CN107565383A - 一种铟磷铋材料及其制备方法和使用该材料的激光器及其制备方法 - Google Patents

一种铟磷铋材料及其制备方法和使用该材料的激光器及其制备方法 Download PDF

Info

Publication number
CN107565383A
CN107565383A CN201711002550.7A CN201711002550A CN107565383A CN 107565383 A CN107565383 A CN 107565383A CN 201711002550 A CN201711002550 A CN 201711002550A CN 107565383 A CN107565383 A CN 107565383A
Authority
CN
China
Prior art keywords
indium
layer
aluminium
arsenic
gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711002550.7A
Other languages
English (en)
Other versions
CN107565383B (zh
Inventor
梁丹
王庶民
张丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Super Crystal Technology (beijing) Co Ltd
Original Assignee
Super Crystal Technology (beijing) Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Super Crystal Technology (beijing) Co Ltd filed Critical Super Crystal Technology (beijing) Co Ltd
Priority to CN201711002550.7A priority Critical patent/CN107565383B/zh
Publication of CN107565383A publication Critical patent/CN107565383A/zh
Application granted granted Critical
Publication of CN107565383B publication Critical patent/CN107565383B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

本发明涉及材料学领域,特别是一种铟磷铋材料及其制备方法和使用该材料的激光器及其制备方法,所述铟磷铋材料包括:磷化铟衬底;磷化铟缓冲层,设置在所述磷化铟衬底之上;及铟磷铋本体,设置在所述磷化铟缓冲层之上;所述铟磷铋本体的化学式为InP1‑xBix,其中x是铋原子的浓度百分比,且0<x≤12.5%。申请所提供的铟磷铋材料,具有较小的禁带宽度,同时更易生长并更加稳定。

Description

一种铟磷铋材料及其制备方法和使用该材料的激光器及其制 备方法
技术领域
本发明涉及材料学领域,特别是一种铟磷铋材料。
背景技术
III-V族半导体材料广泛的应用于激光器、光电管及光纤通信等领域中。其中,窄带隙材料在微电子、光电子领域作为高速电子及光电子器件衬底具有很大的优势,同时也非常适用于垂直光场激光器和高电子载流子晶体管。以磷化铟为例,其具有较窄的带隙和较高的半导体性能。然而磷化铟也存在如下缺陷:其带隙虽然很窄,但也是有极限的。即磷化铟的带隙在窄到一定程度之后就不能继续变窄,也不能继续提成其半导体性能。
发明内容
本发明旨在提供一种铟磷铋材料,以降低传统材料的带隙。
上述的铟磷铋材料,包括:磷化铟衬底;磷化铟缓冲层,设置在所述磷化铟衬底之上;及铟磷铋本体,设置在所述磷化铟缓冲层之上;所述铟磷铋本体的化学式为InP1-xBix,其中x是铋原子的浓度百分比,且0<x≤12.5%。
本发明还提供一种铟磷铋材料的制备方法,以制备一种窄带隙的半导体材料。
上述的铟磷铋材料的制备方法,包括如下步骤:
S1:采用分子束外延或金属有机物气相沉积的外延生成工具在磷化铟衬底上生成磷化铟缓冲层;及
S2:采用分子束外延或金属有机物气相沉积的外延生成工具在所述磷化铟缓冲层上形成铟磷铋薄膜和异质结材料;
所述铟磷铋薄膜的化学式为InP1-xBix,其中x是铋原子的浓度百分比,且0<x≤12.5%。
本发明还提供一种激光器,以能够覆盖近红外至中红外范围。
上述的激光器,包括:磷化铟衬底;厚度为500纳米的N型磷化铟掺杂层,设置在所述磷化铟衬底上,所述N型磷化铟掺杂层的掺杂浓度为(3~5)x1018cm-3;厚度为1000纳米的砷铝铟下限制层,设置在所述N型磷化铟掺杂层上,其中铝的浓度为5%;厚度为1000纳米的砷铝镓铟下波导层,设置在所述砷铝铟下限制层上,其中镓和铝的浓度为5%;厚度为30纳米的铟磷铋量子阱有源区,设置在所述砷铝镓铟下波导层上,所述铟磷铋量子阱有源区中的铟磷铋的化学式为InP1-xBix,其中x是铋原子的浓度百分比,且0<x≤12.5%;厚度为1000纳米的砷铝镓铟上波导层,设置在所述铟磷铋量子阱有源区上,其中镓和铝的浓度为5%;厚度为1000纳米的砷铝铟上限制层,设置在所述砷铝镓铟上波导层上,其中铝的浓度为5%;厚度为200纳米的P型砷镓铟掺杂层,设置在所述砷铝铟上限制层上,其中镓的浓度为5%;P电极区,设置在所述P型砷镓铟掺杂层上;及N电极区,设置在所述磷化铟上。
本发明还提供一种激光器的制备方法,以制造一种能够覆盖近红外至中红外范围的激光器。
上述的激光器的制备方法,包括如下步骤:
S1:在磷化铟衬底上生成厚度为500纳米的N型磷化铟掺杂层,掺杂浓度为(3~5)x1018cm-3
S2:在所述N型磷化铟层上生成厚度为1000纳米的砷铝铟下限制层,铝的浓度为5%;
S3:在所述砷铝铟下限制层上生成厚度为1000纳米的砷铝镓铟下波导层,其中镓、铝的浓度为5%;
S4:在所述砷铝镓铟下波导层上生成厚度为30纳米的铟磷铋量子阱有源区,所述铟磷铋量子阱有源区中的铟磷铋的化学式为InP1-xBix,其中x是铋原子的浓度百分比,且0<x≤12.5%;
S5:在所述铟磷铋量子阱有源区上生成厚度为1000纳米的砷铝镓铟上波导层,镓和铝的浓度为5%;
S6:在所述砷铝镓铟上波导层上生成厚度为1000纳米的砷铝铟上限制层,铝的浓度为5%;
S7:在所述砷铝铟上限制层上生成厚度为200纳米的P型砷镓铟掺杂层,其中镓的浓度为5%;
S8:在所述P型砷镓铟掺杂层上打光胶,并进行光刻保护,腐蚀掉所述P型砷镓铟掺杂层;
S9:腐蚀掉铟磷铋有源区;
S10:去除所述光胶;
S11:在所述N型磷化铟掺杂层、砷铝铟下限制层、砷铝镓铟下波导层、砷铝镓铟上波导层、砷铝铟上限制层以及P型砷镓铟掺杂层外表面上,沉积一层钝化层材料;
S12:在所述N型磷化铟掺杂层上光刻N电极区,在所述P型砷镓铟掺杂层上光刻P电极区;
S13:去除所述N电极区和所述P电极区的所述钝化层;
S14:沉积电极金属。
本发明所述的铟磷铋材料通过加入Bi原子,使得磷化铟的带隙变窄;同时通过加入铋原子使得磷化铟的带隙进一步变窄。另外由于铋原子本身具有很强的自旋轨道耦合效应,掺入后将会增大磷化铟的自旋轨道分裂,抑制俄歇复合效应。因此,本申请所述的铟磷铋材料的带隙相比较传统的磷化铟材料更窄,半导体性能更佳。
附图说明
图1为本发明一实施例中铟磷铋材料的结构示意图;
图2为本发明一实施例中铟磷铋材料的制备方法的流程图;
图3为本发明一实施例中不同掺杂构型的浓度和带隙的关系示意图;
图4为本发明一实施例中近红外激光器的结构示意图;
图5为本发明一实施例中近红外激光器的制备流程图。
其中附图说明为:
其中附图标记为:
1:磷化铟衬底
2:N型磷化铟掺杂层
3:砷铝铟下限制层
4:砷铝镓铟下波导层
5:铟磷铋量子阱有源区
6:砷铝镓铟上波导层
7:砷铝铟上限制层
8:P型砷镓铟掺杂层
9:钝化层
11:N电极区
12:P电极区
13:P型磷化铟掺杂层
具体实施方式
请参照图1,在本实施例中,铟磷铋材料,包括:磷化铟衬底10、磷化铟缓冲层20及铟磷铋本体30。其中磷化铟缓冲层20设置在磷化铟衬底之上。铟磷铋本体30设置在磷化铟缓冲层20之上。铟磷铋本体的化学式为InP1-xBix,其中x是铋原子的浓度百分比,且0<x≤12.5%。在本申请其他实施例中,磷化铟衬底也可以为其他辅助衬底。
请参照图2,在本实施例中,铟磷铋材料的制备方法,包括如下步骤:
S1:采用分子束外延或金属有机物气相沉积的外延生成工具在磷化铟衬底上生成磷化铟缓冲层。
S2:采用分子束外延或金属有机物气相沉积的外延生成工具在磷化铟缓冲层上形成铟磷铋薄膜和异质结材料。
其中,铟磷铋薄膜的化学式为InP1-xBix,其中x是铋原子的浓度百分比,且0<x≤12.5%。
请参照下表和图3,不同的Bi掺杂方式(包括链式[111]构型、链式[100]构型、团簇化构型、随机化构型),随着Bi原子的掺入浓度不同,禁带宽度(Eg)也会随之变化。对于链式[111]构型,禁带宽度随浓度的变化是-51±1meV/%Bi,掺入2个、3个、4个Bi原子的禁带宽度依次为1.17eV、1.08eV、1.01eV。对于链式[100]构型,禁带宽度随浓度的变化是-146±8meV/%Bi,掺入2个、3个、4个Bi原子的禁带宽度依次为0.9eV、0.65eV、0.41eV,相对于链式[111]构型,总能依次变化了0.09eV、0.11eV、0.20eV。对于团簇化构型,禁带宽度随浓度的变化是-105±13meV/%Bi,掺入2个、3个、4个Bi原子的禁带宽度依次为0.92eV、0.73eV、0.69eV,相对于链式[111]构型,总能依次变化了0.04eV、0.14eV、0.34eV。对于随机化构型(SQS构型),禁带宽度随浓度的变化是-68±4meV/%Bi,掺入2个、3个、4个Bi原子的禁带宽度依次为1.14eV、0.99eV、0.90eV,相对于链式[111]构型,总能依次变化了0.01eV、0.04eV、0.05eV。
不同的Bi掺杂构型的带隙及形成能的变化
计算表明,对于链式[111]、链式[100]、团簇化、随机化构型(SQS构型),材料的带隙(Eg)随着Bi原子掺入浓度增加而降低。对于不同的构型,当材料的带隙被调制到0.83eV以下时,位于中红外波段,其禁带宽度可覆盖近红外到中红外。对于链式[111]构型,带隙被调制到0.83eV时,Bi原子的掺杂浓度为10.1%。对于链式[100]构型,带隙被调制到0.83eV时,Bi原子的掺杂浓度为3.6%。对于团簇构型,带隙被调制到0.83eV时,Bi原子的掺杂浓度为4.5%。对于随机化构型(SQS),带隙被调制到0.83eV时,Bi原子的掺杂浓度为7.4%。使用该材料,通过组分的调控,可制备近红外到中红外波段的磷化物光电器件。
因此,含有InP1-xBix的材料结构可以作为量子阱或量子点的一部分,通过调节势垒高度将跃迁波长调到中红外,采用这种材料结构可以弥补现有磷化物材料的缺陷,制备中红外激光器等光电器件。
请参照图4,本发明一实施例还提供一种激光器,包括:磷化铟衬底;厚度为500纳米的N型磷化铟掺杂层,设置在磷化铟衬底上,N型磷化铟掺杂层的掺杂浓度为(3~5)x1018cm-3;厚度为1000纳米的砷铝铟下限制层,设置在N型磷化铟掺杂层上,其中铝的浓度为5%;厚度为1000纳米的砷铝镓铟下波导层,设置在砷铝铟下限制层上,其中镓和铝的浓度为5%;厚度为30纳米的铟磷铋量子阱有源区,设置在砷铝镓铟下波导层上,铟磷铋量子阱有源区中的铟磷铋的化学式为InP1-xBix,其中x是铋原子的浓度百分比,且0<x≤12.5%;厚度为1000纳米的砷铝镓铟上波导层,设置在铟磷铋量子阱有源区上,其中镓和铝的浓度为5%;厚度为1000纳米的砷铝铟上限制层,设置在砷铝镓铟上波导层上,其中铝的浓度为5%;厚度为200纳米的P型砷镓铟掺杂层,设置在砷铝铟上限制层上,其中镓的浓度为5%;P电极区,设置在P型砷镓铟掺杂层上;及N电极区,设置在磷化铟上。
请参照图5,本申请一实施例还提供了一种激光器的制备方法,包括如下步骤:
S1:在InP衬底上生长500纳米的N型InP缓冲层,掺杂浓度为(3~5)x1018cm-3
S2:在500纳米的N型InP层上生长1000纳米的InAlAs下限制层,Al浓度为5%;
S3:在1000纳米的InAlAs下限制层上生长1000纳米的InGaAlAs下波导层,其中Ga、Al的浓度为5%;
S4:在1000纳米的InGaAlAs下波导层上生长30纳米的InP1-xBix量子阱有源区,铟磷铋量子阱有源区中的铟磷铋的化学式为InP1-xBix,其中x是铋原子的浓度百分比,且0<x≤12.5%;
S5:在30纳米的InPBi量子阱有源区上生长1000纳米的InGaAlAs上波导层,Ga和Al的浓度为5%;;
S6:在1000纳米的InGaAlAs上波导层上生长1000纳米的InAlAs上限制层,Al的组分为5%;
S7:在1000纳米的InAlAs上限制层上生长200纳米的P型砷镓铟掺杂层,其中Ga的浓度为5%;
S8:在200纳米的P型砷镓铟掺杂层上打光胶,并进行光刻保护,腐蚀掉P型砷镓铟掺杂层;
S9:腐蚀掉InPBi有源区
S10:将光胶去除;
S11:N型InP掺杂层、InAlAs下限制层、InGaAlAs下波导层、InGaAlAs上波导层、InAlAs上限制层以及P型砷镓铟掺杂层外表面上,沉积一层钝化层材料;
S12:N型InP掺杂层上光刻N电极区,P型砷镓铟掺杂层上光刻P电极区;
S13:去除N电极区和P电极区的钝化层;
S14:沉积电极金属,得到InPBi近红外激光器。
Bi原子为V族元素中原子半径最大的原子。Bi原子掺入到III-V材料中,将会与本征材料发生反交叉作用,使得本征材料价带上升,从而减小材料的禁带宽度。由于Bi原子本身具有很强的自旋轨道耦合效应,掺入后将会增大本征材料的自旋轨道分裂,抑制俄歇复合效应。由于Bi的原子半径较大,在材料生长过程中能够改变原子在表面的扩散长度,起到表面活化剂的作用,使得材料的界面与表面更加平整。
本发明公开的新型铟磷铋材料,通过不同的掺杂方式,在InP中掺入一定浓度的Bi原子,可有效调节InP材料的禁带宽度,实现从近红外到中红外波段的覆盖,应用于光电子器件。Bi原子的掺入可使材料更易生长并更加稳定。本发明报道的材料可采用常规分子束外延、金属有机物化学气相沉积等多种方法进行生长,结构和操作工艺简单,易于控制。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (4)

1.一种铟磷铋材料,包括:
磷化铟衬底;
磷化铟缓冲层,设置在所述磷化铟衬底之上;及
铟磷铋本体,设置在所述磷化铟缓冲层之上;
所述铟磷铋本体的化学式为InP1-xBix,其中x是铋原子的浓度百分比,且0<x≤12.5%。
2.一种铟磷铋材料的制备方法,包括如下步骤:
S1:采用分子束外延或金属有机物气相沉积的外延生成工具在磷化铟衬底上生成磷化铟缓冲层;及
S2:采用分子束外延或金属有机物气相沉积的外延生成工具在所述磷化铟缓冲层上形成铟磷铋薄膜和异质结材料;
所述铟磷铋薄膜的化学式为InP1-xBix,其中x是铋原子的浓度百分比,且0<x≤12.5%。
3.一种激光器,包括:
磷化铟衬底;
厚度为500纳米的N型磷化铟掺杂层,设置在所述磷化铟衬底上,所述N型磷化铟掺杂层的掺杂浓度为(3~5)x1018cm-3
厚度为1000纳米的砷铝铟下限制层,设置在所述N型磷化铟掺杂层上,其中铝的浓度为5%;
厚度为1000纳米的砷铝镓铟下波导层,设置在所述砷铝铟下限制层上,其中镓和铝的浓度为5%;
厚度为30纳米的铟磷铋量子阱有源区,设置在所述砷铝镓铟下波导层上,所述铟磷铋量子阱有源区中的铟磷铋的化学式为InP1-xBix,其中x是铋原子的浓度百分比,且0<x≤12.5%;
厚度为1000纳米的砷铝镓铟上波导层,设置在所述铟磷铋量子阱有源区上,其中镓和铝的浓度为5%;
厚度为1000纳米的砷铝铟上限制层,设置在所述砷铝镓铟上波导层上,其中铝的浓度为5%;
厚度为200纳米的P型砷镓铟掺杂层,设置在所述砷铝铟上限制层上,其中镓的浓度为5%;
P电极区,设置在所述P型砷镓铟掺杂层上;及
N电极区,设置在所述磷化铟上。
4.一种激光器的制备方法,包括如下步骤:
S1:在磷化铟衬底上生成厚度为500纳米的N型磷化铟掺杂层,掺杂浓度为(3~5)x1018cm-3
S2:在所述N型磷化铟层上生成厚度为1000纳米的砷铝铟下限制层,铝的浓度为5%;
S3:在所述砷铝铟下限制层上生成厚度为1000纳米的砷铝镓铟下波导层,其中镓、铝的浓度为5%;
S4:在所述砷铝镓铟下波导层上生成厚度为30纳米的铟磷铋量子阱有源区,所述铟磷铋量子阱有源区中的铟磷铋的化学式为InP1-xBix,其中x是铋原子的浓度百分比,且0<x≤12.5%;
S5:在所述铟磷铋量子阱有源区上生成厚度为1000纳米的砷铝镓铟上波导层,镓和铝的浓度为5%;
S6:在所述砷铝镓铟上波导层上生成厚度为1000纳米的砷铝铟上限制层,铝的浓度为5%;
S7:在所述砷铝铟上限制层上生成厚度为200纳米的P型砷镓铟掺杂层,其中镓的浓度为5%;
S8:在所述P型砷镓铟掺杂层上打光胶,并进行光刻保护,腐蚀掉所述P型砷镓铟掺杂层;
S9:腐蚀掉铟磷铋有源区;
S10:去除所述光胶;
S11:在所述N型磷化铟掺杂层、砷铝铟下限制层、砷铝镓铟下波导层、砷铝镓铟上波导层、砷铝铟上限制层以及P型砷镓铟掺杂层外表面上,沉积一层钝化层材料;
S12:在所述N型磷化铟掺杂层上光刻N电极区,在所述P型砷镓铟掺杂层上光刻P电极区;
S13:去除所述N电极区和所述P电极区的所述钝化层;
S14:沉积电极金属。
CN201711002550.7A 2017-10-24 2017-10-24 一种铟磷铋材料及其制备方法和使用该材料的激光器及其制备方法 Active CN107565383B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711002550.7A CN107565383B (zh) 2017-10-24 2017-10-24 一种铟磷铋材料及其制备方法和使用该材料的激光器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711002550.7A CN107565383B (zh) 2017-10-24 2017-10-24 一种铟磷铋材料及其制备方法和使用该材料的激光器及其制备方法

Publications (2)

Publication Number Publication Date
CN107565383A true CN107565383A (zh) 2018-01-09
CN107565383B CN107565383B (zh) 2019-02-12

Family

ID=60985914

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711002550.7A Active CN107565383B (zh) 2017-10-24 2017-10-24 一种铟磷铋材料及其制备方法和使用该材料的激光器及其制备方法

Country Status (1)

Country Link
CN (1) CN107565383B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110571342A (zh) * 2019-09-11 2019-12-13 上海理工大学 一种半导体量子点异质结材料及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1719677A (zh) * 2004-07-09 2006-01-11 中国科学院半导体研究所 铝铟磷或铝镓铟磷材料大功率半导体激光器及制作方法
CN102272952A (zh) * 2009-01-16 2011-12-07 欧司朗光电半导体有限公司 光电子半导体器件
CN102484184A (zh) * 2009-06-26 2012-05-30 萨里大学 发光半导体装置
CN104851932A (zh) * 2015-04-01 2015-08-19 中国科学院上海微系统与信息技术研究所 一种基于稀铋磷化物的中间带太阳能电池结构
CN105226503A (zh) * 2015-09-28 2016-01-06 超晶科技(北京)有限公司 一种基于铋元素的GaAs基室温红外发光材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1719677A (zh) * 2004-07-09 2006-01-11 中国科学院半导体研究所 铝铟磷或铝镓铟磷材料大功率半导体激光器及制作方法
CN102272952A (zh) * 2009-01-16 2011-12-07 欧司朗光电半导体有限公司 光电子半导体器件
CN102484184A (zh) * 2009-06-26 2012-05-30 萨里大学 发光半导体装置
CN104851932A (zh) * 2015-04-01 2015-08-19 中国科学院上海微系统与信息技术研究所 一种基于稀铋磷化物的中间带太阳能电池结构
CN105226503A (zh) * 2015-09-28 2016-01-06 超晶科技(北京)有限公司 一种基于铋元素的GaAs基室温红外发光材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
D.P. SAMAJDAR 等: ""Influence of Bi-related impurity states on the Bandgap and Spin-orbit Splitting Energy of dilute III-V-Bi Alloys:InP1-xBix, InAs1-xBix, InSb1-xBix and GaSb1-xBix"", 《SUPERLATTICES AND MICROSTRUCTURES》 *
J. KOPACZEK 等: ""Contactless electroreflectance and theoretical studies of band gap and spin-orbit splitting in InP1-xBix dilute bismide with x ≤ 0.034"", 《APPLIED PHYSICS LETTERS》 *
XIAOYAN WU 等: ""Anomalous photoluminescence in InP1-xBix"", 《SCIENTIFIC REPORTS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110571342A (zh) * 2019-09-11 2019-12-13 上海理工大学 一种半导体量子点异质结材料及其制备方法与应用

Also Published As

Publication number Publication date
CN107565383B (zh) 2019-02-12

Similar Documents

Publication Publication Date Title
EP2823514B1 (de) Mehrfachsolarzelle und deren herstellungsverfahren
CN100485955C (zh) 氮化镓类半导体元件及其制造方法
US6670544B2 (en) Silicon-germanium solar cell having a high power efficiency
CN106299016B (zh) 一种雪崩光电二极管及其制备方法
WO2021212597A1 (zh) 一种四元系张应变半导体激光外延片及其制备方法
CN107768459B (zh) 一种铟磷氮铋材料及其制备方法和使用该材料的激光器和探测器及其制备方法
Razeghi et al. High performance GaAs/GaInP heterostructure bipolar transistors grown by low-pressure metal-organic chemical vapour deposition
CN107565383B (zh) 一种铟磷铋材料及其制备方法和使用该材料的激光器及其制备方法
CN102637794A (zh) 半导体器件及其制造方法
CN103296168A (zh) 利用具原子台阶衬底制备的InGaN量子点外延片及其制备方法
US6942731B2 (en) Method for improving the efficiency of epitaxially produced quantum dot semiconductor components
CN107611780A (zh) Si掺杂InAs/GaAs量子点激光器及其制备方法
JPH0677580A (ja) オプトエレクトロニクス部品用の半導体構造
JP2000196193A (ja) 半導体装置及びその製造方法
CN104638516B (zh) 大晶格失配可调谐量子阱激光器外延芯片的制作方法
CN209658598U (zh) 一种纳米线激光器外延结构
JP2004521489A (ja) 変性長波長高速フォトダイオード
JPS60218881A (ja) GaAs太陽電池
JP3027116B2 (ja) 太陽電池
JP3348015B2 (ja) ノンアロイ用電極コンタクト層の作製方法
JP3149026B2 (ja) 半導体受光素子の製造方法
JPH03268360A (ja) 半導体装置
JP3401715B2 (ja) 化合物半導体装置の製造方法
JP3861995B2 (ja) Zn系半導体発光素子の製造方法
JP2005093553A (ja) 低格子不整合系における量子ドットの形成方法および量子ドット半導体素子

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant