或有机相中以改变表面性质或者进一步增加性能,例如,改善防污性。在一些实施方案中,本文提供的方法包括在极性相,例如水相,MPD、TEACSA、SLS或其他表面活性剂、包含二甲基亚砜和Sr(acac)2或Sr(F6acac)2的通量提高组合、或其组合,以及六甲基磷酰胺作为极性非质子溶剂。
在一些实施方案中,可以选择单体的第二种类以与形成非极性混合物的非极性(有机相)液体可混溶,然而对于具有足够蒸气压的单体而言,单体任选地可以从气相中输送。任选地也可以选择第二单体以与极性液体不混溶。通常地,第二单体可以是二亲电单体或多亲电单体。亲电单体本质上可以是芳香族的,并且每个分子中可以包含两个或更多个,例如3个亲电基团。第二单体可以是均苯三甲酰卤。对于酰卤亲电单体的情况而言,酰氯通常比相应的酰溴或酰碘更合适,因为相对较低的成本和更大的可用性。
合适的多官能酰卤包括均苯三甲酰氯(TMC)、偏苯三酸酰氯、异酞酰氯、对酞酰氯以及合适的酰卤的相似化合物或共混物。作为另一个实例,第二单体可为邻苯二甲酰卤。
多官能酰卤可以以例如,约0.01重量%至约10.0重量%、或约0.03重量%至约3重量%、或约0.05重量%至约5重量%的范围溶于非极性有机液体中。合适的非极性液体能够溶解亲电单体(例如,多官能酰卤),并且与极性液体(例如,水)不混溶。通常地,非极性有机液体是在界面聚合中无活性的水不混溶的溶剂,不形成与卤化合物的化学键,并且不损坏多孔支撑层。可用于溶解酰卤的示例性非极性有机液体包含脂肪族烃,例如C8-C24烃及其混合物,例如异链烷烃类溶剂如IsoparTM异链烷烃类流体(例如,IsoparTMG石脑油,低气味低芳香族C10-C12异烷烃溶剂,ExxonMobil,Irving,TX)和异链烷烃类溶剂(TotalSpecial Fluids,Oudalle,法国)。所使用的溶剂可为单一溶剂或者多种溶剂的混合物。
另外的非极性液体可以包含在有机相中。例如,可以选择这样的非极性液体:不会对臭氧层构成威胁并且在其闪点和可燃性方面也十分安全以进行常规加工而无需进行极端的预防措施。这些液体可以包括C5-C7烃和较高沸点烃和芳香族化合物,即沸点大于约90℃的那些,如C8-C24烃及其混合物,其具有比他们的C5-C7相对物更合适的闪点,但挥发性较低。可以包含在有机相中的示例性非极性液体包含三甲基苯,例如1,2,3-三甲基苯、1,2,4-三甲基苯和1,3,5-三甲基苯;四甲基苯,例如1,2,3,4-四甲基苯、1,2,4,5-四甲基苯和1,3,4,5-四甲基苯;五甲基苯、六甲基苯、二异丙基苯、三异丙基苯和四异丙基苯。在一些实施方案中,有机相包含多官能酰卤和1,3,5-三甲基苯。
有机相可包含抗氧化剂。例如,可将用于加工和长期热稳定的抗氧化剂包含在有机相中。抗氧化剂可以保护膜免受降解,例如,免受光暴露。示例性抗氧化剂包含酚主抗氧化剂,如酚主抗氧化剂季戊四醇四(3-(3,5-二叔丁基-4-羟基苯基)丙酸酯),作为1010售卖。抗氧化剂可以以例如,约0.0025重量%至0.05重量%、或约0.005重量%至0.025重量%、或约0.01重量%至约0.025重量%的范围溶解在有机相中。
多官能酰卤可以以例如,约0.01重量%至约10.0重量%、或约0.03重量%至约3重量%、或约0.05重量%至约5重量%的范围溶解在非极性有机液体中。
在一个示例性实施方案中,通过使添加至异链烷烃类溶剂,例如IsoparTMG中的一种或更多种组分(当存在时)以以下顺序混合来形成非极性溶液:抗氧化剂,例如四(3-(3,5-二叔丁基-4-羟基苯基)丙酸酯);多官能酰卤,例如TMC;以及非极性液体,例如1,3,5-三甲基苯的混合物。
非极性混合物(例如,有机相)通常可以通过浸渍、浸没、涂覆、喷涂或任何其他施加技术来施加。
在一些实施方案中,通常通过施加有机相溶液将多官能酰卤单体(也称为酰卤)涂覆在多孔支撑层上。胺溶液通常首先涂覆在多孔支撑上,随后是酰卤溶液。单体当接触时可以反应,从而聚合以在支撑层的上表面产生聚合物(例如,聚酰胺)基体区别层。虽然多官能胺和酰卤层中的一种或两种可以例如通过施加上述水相和有机相从溶液中施加到多孔支撑层,或者他们可以通过其他方式施加,例如通过气相沉积或热。
在本文提供的方法中,将包含二烷基亚砜以及含有二齿配体和金属原子或金属离子的金属螯合物添加剂的通量提高添加剂的组合在其间接触之前界面聚合期间添加至水相或有机相或两者中。通过包含通量提高添加剂的组合,例如在反渗透期间观察到通过所述膜的增加通量,而没有显著影响盐截留率。在一些方法中,将通量提高添加剂的组合添加至水相中。在一些方法中,将通量提高添加剂的组合添加至有机相中。
认为包含二烷基亚砜以及含有二齿配体和金属原子或金属离子的金属螯合物添加剂的通量提高添加剂的组合影响聚合反应和最终的膜结构,导致改善的性能。纳米颗粒,例如沸石或碳纳米管或球形富勒烯或其组合还可以存在于水相或有机相或两者中,从而改变表面性质或者进一步增加性能,例如改善防污性。
在支撑层上水相溶液与有机相溶液之间的界面聚合之前,将支撑层储存一段时间,例如1分钟至长达1小时可以是有利的。在一些实施方案中,可以通过以下步骤形成区别层:将有机相溶液施加至支撑层,并且在施加有机溶液之后至少10秒,或者2分钟或5分钟之后,将水相施加至支撑层上的有机相溶液。在一些实施方案中,区别层可以通过以下步骤形成:将水相施加至支撑层,使其干燥,然后将有机相溶液施加至支撑层上的干燥水相。
在添加至水相或有机相之前,包含二烷基亚砜以及含有二齿配体和金属原子或金属离子的金属螯合物添加剂的通量提高添加剂的组合可以经受声波能或超声波能,例如来自超声波探头或超声波浴,和/或水相和/或有机相可以在界面聚合之前或期间经受声波能或超声波能。在一些应用中,在界面聚合之前或期间或者两者之前,可以将超声波探头浸入包含通量提高添加剂的组合的水相或有机相中,所述通量提高添加剂的组合包含二烷基亚砜以及含有二齿配体和金属原子或金属离子的金属螯合物添加剂。在一些应用中,在界面聚合之前,包含金属螯合物的水相或有机相可以经受超声波能约1分钟至约60分钟的时间,从而加速溶解所述材料的过程。超声波处理不是必需的,然而,通过搅拌可以实现通量提高添加剂的组合的溶解。
基于水相或有机相的重量,可以选择组合中的含有二齿配体和金属原子或金属离子的金属螯合物添加剂的量以使得水相或有机相中的浓度为约0.001重量%至约1重量%。在一些实施方案中,基于水相或有机相的重量,可以选择组合中的含有二齿配体和金属原子或金属离子的金属螯合物添加剂的量以使得水相或有机相中的浓度为约0.005重量%至约0.75重量%、或约0.06重量%至约0.6重量%、或约0.055重量%至约0.55重量%。在一些实施方案中,可以选择组合中的含有二齿配体和金属原子或金属离子的金属螯合物添加剂的量以使得水相或有机相中的浓度为至少0.025重量%、或至少0.05重量%、或至少0.075重量%、或至少0.1重量%。
基于水相或有机相的重量,可以选择组合中的二烷基亚砜的量以使得水相或有机相中的浓度为约0.5重量%至约5重量%。在一些实施方案中,基于水相或有机相的重量,可以选择组合中的二烷基亚砜的量以使得水相或有机相中的浓度为约0.75重量%至约3重量%、或约1重量%至约4.25重量%。
本发明的实践不严格根据薄膜复合膜的整体形状。平坦片和中空纤维配置是这种整体形状的两种可能性。对于平坦片膜而言,区别层可以在支撑层的顶部表面、底部表面或两表面上。对于中空纤维膜而言,区别层可以在支撑层的内表面、支撑层的外表面上或者支撑层的内表面和外表面两者上。
3.保护层
通过本文提供的方法生产的薄膜复合半渗透膜可以通过用水溶性有机聚合物的水相涂覆膜的表面而提供保护涂层,以在膜操作期间保护膜表面免受损坏。这种水溶性有机聚合物的实例包括聚合物,例如聚乙烯亚胺、聚乙烯醇、聚乙烯醚、聚乙烯吡咯烷酮、聚丙烯酰胺或聚丙烯酸;主要由构成这些聚合物的单体组成的共聚物;这些聚合物或共聚物的衍生物;以及这些化合物的混合物。其中,特别优选聚乙烯醇、聚乙烯亚胺和聚乙烯吡咯烷酮。
通常对涂覆有水溶性有机聚合物的这样的水相的TFC膜进行干燥。干燥通过将经涂覆的膜暴露于约30℃至约100℃的温度下约1分钟至约20分钟的时间来进行。干燥所需的时间取决于所使用的烘箱的类型和烘箱内的膜布置。在一些实施方案中,烘箱是对流烘箱或红外线烘箱。在一些实施方案中,烘箱温度为65℃至120℃。在一些实施方案中,烘箱温度为80℃至110℃。
4.防污层
防污层可以沉积在薄膜复合膜的一个或两个表面上。通过在RO膜的进料流接触表面上施加能够形成卤胺的层,可以提供具有抗污能力的RO膜(参见美国专利第8,567,612号)。例如,可以通过将含氮聚合物溶液沉积在区别层上形成防污层。聚合物可以交联以使防污层不溶解。中间层可以位于防污层和区别层之间使得在区别层被卤素降解之前防污层和中间层的厚度和渗透性足以在防污层的表面上引起卤胺形成。可以在防污层中提供足够的氮气,以通过在邻近进料流的防污层的表面上形成卤胺来保护区别层免受结垢,从而允许通过进一步向其中添加卤素形成另外的卤胺来允许对防污层再填充和/或防止在多次再填充之后在操作期间卤素对区别层的损害。
用于提供防污层,例如用聚环氧乙烷处理以引入PEG部分,或使用氟化聚合物或聚丙烯腈接枝共聚物的其他化学反应和技术在本领域中是已知的(例如,参见美国专利第8,163,814号;第8,505,743号;第8,505,745号和第8,754,139号,其每个公开内容通过引用并入本文)。
F.模块
使用本文所述方法生产的膜可以在中心多孔渗透物收集管周围螺旋缠绕,以生产用于压力容器的半渗透膜模块。典型的螺旋缠绕半渗透膜模块包括为片状半渗透膜材料的单个封套的多个叶片,夹在其间的是多孔渗透物携带材料,例如聚酯纤维片材料的层。半渗透膜材料包括使用本文所述的方法生产的膜。
在相邻叶片之间交错的通常是间隔物材料的长度,所述间隔物材料可以是织造或非织造或其他开口网状物,合成丝的筛状交叉设计,例如为通过压力容器从一端泵送到另一端的进料水提供流动通道的聚丙烯的交叉挤出长丝。然后将这种交替叶片和间隔物片材的适当重叠体螺旋缠绕在具有多孔侧壁的中空管周围以创建直圆柱体模块。示例性的螺旋缠绕分离模块如图1和美国专利第4,842,736号中所示,其内容通过引用并入本文。所述模块包括多个螺旋进料通道,待处理的进料液体沿轴方向流过该通道。在膜封套的内部,渗透液体沿着螺旋路径向内流动直到其到达穿孔的中心管,其中收集渗透液体并且然后通过穿孔的中心管轴向流动到出口。
图1示出了螺旋缠绕的模块的一个示例性实施方案。模块包括收集过滤流体的穿孔中心管1。穿孔中心管1的材料不受限制,并且可以是对待过滤的流体耐腐蚀的任何材料。在示例性实施方案中,穿孔中心管1可以由聚氯乙烯(PVC)制成。也可以使用的其他材料包括金属、聚合物、陶瓷、或其组合。可用于形成穿孔中心管1的另外示例性材料包含塑料材料,例如丙烯腈-丁二烯-苯乙烯、聚砜、聚(苯醚)、聚苯乙烯、聚丙烯、聚乙烯等。穿孔的大小和布置可以以任何方式安排,只要他们允许过滤的流体流入穿孔中心管1。在穿孔中心管1周围缠绕的是一组包括折叠的可渗透膜片材2、进料通道间隔物3和渗透收集片材4组成的叶片。在模块的外部周围是壳体5和位于模块的每个端部处的防伸缩装置6。
包括使用本文所述方法生产的膜的模块可用于在相对低压力条件,即不大于约225psi下,并且在一些实施方案中,在约150psi或更低的压力下由半咸水生产可饮用水流。这些低压条件可以允许使用具有比反渗透系统通常要求的更中等压力等级的压力容器、泵、阀和管道,由此避免昂贵的高压RO系统的成本。与标准高压海水淡化系统相比,这不仅大大降低了初始资本成本,而且也降低了操作成本。由于操作压力是传统海水脱盐系统中使用的压力的约二分之一至约三分之二,所以可以显著降低资本成本并且可以使用额定压力为约225psi或更低的压力容器,避免与高压容器的设计和制造相关的成本。此外,由于操作压力低于常规海水RO脱盐装置所需的操作压力,所以电力成本更低。
G.膜特性
在优选的实施方案中,在150psi下盐截留率为至少99.5%并且半咸水(2000ppmNaCl)的通量为至少20、21、22、23、24或25加仑/英尺2/天(gfd)。
水通量可通过测量渗透物流量使用方程式1来确定:
盐截留率(R,以%计)可以使用方程式2来计算:
其中Cf是进料水中盐的浓度并且Cp是渗透物中盐的浓度,这两者可以使用校准的电导率计来测量。
H.实施例
实施例1至实施例3—比较膜
形成三种比较膜。在实施例1中,水相不包含添加剂。在实施例2中,水相包含0.05重量%金属螯合物。在实施例3中,水相包含3重量%DMSO。
对于实施例1至实施例3中的每一个,制备有机相。制备有机相溶液,所述有机相溶液包含0.348重量%TMC(Sigma Aldrich,St.Louis,MO)、0.014528重量%1010(空间位阻酚抗氧化剂,CAS号6683-19-8,来自BASF Schweiz AG,Basel,瑞士)以及8重量%异链烷烃类溶剂,IsoparTMG溶剂(低气味低芳香族烃溶剂,来自ExxonMobile ChemicalCompany,Houston,TX)中的均三甲苯(1,3,5-三甲基苯,Sigma Aldrich,St.Louis,MO)。通过以下步骤制备所述溶液:将Isopar G放置在第一容器中,在第二容器中将Irganox 1010,TMC与均三甲苯一起混合以形成混合物,以及将所述混合物添加到第一容器中的Isopar G。均三甲苯增加了通量并降低了盐截留率。Irganox 1010起抗氧化剂的作用以保护膜免受降解,例如,由于光暴露,并且对通量具有较小的影响且盐截留率轻微增加。
实施例1—水相中没有添加剂
在比较例1中,在DI水中包含4.25重量%MPD(Dupont,Wilmington,DA)、6.75重量%樟脑磺酸三乙铵(TEACSA,Sunland Chemicals,Los Angeles,CA)、0.06重量%的月桂基硫酸钠(SLS,Columbus Chemical Industries,Inc.,Columbus,WI)水相溶液通过以下步骤制备:首先将DI水添加至混合容器中,随后添加TEACSA、MPD和SLS,但是可以使用添加组分的顺序的任何排列。SLS增加了水溶液的润湿性。
实施例2—水相中只有金属螯合物
在比较例2中,将金属螯合物包含在水相中。金属螯合物为Sr(F6acac)2,其中F6acac是指1,1,1,5,5,5-六氟乙酰丙酮根,具有结构:
水相溶液包含DI水中的4.25重量%MPD、6.75重量%TEACSA、0.06重量%SLS和0.05%Sr(F6acac)2。水相通过以下步骤制备:首先将DI水添加至混合容器中,随后添加TEACSA、MPD、SLS和Sr(F6acac)2,但是可以使用向DI水添加组分的顺序的任何排列。
实施例3—水相中只有二烷基亚砜
在比较例3中,二烷基亚砜DMSO包含在水相中。水相溶液包含DI水中的4.25重量%MPD、6.75重量%TEACSA、0.06重量%SLS和3重量%DMSO。水相通过以下步骤制备:首先将DI水添加至混合容器中,随后添加TEACSA、MPD、SLS和DMSO,但是可以使用向DI水添加组分的顺序的任何排列。
膜形成
将一块湿聚砜支撑体平放在干净玻璃板上。然后将丙烯酸框放置在支撑表面上,留下一个区域,用于发生界面聚合反应。
对于比较例1至比较例3中的每一个,将50mL等份的如上述制备的水溶液倒入框架的支撑表面并且保持在这里10秒。将支撑体保持在环境温度、湿度和压力下。通过倾斜框架(垂直)5秒从每个表面排出水性溶液。对于每个实施例,拿掉框架,并且使得支撑体水平静止至少4分钟,在该点大部分表面水已经蒸发(风干)。可以使用例如,辊、真空棒或气刀除去任何剩余的表面液体。支撑体使用另外干净和干燥的丙烯酸框来再构造。
然后,对于每个实施例,将50mL等份的如上述制备的有机相溶液倒入经处理的加框的支撑表面并且保持在这里10秒。通过倾斜框架(垂直)10秒从表面排出溶液。然后,将包括在其表面上的膜的经处理的支撑体在95℃的对流烘箱中进行干燥直到干燥(约8分钟,取决于所使用的烘箱的类型和烘箱内的膜布置)。在该点(D1)处测试膜性能。
在平坦片单元测试仪器中测试膜性能。在2500的雷诺数(Reynolds number)下进行测试,使得膜表面上截留的溶质的堆积导致浓度高于体中的浓度不超过10%。在150psi下,25℃下,对半咸水(BW,去离子水或RO水中2000ppm NaCl)进行测试。在测量性能特性(例如,水通量和盐截留率)之前将膜运行1小时。还在8小时的测试之后测量膜特性。还在225psi下使用半咸水1小时之后,并且在800psi下使用海水1小时之后,对各个膜进行测试。对每个条件的两个膜,其中一个膜中3个取样片进行测试使得测试总共6个取样片复制品以达到平均值和规定的标准偏差。
通过测量前述的渗透物的流量,使用方程式1确定水通量。使用校准电导率计测量进料水中的盐的浓度(Cf)和渗透物中的盐的浓度(Cp),并且使用方程式2计算盐截留率R(以%计)。每个比较例的结果示于表1中。
表1.比较例膜的膜特性
数据显示,对于全部三个测试条件,与在膜制备期间向水相中不添加添加剂制备的对照膜(实施例1)相比,在膜制备期间向水相中只添加金属螯合物或者只添加DMSO导致具有改善的通量以及对盐截留率具有可忽略的影响的膜。在225psi下使用半咸水的测试条件中观察到通量的最大增加,其中在膜的形成期间,当将DMSO包含在水相中,观察到大于对照膜的几乎40%的通量增加,当将金属螯合物添加至水相中,多于35%的通量增加。
将在150psi,半咸水下测试的膜测试另外的60小时。膜性能值甚至在连续操作另外60小时之后也没有下降,证明了膜的稳定性。
实施例4.水相中本文提供的组合
使用包含本文提供的通量提高组合的水相制备膜。制备包含4.25重量%MPD、6.75重量%TEACSA、0.06重量%SLS和3.05重量%的本文提供的通量提高组合的水相溶液,所述通量提高组合包含DI水中的60份DMSO与1份Sr(F6acac)2的组合,其中3.05重量%的组合使得0.05重量%作为含有二齿配体(acac)和金属原子或金属离子(Sr)的金属螯合物添加剂的Sr(F6acac)2和3重量%作为二烷基亚砜的DMSO。水相通过以下步骤制备:首先将DI水添加至混合容器中,随后添加TEACSA、MPD、SLS和本文提供的通量提高组合,但是可以使用组分添加的顺序的任何排列。
制备有机相溶液,所述有机相溶液包含0.348重量%TMC、0.014528重量%1010和8重量%在IsoparTMG溶剂中的均三甲苯。所述溶液通过以下步骤制备:将Isopar G放置在第一容器中,在第二容器中将Irganox 1010,TMC与均三甲苯一起混合以形成混合物,以及将混合物添加到第一容器的Isopar G中。
如上对于实施例1至实施例3所述制备膜。
在平坦片单元测试仪器中测量膜性能。在2500的雷诺数下进行测试,使得膜表面上截留的溶质的堆积导致浓度高于体中的浓度不超过10%。在150psi下,25℃下,对半咸水(BW,去离子水或RO水中的2000ppm NaCl)进行测试。在测量性能特性(例如,水通量和盐截留率)之前将膜运行1小时。还在8小时的测试之后测量膜特性。在225psi下使用半咸水1小时之后,并且在800psi下使用海水1小时之后,还对各个膜进行测试。
通过测量前述的渗透物的流量,使用方程式1确定水通量。使用校准电导率计测量进料水中的盐的浓度(Cf)和渗透物中的盐的浓度(Cp),并且使用方程式2计算盐截留率R(以%计)。结果示于表2中。
表2.膜特性
数据显示,对于全部三个测试条件,与在膜制备期间向水相中不添加添加剂制备的对照膜(实施例1)相比,在膜制备期间向水相中添加金属螯合物和DMSO的组合得到具有显著改善的通量以及对盐截留率具有轻微改善或可忽略负面的影响的膜。在150psi下使用半咸水的测试条件中观察到通量的最大增加,其中当将金属螯合物和二烷基亚砜的通量提高组合包含在水相中时,观察到比对照膜的大于100%的通量增加。对于在225psi下测试的半咸水和800psi下测试的海水还观察到通量的显著增加同时基本上保持盐截留率,并且在膜形成期间当向水相中添加金属螯合物时大于35%的通量增加。
证明了通量值的协同作用
数据证明了在膜形成期间当向水相中添加组合时金属螯合物与DMSO对通量值的协同相互作用。当比较数据时,协同作用是明显的,如表3中所示。
表3.比较%变化值来说明协同相互作用
在半咸水中在150psi下测试的用包含金属螯合物+DMSO的组合的水相制备的膜的通量%变化是101.34,其显著高于实施例2和实施例3的膜的%变化值的总和(其总和是39.09)。因此,用包含金属螯合物+DMSO的组合的水相制备的膜的通量观察到的改善高于当膜形成期间向水相中只添加DMSO或者只添加金属螯合物时实现的通量变化的增加效果。观察到所有测试条件的协同作用,但是与高能量海水条件观察的相比,在低能量半咸水条件下测试的膜差异更显著。
对于所有测试条件,与膜形成期间水相中没有任何添加剂的对照膜相比,膜的盐截留率的%变化通常小于1%。这些值表明,当膜的通量增加时,添加剂有助于保持盐截留率。
实施例5至实施例7—通量提高组合+HMPA
用包含本文提供的通量提高组合的水相以及添加至水相中的极性非质子溶剂制备膜。测试三种不同的通量提高组合。在实施例5的膜中,水相中的通量提高组合是26份DMSO与1份Sr(F6acac)2的组合,其中1.35重量%的组合得到0.05重量%作为含有二齿配体(acac)和金属原子或金属离子(Sr)的金属螯合物添加剂的Sr(F6acac)2以及1.3重量%作为二烷基亚砜的DMSO。包含1.35重量%的这种通量提高组合、4.25重量%MPD、6.75重量%TEACSA、0.06重量%SLS和0.5重量%HPMA的水相溶液通过以下步骤制备:首先将DI水添加至混合容器中,然后添加TEACSA、MPD、SLS、HMPA和本文提供的通量提高组合,但是可以使用组分添加的顺序的任何排列。
在实施例6的膜中,水相中通量提高组合是52份DMSO与1份Sr(F6acac)2的组合,其中2.65重量%的组合得到0.05重量%作为含有二齿配体(acac)和金属原子或金属离子(Sr)的金属螯合物添加剂的Sr(F6acac)2以及2.6重量%作为二烷基亚砜的DMSO。包含2.65重量%的这种通量提高组合、4.25重量%MPD、6.75重量%TEACSA、0.06重量%SLS和0.5重量%HPMA的水相溶液通过以下步骤制备:首先将DI水添加至混合容器中,然后添加TEACSA、MPD、SLS、HMPA和本文提供的通量提高组合,但是可以使用组分添加的顺序的任何排列。
在实施例7的膜中,水相中的通量提高组合是60份DMSO与1份Sr(F6acac)2的组合,其中3.05重量%的组合得到0.05重量%作为含有二齿配体(acac)和金属原子或金属离子(Sr)的金属螯合物添加剂的Sr(F6acac)2以及3重量%作为二烷基亚砜的DMSO。包含3.05重量%的这种通量提高组合、4.25重量%MPD、6.75重量%TEACSA、0.06重量%SLS和0.5重量%HPMA的水相溶液通过以下步骤制备:首先将DI水添加至混合容器中,然后添加TEACSA、MPD、SLS、HMPA和本文提供的通量提高组合,但是可以使用组分添加的顺序的任何排列。
制备有机相溶液,所述有机相溶液包含0.348重量%TMC、0.014528重量%1010和8重量%IsoparTMG溶剂中的均三甲苯。所述溶液通过以下步骤制备:将Isopar G放置在第一容器中,在第二容器中使Irganox 1010,TMC和均三甲苯一起混合形成混合物,以及将所述混合物添加至第一容器的IsoparTMG中。
如上述实施例1至实施例3制备膜。
在平坦片单元测试仪器中测量膜性能。在2500的雷诺数下进行测试,使得膜表面上截留的溶质的堆积导致浓度高于体中的浓度不超过10%。在150psi下,25℃下,对半咸水(BW,去离子水或RO水中的2000ppm NaCl)进行测试。在测量性能特性(例如,水通量和盐截留率)之前将膜运行1小时。对于实施例7的膜,在225psi下使用半咸水1小时之后,并且在800psi下使用海水1小时之后,还对各个膜进行测试。
通过测量前述的渗透物流量,使用方程式1确定水通量。使用校准电导率计测量进料水中的盐的浓度(Cf)和渗透物中的盐的浓度(Cp),并且使用方程式2计算盐截留率R(以%计)。在第一干燥步骤(D1)之后对膜进行测试。结果示于表4中。
表4.用通量提高组合加0.5%HMPA制备的膜
当与实施例4的膜(在膜形成期间包含水相中的金属螯合物和DMSO的通量提高组合)获得的通量值相比时,添加HMPA进一步改善了膜通量。对于150psi,BW测试条件,与没有HMPA的比较膜(实施例4)相比,添加HMPA得到通量的3.1%改善。对于225psi,BW测试条件,添加HMPA得到通量的20.7%改善。对于800psi,SW测试条件,添加HMPA得到通量的10.5%改善。与实施例4的膜相比,观察到盐截留率的可忽略变化。因此,膜形成期间通过包含水相中的金属螯合物和二烷基亚砜的通量提高组合实现的通量提高的另外改善可以通过包含HMPA以及金属螯合物和二烷基亚砜的组合来实现。
膜的扫描电子显微法
为了检查用包含本文提供的通量提高组合的水相制备的RO膜的形貌,进行膜的扫描电子显微法(SEM)。为了改善样品的成像,使用典型的施用方法,施加2分钟至3分钟的金溅射涂层以形成约2nm的层(例如,参见Wend等,Water Research 37:3367-3378(2003)))。所测试的膜的显微照片示于图2至图4中。图2是用水相中没有二烷基亚砜或金属螯合物添加剂制备的膜的扫描电子显微照片(SEM)。图3是用水相中3重量%二甲基亚砜制备的膜的SEM。图4是用水相中3重量%二甲基亚砜和0.05重量%Sr(F6acac)2的组合制备的膜的SEM,其中“F6acac”是指1,1,1,5,5,5-六氟乙酰丙酮根。在显微照片中,白区域升高或是峰,而暗区域是谷。在膜制备期间用不包含添加剂的水相制备的膜和用包含二甲基亚砜的水相制备的膜的形貌是相似的。当在膜形成期间将二甲基亚砜和Sr(F6acac)2的通量提高组合包含在水相中时,所得的膜的表面显著较粗糙,如图4的显微照片中的明区域和暗区域的大差异所证明的。
实施例8至实施例14—不同量的mPD(多胺)、DMSO或金属螯合物
使用与上述实例相同的方法制备膜,不同之处在于使用下表5至表11中的组分:
表5.实施例8
表6.实施例9
表7.实施例10
表8.实施例11
表9.实施例12
表10.实施例13
表11.实施例14
由实施例8至实施例14制备的膜的通量和盐截留率(列于上述表5至表11中)在标准半咸水条件(225psi,2000ppm NaCl)下在1小时之后测试。下表12示出了通量测量测试的结果和盐截留率测试的结果,其中标准偏差列于括号中。
表12.由实施例8至实施例14制备的膜的通量测量和盐截留率测量
通过使用3重量%或4重量%mPD(多胺)制备的薄膜复合膜也显示出通过将两种类型的添加剂,DMSO和金属螯合物添加剂添加至膜而增加通量而没有显著降低盐截留率。
对本领域技术人员明显的是,在本发明中可实现各种修改和变型而不会背离本发明的精神或范围。因此,认为本发明覆盖了在所附权利要求书及其等同形式范围内提供的本发明的修改和变型。

Claims (27)

1.一种用于制备薄膜复合膜的方法,包括:
(a)制备包含多胺的水相和包含多官能酰卤的有机相,其中所述水相或所述有机相或两者还包含通量提高组合,所述通量提高组合包含:
(i)含有二齿配体和金属原子或金属离子的金属螯合物添加剂;和
(ii)二烷基亚砜;
(b)将所述水相施加至多孔支撑膜的表面以形成经涂覆的支撑膜;以及
(c)将所述有机相施加至所述经涂覆的支撑膜并且使所述多胺与所述多官能酰卤界面聚合以形成薄膜复合膜的区别层,所述薄膜复合膜包括所述多孔支撑膜和所述区别层,所述薄膜复合膜的水通量大于在没有水通量提高组合的情况下制备的薄膜复合膜的水通量。
2.根据权利要求1所述的方法,其中所述二齿配体选自:
其中R1、R2、R3、R4和R5中的每一者分别选自C1-C10烷基、卤代C1-C10烷基、5-元芳香环、6-元芳香环、包含两个稠合6-元环的芳香族双环环系统、以及包含与6-元芳香环稠合的5-元环的芳香族双环环系统。
3.根据权利要求1或2所述的方法,其中所述二齿配体是乙酰丙酮根(acac)或氟化乙酰丙酮根。
4.根据权利要求1至3中任一项所述的方法,其中含有二齿配体和金属原子或金属离子的所述金属螯合物添加剂选自Al(acac)3、Al(F6acac)3、Be(acac)2、Be(F6acac)2、Ca(acac)2、Ca(F6acac)2、Cd(acac)2、Cd(F6acac)2、Ce(acac)3、Ce(F6acac)3、Cr(acac)3、Co(acac)3、Cu(acac)2、Cu(F6acac)2、Dy(acac)3、Er(acac)3、Fe(acac)2、Fe(acac)3、Ga(acac)3、Hf(acac)4、In(acac)3、K(acac)、Li(acac)、Mg(acac)2、Mg(F6acac)2、Mn(acac)2、Mn(acac)3、MoO2(acac)2、MoO2(F6acac)2、Na(acac)、Nd(acac)3、Nd(F6acac)3、Ni(acac)2、Ni(F6acac)2、Pd(acac)2、Pr(acac)3、Pr(F6acac)3、Ru(acac)3、Ru(F6acac)3、Sc(acac)2、Sc(F6acac)2、Sm(acac)3、Sn(acac)2、Sn(acac)2Cl2、叔丁基-Sn(acac)2、叔丁基-Sn(acac)2Cl2、Sn(F6acac)2、Sr(acac)2、Sr(F6acac)2、Tb(acac)3、V(acac)3、Y(acac)3、Y(F6acac)3、Zn(acac)2、Zn(F6acac)2和Zr(acac)4,其中F6acac是指1,1,1,5,5,5-六氟乙酰丙酮根。
5.根据权利要求1至4中任一项所述的方法,其中所述二齿配体是β-二酮根或氟化β-二酮根。
6.根据权利要求5所述的方法,所述二齿配体选自戊烷-2,4-二酮根、1,5-二氟-戊烷-2,4-二酮根、1,1,5,5-四氟戊烷-2,4-二酮根、1,1,1,5,5,5-六氟-戊烷-2,4-二酮根、丙烷-1,3-二酮根、丁烷-1,3-二酮根、4-氟丁烷-1,3-二酮根、4,4-二氟丁烷-1,3-二酮根、4,4,4-三氟丁烷-1,3-二酮根、庚烷-3,5-二酮根、1-氟己烷-2,4-二酮根、1,5-二氟戊烷-2,4-二酮根、1,1,5-三氟戊烷-2,4-二酮根、1,1,5,5-四氟-戊烷-2,4-二酮根、1,1,1,5,5-五氟-戊烷-2,4-二酮根、1,1,1,5,5,5-六氟戊烷-2,4-二酮根和辛烷-3,5-二酮根及其组合。
7.根据权利要求1至6中任一项所述的方法,其中基于所述水相或有机相的重量,所述金属螯合物添加剂中的二齿配体的量使得所述水相或有机相中的二齿配体的浓度为约0.001重量%至约1重量%。
8.根据权利要求1至7中任一项所述的方法,其中金属原子或金属离子选自周期表的第2族或第13族。
9.根据权利要求8所述的方法,其中所述金属原子或金属离子是碱土金属。
10.根据权利要求1至9中任一项所述的方法,其中基于所述水相或所述有机相的重量,所述金属螯合物添加剂中的金属原子或金属离子的量使得所述水相或所述有机相中的金属原子或金属离子的浓度为约0.00001重量%至约1重量%。
11.根据权利要求1至10中任一项所述的方法,其中基于所述水相或所述有机相的重量,添加至所述水相或有机相中的所述组合中的金属螯合物添加剂的量使得所述水相或所述有机相中的金属螯合物的浓度为约0.001重量%至约1重量%。
12.根据权利要求1至11中任一项所述的方法,其中所述二烷基亚砜具有式:
其中Ra和Rb中的每一者独立地选自C1-C25烷基和C1-C20羟基烷基。
13.根据权利要求1至12中任一项所述的方法,其中基于所述水相或所述有机相的重量,存在于所述组合中的二烷基亚砜的量使得所述水相或所述有机相中的二烷基亚砜的浓度为约0.5重量%至5重量%。
14.根据权利要求1至13中任一项所述的方法,其中所述二烷基亚砜是二甲基亚砜或二乙基亚砜。
15.根据权利要求1至14中任一项所述的方法,其中所述方法还包括在将所述水相施加至所述多孔支撑膜之前将选自表面活性剂、助溶剂、干燥剂、催化剂或其任意组合中的加工助剂添加至所述水相。
16.根据权利要求15所述的方法,其中基于所述水相的重量,所述水相中的加工助剂的量为约0.001重量%至约10重量%。
17.根据权利要求1至16中任一项所述的方法,还包括将六甲基磷酰胺添加至所述水相或有机相或两者。
18.根据权利要求1至17中任一项所述的方法,其中所述水相或所述有机相或两者还包含选自沸石、富勒烯和碳纳米管及其组合的纳米颗粒。
19.根据权利要求18所述的方法,其中:
a)基于所述水相的重量,所述纳米颗粒以约0.001重量%至约0.5重量%的量存在于所述水相中;或者
b)基于所述有机相的重量,所述纳米颗粒以约0.001重量%至约0.5重量%的量存在于所述有机相中;或者
c)a)和b)两者。
20.根据权利要求1至19中任一项所述的方法,其中所述薄膜复合膜是反渗透膜。
21.一种根据权利要求1至20中任一项所述的方法制备的薄膜复合膜。
22.根据权利要求21所述的薄膜复合膜,其是反渗透膜。
23.根据权利要求22所述的反渗透膜,其中:
在25℃的温度和150psi的压力下,当将所述膜暴露于含有2000ppm NaCl的去离子水时,所述膜表现出至少20gfd的水通量;或者
在25℃的温度和150psi的压力下,当将所述膜暴露于含有2000ppm NaCl的去离子水时,所述膜表现出至少99.3%的盐截留率;或者
在25℃的温度和800psi的压力下,当将所述膜暴露于海水时,所述膜表现出至少42gfd的水通量。
24.一种净化含有2000ppm或更少NaCl的半咸水或海水或自来水的方法,包括:
a)在约150psi或更小的流体静压下,使所述自来水接触根据权利要求22所述的反渗透膜;或者
b)在约800psi或更小的流体静压下,使所述海水接触根据权利要求22所述的反渗透膜;或者
c)在约225psi或更小或者约150psi或更小的流体静压下使所述半咸水接触根据权利要求22所述的反渗透膜。
25.根据权利要求24所述的方法,其中:
在800psi下使所述膜接触海水产生至少40gfd的水通量;或者
在150psi下使所述膜接触半咸水产生至少20gfd的水通量。
26.一种反渗透模块,包括螺旋缠绕在中心穿孔管周围的根据权利要求22所述的反渗透膜。
27.一种反渗透膜,包括:
支撑膜;和
在所述支撑膜的表面上的通过使多胺与多官能酰卤界面聚合形成的区别层,其中:
在25℃的温度和150psi的压力下,当将所述膜暴露于含有2000ppm NaCl的去离子水时,所述膜表现出约21gfd至约27gfd的水通量和约99.3%至约99.7%的盐截留率。
CN201680022152.9A 2015-06-03 2016-06-02 用于提高膜的水通量的化学添加剂的组合 Active CN107635649B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/730,151 US9695065B2 (en) 2015-06-03 2015-06-03 Combination of chemical additives for enhancement of water flux of a membrane
US14/730,151 2015-06-03
PCT/US2016/035546 WO2016196814A1 (en) 2015-06-03 2016-06-02 Combination of chemical additives for enhancement of water flux of a membrane

Publications (2)

Publication Number Publication Date
CN107635649A true CN107635649A (zh) 2018-01-26
CN107635649B CN107635649B (zh) 2020-12-15

Family

ID=57441763

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680022152.9A Active CN107635649B (zh) 2015-06-03 2016-06-02 用于提高膜的水通量的化学添加剂的组合

Country Status (5)

Country Link
US (1) US9695065B2 (zh)
EP (1) EP3302772B1 (zh)
KR (1) KR102066780B1 (zh)
CN (1) CN107635649B (zh)
WO (1) WO2016196814A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109179573A (zh) * 2018-11-15 2019-01-11 刘益波 一种可用于处理生活污水的处理剂及其制备方法
CN114345135A (zh) * 2021-11-29 2022-04-15 长安大学 一种MXene基抗溶胀复合膜生产工艺及生产装置
CN117177151A (zh) * 2023-11-03 2023-12-05 共达电声股份有限公司 振膜组件、扬声器及振膜组件的制造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10583404B2 (en) * 2014-08-21 2020-03-10 Asahi Kasei Kabushiki Kaisha Composite hollow fiber membrane module and manufacturing method therefor
US10654004B2 (en) * 2017-08-30 2020-05-19 Uop Llc High flux reverse osmosis membrane comprising polyethersulfone/polyethylene oxide-polysilsesquioxane blend membrane for water purification
TWI661863B (zh) 2018-06-21 2019-06-11 財團法人工業技術研究院 多層複合膜
CN110975621B (zh) * 2019-12-25 2022-05-03 恩泰环保科技(常州)有限公司 一种基于弱碱-弱酸缓冲体系的反渗透膜及其制备方法
CN113351029A (zh) * 2020-03-05 2021-09-07 中国石油化工股份有限公司 一种高通量复合反渗透膜及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1163793A (zh) * 1996-01-24 1997-11-05 日东电工株式会社 高透过性复合反渗透膜及使用它的反渗透膜组件
CN101052459A (zh) * 2004-10-29 2007-10-10 东丽株式会社 复合半透膜及其生产方法、以及利用该复合半透膜的元件、流体分离装置和水处理方法
WO2015000801A1 (en) * 2013-07-04 2015-01-08 Basf Se Multiple channel membranes

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3231597A (en) 1957-07-03 1966-01-25 Aerojet General Co Polyurethane preparation
US3291660A (en) 1963-01-24 1966-12-13 Aerojet General Co Polyurethane propellant formulations and process
US4039440A (en) 1972-09-19 1977-08-02 The United States Of America As Represented By The Secretary Of The Interior Reverse osmosis membrane
US3926798A (en) 1974-10-17 1975-12-16 Us Interior Reverse osmosis membrane
US4214994A (en) 1976-12-20 1980-07-29 Matsushita Electric Industrial Co., Ltd. Reverse osmosis membrane
US4277344A (en) 1979-02-22 1981-07-07 Filmtec Corporation Interfacially synthesized reverse osmosis membrane
US4337154A (en) 1979-04-04 1982-06-29 Nippon Shokubai Kagaku Kogyo Co., Ltd. Crosslinked composite semipermeable membrane
DE3044810A1 (de) 1980-11-28 1982-07-01 Bayer Ag, 5090 Leverkusen Substituierte phenoxyzimtsaeurederivate, verfahren zu deren herstellung und deren verwendung als herbizide, sowie zwischenprodukte und deren herstellung
US4814082A (en) 1986-10-20 1989-03-21 Memtec North America Corporation Ultrafiltration thin film membranes
US5108607A (en) 1987-05-20 1992-04-28 Gelman Sciences, Inc. Filtration membranes and method of making the same
US4855048A (en) 1987-09-22 1989-08-08 Air Products And Chemicals, Inc. Air dried cellulose acetate membranes
US4842736A (en) 1988-09-06 1989-06-27 Desalination Systems, Inc. Spiral wound membrane
US4948507A (en) 1988-09-28 1990-08-14 Hydranautics Corporation Interfacially synthesized reverse osmosis membrane containing an amine salt and processes for preparing the same
US4983291A (en) 1989-12-14 1991-01-08 Allied-Signal Inc. Dry high flux semipermeable membranes
NL9200902A (nl) 1992-05-21 1993-12-16 Cornelis Johannes Maria Van Ri Keramisch membraan voor microfiltratie, alsmede werkwijze ter vervaardiging van een dergelijk membraan.
US5641466A (en) 1993-06-03 1997-06-24 Nec Corporation Method of purifying carbon nanotubes
US5658460A (en) 1996-05-07 1997-08-19 The Dow Chemical Company Use of inorganic ammonium cation salts to maintain the flux and salt rejection characteristics of reverse osmosis and nanofiltration membranes during drying
KR100530614B1 (ko) 1997-10-23 2005-11-23 토넨카가쿠 가부시키가이샤 고투과성 폴리올레핀 미다공막의 제조방법
US6437189B1 (en) 1997-12-12 2002-08-20 Bayer Corporation Synthesis of sulfoxides via selective oxidation of sulfides with a perborate or a percarbonate
US6783745B1 (en) 1998-09-14 2004-08-31 Diamond Materials, Inc. Fullene based sintered carbon materials
US6337018B1 (en) 2000-04-17 2002-01-08 The Dow Chemical Company Composite membrane and method for making the same
US7064214B2 (en) 2001-04-13 2006-06-20 Apsinterm Llc Methods of preparing sulfinamides and sulfoxides
US6758957B1 (en) 2001-04-17 2004-07-06 University Of Central Florida Electrochemical deposition of carbon nanoparticles from organic solutions
KR100468845B1 (ko) 2002-01-30 2005-01-29 삼성전자주식회사 탄소나노튜브 제조방법
US7109140B2 (en) 2002-04-10 2006-09-19 Virginia Tech Intellectual Properties, Inc. Mixed matrix membranes
GB0216654D0 (en) 2002-07-17 2002-08-28 Univ Cambridge Tech CVD Synthesis of carbon nanoutubes
US7022784B2 (en) 2002-10-25 2006-04-04 Exxonmobil Research And Engineering Company Synthetic lubricant composition and process
WO2004056737A1 (en) 2002-12-23 2004-07-08 Council Of Scientific And Industrial Research Process for the preparation of metal acetylacetonates
US7490725B2 (en) 2003-10-09 2009-02-17 Membrane Technology & Research Reverse osmosis membrane and process
US7491334B2 (en) 2004-09-29 2009-02-17 North Pacific Research, Llc Method of treating reverse osmosis membranes for boron rejection enhancement
JP4656511B2 (ja) 2004-10-04 2011-03-23 日東電工株式会社 複合逆浸透膜の製造方法
DE102005041378A1 (de) 2005-09-01 2007-03-08 Forschungszentrum Karlsruhe Gmbh Modifizierte Kohlenstoff-Nanopartikel, Verfahren zu deren Herstellung und deren Verwendung
JP4587937B2 (ja) 2005-10-31 2010-11-24 日東電工株式会社 スパイラル型分離膜エレメント
JP4711306B2 (ja) 2006-02-20 2011-06-29 双葉電子工業株式会社 ナノ炭素粒子分散液及びその製造方法とコア・シェル型ナノ炭素粒子の製造方法
JP2009533217A (ja) 2006-04-11 2009-09-17 マサチューセッツ・インスティテュート・オブ・テクノロジー ポリアクリロニトリルグラフトコポリマーによって形成されるファウリング抵抗性を有する膜
US7750103B2 (en) 2006-09-08 2010-07-06 The University Of Massachusetts Cyclooctene monomers and polymers, and water purification articles and methods utilizing them
WO2009024973A1 (en) 2007-08-20 2009-02-26 Technion Research And Development Foundation Ltd Polysulfone polymers and membranes for reverse osmosis, nanofiltration and ultrafiltration
CA2720673C (en) * 2008-04-15 2017-08-08 Nanoh2O, Inc. Hybrid thin film composite reverse osmosis membranes
US8177978B2 (en) * 2008-04-15 2012-05-15 Nanoh20, Inc. Reverse osmosis membranes
US20100096319A1 (en) * 2008-10-17 2010-04-22 General Electric Company Separator assembly
US8754139B2 (en) * 2009-02-20 2014-06-17 International Business Machines Corporation Polyamide membranes with fluoroalcohol functionality
US8505743B2 (en) 2009-04-08 2013-08-13 Michigan Molecular Institute Surface modification of polyamide reverse osmosis membranes
US20120292249A1 (en) 2009-05-22 2012-11-22 General Electric Company Composite membrane and method of making
US8580341B2 (en) 2009-05-22 2013-11-12 General Electric Company Method of making composite membrane
ES2715823T3 (es) 2009-06-29 2019-06-06 Nanoh2O Inc Membranas TFC para RO híbridas mejoradas con aditivos nitrogenados
US8733558B2 (en) * 2010-05-24 2014-05-27 Dow Global Technologies Llc Composite membrane with coating comprising polyalkylene oxide and biguanide-type compounds
US20120080381A1 (en) 2010-09-30 2012-04-05 General Electric Company Thin film composite membranes incorporating carbon nanotubes
ES2478966T3 (es) 2010-10-26 2014-07-23 Dow Global Technologies Llc Módulo enrollado en espiral que incluye una lámina de membrana con regiones que tienen diferentes permeabilidades
AU2011326483B2 (en) * 2010-11-10 2017-02-23 Nanoh2O, Inc. Improved hybrid TFC RO membranes with non-metallic additives
US8828533B2 (en) 2012-01-12 2014-09-09 Ut-Battelle, Llc Mesoporous carbon materials
JP5969019B2 (ja) 2012-05-24 2016-08-10 エルジー・ケム・リミテッド 逆浸透分離膜
EP2922617B1 (en) 2012-11-23 2021-01-06 Council of Scientific and Industrial Research A modified thin film composite reverse osmosis membrane and uses thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1163793A (zh) * 1996-01-24 1997-11-05 日东电工株式会社 高透过性复合反渗透膜及使用它的反渗透膜组件
CN101052459A (zh) * 2004-10-29 2007-10-10 东丽株式会社 复合半透膜及其生产方法、以及利用该复合半透膜的元件、流体分离装置和水处理方法
WO2015000801A1 (en) * 2013-07-04 2015-01-08 Basf Se Multiple channel membranes

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109179573A (zh) * 2018-11-15 2019-01-11 刘益波 一种可用于处理生活污水的处理剂及其制备方法
CN114345135A (zh) * 2021-11-29 2022-04-15 长安大学 一种MXene基抗溶胀复合膜生产工艺及生产装置
CN114345135B (zh) * 2021-11-29 2022-11-15 长安大学 一种MXene基抗溶胀复合膜生产工艺及生产装置
CN117177151A (zh) * 2023-11-03 2023-12-05 共达电声股份有限公司 振膜组件、扬声器及振膜组件的制造方法
CN117177151B (zh) * 2023-11-03 2024-03-12 共达电声股份有限公司 振膜组件、扬声器及振膜组件的制造方法

Also Published As

Publication number Publication date
KR102066780B1 (ko) 2020-01-15
CN107635649B (zh) 2020-12-15
KR20170098946A (ko) 2017-08-30
EP3302772B1 (en) 2023-08-02
WO2016196814A1 (en) 2016-12-08
EP3302772A1 (en) 2018-04-11
US9695065B2 (en) 2017-07-04
US20160355416A1 (en) 2016-12-08
EP3302772A4 (en) 2019-03-13

Similar Documents

Publication Publication Date Title
CN107635649A (zh) 用于提高膜的水通量的化学添加剂的组合
Dai et al. Porous metal organic framework CuBDC nanosheet incorporated thin-film nanocomposite membrane for high-performance forward osmosis
CN107635647A (zh) 用于提高膜的水通量的化学添加剂
EP3322514B1 (en) A process for preparing a thin film composite membrane, thin film composite membrane prepared according to the process and method of purifying tap water or seawater or brackish water using the membrane
CN105457508B (zh) 混杂的纳米粒子tfc膜
EP2859939B1 (en) Reverse osmosis membrane with high permeation flux comprising surface-treated zeolite, and method for preparing same
KR101936924B1 (ko) 분리막, 및 상기 분리막을 포함하는 수처리 장치
US9687792B2 (en) Additives for boron rejection enhancement of a membrane
KR20140005936A (ko) 수처리용 분리막 및 그 제조 방법
TW201247297A (en) Spiral type separation membrane element and method for producing the same
CN102089068A (zh) 混杂的纳米粒子tfc膜
WO2021041512A1 (en) Mixed matrix membranes and methods of making and use thereof
Das et al. High flux and adsorption based non-functionalized hexagonal boron nitride lamellar membrane for ultrafast water purification
Huang et al. Novel N-doped graphene enhanced ultrafiltration nano-porous polyvinylidene fluoride membrane with high permeability and stability for water treatment
Hu et al. Ultrahigh-flux two-dimensional metal organic frameworks membrane for fast antibiotics removal
Berned-Samatán et al. Nanofiltration with polyamide thin film composite membrane with ZIF-93/SWCNT intermediate layers on polyimide support
Xiao et al. UiO-66-(OH) 2-mediated transition layer for ultra-thin homogeneous defect-free polyamide membrane
Tajuddin et al. Metal organic framework mixed-matrix membrane for arsenic removal
EP3202487B1 (en) Method for manufacturing polyamide-based water-treatment separator having excellent permeation flux characteristics
Lee Fabrication of novel nanocomposite membranes and 3D printed spacers for forward osmosis process

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant