CN107530686A - 氨合成催化剂及其制备方法 - Google Patents

氨合成催化剂及其制备方法 Download PDF

Info

Publication number
CN107530686A
CN107530686A CN201680011209.5A CN201680011209A CN107530686A CN 107530686 A CN107530686 A CN 107530686A CN 201680011209 A CN201680011209 A CN 201680011209A CN 107530686 A CN107530686 A CN 107530686A
Authority
CN
China
Prior art keywords
catalyst
ruthenium
praseodymium oxide
ammonia synthesis
synthesis catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201680011209.5A
Other languages
English (en)
Inventor
永冈胜俊
今村和也
佐藤胜俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority claimed from PCT/JP2016/054941 external-priority patent/WO2016133213A1/ja
Publication of CN107530686A publication Critical patent/CN107530686A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • C01C1/0411Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Catalysts (AREA)

Abstract

本发明提供担载稀土氧化物的贵金属催化剂,具体地提供催化剂活性高,且能够在大幅度提高每个催化剂重量及每个担载金属量的氨生成活性的温和条件下进行氨合成的担载稀土氧化物的贵金属催化剂。本发明的催化剂的特征在于,在氧化镨载体中,以呈层状的方式担载钌。本发明的催化剂可由如下的方法获得,即,按低温、中温及高温的顺序对氧化镨前驱体进行煅烧处理来获得氧化镨,在溶剂中与钌供给源一同搅拌上述氧化镨之后,进行溶剂的去除及煅烧处理。

Description

氨合成催化剂及其制备方法
技术领域
本发明涉及氨合成催化剂,更详细地,涉及在温和的条件下,示出极高的氨合成能力的担载稀土氧化物的贵金属催化剂。
背景技术
氨为使用在肥料等的重要化学原料,近年作为能量载体来备受瞩目。尤其,近年,利用可再生能源来合成氨的工序或催化剂正备受瞩目。
利用已被工业化的铁催化剂的哈柏法(Haber-Bosch process)属于高温高压工序,利用可再生能源难以操作此工序。为此,需要开发出与哈柏法相比更温和的、即,在低温且低压的条件下,显示高活性的氨合成催化剂和工序。
到目前为止,据报道,在各种载体中担载钌的催化剂可以在低温、低压的条件下显示高氨生成活性(例如,非专利文献1、非专利文献2)。
现有技术文献
非专利文献1:Aika et al,J.Catal.,136,126(1992)
非专利文献2:Hosono et al.Nature Chemistry.4,934(2012)
发明内容
技术问题
但是,在催化剂的实用化工序上起到重要作用的每个催化剂重量,或每个担载金属量的氨生成活性仍处于不够充分的状态,从而需要在低温、低压条件下的催化剂的高活性化。
针对这些需求,本发明的目的在于,提供在温和条件下合成氨的新型担载稀土氧化物的贵金属催化剂。
解决问题的方案
本发明的在温和条件下合成氨的担载稀土氧化物的贵金属催化剂的特征在于,在氧化镨载体中,以呈层状的方式担载钌。
具有以往未被公知的上述特殊结构的本发明的氨合成催化剂,可由如下的方式获得,即,按低温、中温及高温的顺序对氧化镨前驱体进行煅烧处理来获得氧化镨,在溶剂中,与钌供给源一同搅拌上述氧化镨之后,进行溶剂的去除及煅烧处理。
在以下的说明中,用“Ru/PrOx”表示使钌担载在氧化镨载体的催化剂。
发明的效果
在本发明的催化剂中,由于钌以呈层状方式以均匀且高分散的状态来担载于氧化镨载体表面,从而显示高催化剂活性,并且与使用钌的现有催化剂相比,每个催化剂重量及每个担载金属量的氨生成活性得到大幅度提高。
附图说明
图1为利用扫描透射电子显微镜(scanning transmission electronmicroscopy,STEM)观察本发明的催化剂的高角度环形暗场像(high-angle annular darkfield,HAADF)。
图2为利用具备能量色散X射线探测器(Energy Dispersive X-RaySpectroscopy,EDX)的扫描透射电子显微镜观察图1的催化剂的元素映射图。
图3为示出用图2的能量色散X射线探测器的观察来确认钌(Ru)的存在处的高分辨率观察结果的图。
图4为示出本发明的催化剂中的钌堆积层的高角度环形暗场像。
图5为示出在使Ru担载在Pr6O11载体的现有技术的典型的催化剂中,通过扫描透射电子显微镜-能量弥散X射线探测器映射来确认Ru处的高分辨率观察结果的图。
图6为示出对于本发明的催化剂的NH3合成活性的Ru担载量的影响的曲线图。
图7为示出反应时的压力对Ru/PrOx的氨合成活性产生的影响的图。
具体实施方式
本发明的在温和条件下对氨进行合成的担载稀土氧化物的贵金属催化剂的特征在于,在氧化镨载体中,以呈层状的方式担载钌。优选地,Ru担载量为担载钌的催化剂的总重量的1~10重量百分比。当小于1重量百分比时,无法期待充分的NH3合成活性,当大于10重量百分比时,因其效果为饱和,而不经济。更优选地,Ru担载量为3~5重量百分比左右。
图1示出利用扫描透射电子显微镜观察催化剂的高角度环形暗场像。图2为示出图1的催化剂的元素映射图。图中明确示出元素的所在位置。图2的(a)部分、图2的(b)部分、图2的(c)部分分别为Pr、O、Ru元素的映射,图2的(d)部分为示出层叠这些的图。根据图2的(c)部分、图2的(d)部分,可知Ru几乎分布于整个催化剂。并且,催化剂的边缘部分特别明亮,由此可知Ru主要均匀地在载体的表面以呈层状的方式担载。
图3示出用图2的能量弥散X射线探测器的观察来确认Ru的存在处的高分辨率观察的结果。未观察出作为粒子来被担载的Ru的模样。
图4示出本发明的另一Ru/PrOx催化剂的高角度环形暗场像。确认出:Ru以呈层状的方式层叠在PrOx载体表面,来形成卵壳结构。当层叠的钌层为0.1nm以上时,可获得高氨产率,但为了获得更稳定且高的氨产率,而优选为0.2~0.3nm。并且,即使过度加厚钌层的厚度,也在催化剂最外表面与原料气体相接触的Ru的量被饱和,进而氨产率效果为饱和。因此钌层的厚度上限可按照效果为饱和的厚度决定。
图5示出使Ru担载在氧化镨Pr6O11载体的现有技术的催化剂(可从关东化学社购买的市销品)中,确认Ru处的高分辨率观察的结果。未观察出Ru的均匀的分布模样。
本发明的担载氧化镨的钌催化剂和上述现有技术的担载氧化镨的钌催化剂中的Ru的担载状态可根据如下的条件而有所不同,即,由各自使用的氧化镨载体的特性,更详细地,由在高温的条件下快速进行煅烧处理或在从低温至高温的条件下进行多段煅烧处理的煅烧工序的不同而生成的镨载体的比表面积、缺陷、官能基等的表面结构的差异。
除当该现有技术的担载氧化镨的钌催化剂以外,对使Ru担载于氧化镁(MgO)或氧化铈(CeO2)载体的催化剂,进行相同的观察的结果,示出:Ru作为结晶微粒被担载,或者存在Ru极度地凝聚在载体部分和作为微粒来被担载的部分。像这样,确认出:即使使Ru担载在MgO载体或CeO2载体的催化剂中,也未以呈层状的方式担载有Ru。
本发明的Ru/PrOx催化剂可由如下的方法制备,即,按低温、中温及高温的顺序对氧化镨的前驱体进行煅烧处理来转化为高比表面积的氧化镨,并在有机溶剂中,与钌供给源一同搅拌上述氧化镨之后,去除溶剂之后再进行煅烧处理。
本发明所使用的氧化镨的前驱体可基于沉淀法、聚合络合法等的多种方法来制备。例如,可以采用使氨、氢氧化钠、氢氧化铯等的沉淀剂与硝酸镨、氯化镨、碳酸镨等的镨盐水溶液进行反应,来获得氢氧化物的中和沉淀法。
优选地,首先,通过混合氨水和硝酸镨水溶液,来制备作为载体的氧化镨的前驱体的氢氧化镨。优选地,氨和硝酸镨的混合摩尔比为5︰1~2︰1,更优选为3︰1。优选地,氨水和硝酸水溶液中的氨和硝酸镨的浓度分别为4~32摩尔/升、0.1~1摩尔/升左右,更优选地分别为8~16摩尔/升、0.25~0.5摩尔/升左右。可在常温下进行混合。
之后,通过以不同温度为条件的三个步骤的煅烧处理来将生成的氧化镨的前驱体转换为高比表面积的氧化镨。根据煅烧处理来获得的氧化镨的组成并无特别限定,作为本发明的催化剂载体,可利用各种由O/Pr比组成的物质。优选地,O/Pr比为1.5~1.9。
进行三个步骤的煅烧处理的原因在于,在氧化镨前驱体转化为氧化镨的过程中,防止因氧化镨的前驱体的急速加热、分解,而产生氧化镨的烧结。尤其,经过这种从低温到高温的多段煅烧工序,来使氧化镨的表面以优秀的亚稳结构固定,由此可推想:与具有以现有工序来制备的缺陷、官能基等的表面结构的载体不同。优选地,最初的低温煅烧处理在200~400℃左右的低温条件下,进行约1~10小时。优选地,第二步骤的中温煅烧处理在400~600℃左右的中温条件下,进行约1~10小时。优选地,最后的高温煅烧处理在600~900℃左右的高温条件下,进行约1~10小时。这种煅烧处理可在如空气或惰性气体和氧气的混合气体等的任意氧气浓度下进行。
之后,在适当的有机溶剂中,与钌供给源一同搅拌通过如上所述的方法来获得的氧化镨之后,去除溶剂并接着进行煅烧处理,由此获得在氧化镨载体上以呈层状的方式堆积的钌的、本发明的担载氧化镨的钌催化剂。可使用包含Ru的各种化合物作为钌供给源。优选地,可使用十二羰基三钌Ru3(CO)12或乙酰丙酮钌等的有机金属化合物。可使用除能够在氧化镨担载钌以外的钌供给源,例如氯化钌等。在使用如羰基钌等的有机金属化合物作为钌供给源的情况下,使用有机溶剂作为溶剂为佳。作为有机溶剂的例可举四氢呋喃(Tetrahydrofuran THF)、甲醇、乙醇、己烷、甲苯等。这些溶剂若是一般的市销品,可无需特别进行前处理即可使用,但更优选地,使用进行过提纯脱水等的溶剂。优选地,溶剂中的氧化镨与钌供给源的固体组分浓度一般分别为1~30g/升、0.1~3g/升左右,更优选地,分别为10~30g/升、0.1~0.3g/升左右。搅拌可在常温下进行,优选地,搅拌时间为1~24小时,更优选为6~12小时。去除溶剂可由各种方法下的加热来进行,例如,优选地,在利用蒸发器等的减压、低温气氛下进行。煅烧处理在如氦气、氩气或氮气气氛等的惰性气氛中进行。也可在包含氢的气氛中进行煅烧处理。煅烧处理在200~450℃左右的温度下,进行约1~12小时。更优选地,煅烧温度为300~400℃左右,更优选地,煅烧时间为约3~6小时。
实施例
接着,根据实施例进一步说明本发明,但本发明并不局限于此处提出的实施例。
在常温下,对在0.25升的28%氨水中加入0.25升的硝酸镨的8%水溶液的混合液进行了11个小时的搅拌。对由此获得的氢氧化镨沉淀物进行分离后,在常温下的水中进行清洗,过滤后,在70℃的温度下,干燥一夜。
按照在300℃条件下进行3小时、在550℃条件下进行3小时、在700℃条件下进行5小时的顺序依次对干燥的氢氧化镨进行煅烧处理,来转换为氧化镨。接着,在溶解有0.46g的羰基钌的0.2升的四氢呋喃的溶液中加入冷却至常温的4g的氧化镨之后,搅拌一夜。之后,通过蒸发从溶液去除四氢呋喃,在流通氩气的气氛中,在350℃的温度下进行煅烧处理,从而获得在氧化镨载体上以呈层状的方式担载钌的催化剂。
由如下方法检测出获得的催化剂的氨合成活性。填充在H2还原气氛中进行一个小时的前处理的0.2g的催化剂的管上,在390℃温度条件下、在0.9MPa的条件下、在18000mL/h·g-催化剂的空间速度的条件下,流动3︰1摩尔比的氢气和氮气,来合成氨,通过向希硫酸水溶液移送流出气体(包含生成的氨、残余氢及氮),来在希硫酸水溶液中分离氨,并根据水溶液的电导率的变化评估活性。
图6示出在0.1MPa和0.9Mpa的条件下,检测出对于催化剂的NH3合成活性的担载量的影响的结果。
表1示出将本发明的担载氧化镨的钌催化剂的NH3合成活性与在MgO载体或CeO2载体中担载Ru的催化剂及上述现有技术的Ru/Pr6O11催化剂(市售)进行比较的数据。表中的TOF表示基于对Ru催化剂的氢吸附量,来计算出的在每一个活性点、每一秒种的氨合成的反应次数。并且,表中的钌层厚度意味着钌层中最薄的地方的厚度。
表1
n.d.:未检测
表2示出,已报道在低温、低压的条件下,也显示出高氨生成活性的非专利文献1、非专利文献2中的催化剂的NH3合成活性与表1中所示的本发明的实施例中的5重量百分比Ru/PrOx催化剂的例的NH3合成活性,进行比较的数据。
表2
1)Aika et al.J.Catal.,136.126(1992)
2)Hosono et al.Nature Chemistry.4,934(2012)
从这些数据可知,本发明的担载氧化镨的钌催化剂比其他催化剂生成氨的产率高,即催化剂活性高。并且,根据合成速度的比较可知,每个催化剂重量及每个担载金属量的氨生成活性也比其他催化剂得到大幅度提高。
图7示出检测反应时的压力对如上所述的方法来制备的本发明的Ru/PrOx催化剂的氨合成活性产生的影响的结果。
当提高压力时,氨的产率变高。当压力从0.9MPa上升至1.0MPa时,产率也随着上升,由此在具备更高的实际性的高压的条件下,可以得到更高的产率。
表3为检测被流通的氮气与氢气的摩尔比对如上所述的方法来制备的本发明的5重量百分比Ru/PrOx催化剂的活性产生的影响的结果。
表3
表4为检测空间速度对如上所述的方法来制备的本发明的5重量百分比Ru/PrOx催化剂的氨合成速度产生的影响的结果。
表4
表5为当压力从1.0MPa上升至3.0MPa时的如上所述的方法来制备的本发明的5重量百分比Ru/PrOx催化剂的氨合成活性的结果。
表5
从这些数据可知,可通过改变反应条件,来提高本发明的Ru/PrOx催化剂的生产率。

Claims (8)

1.一种氨合成催化剂,其特征在于,在氧化镨载体中,以呈层状的方式担载钌。
2.根据权利要求1所述的氨合成催化剂,其特征在于,钌的担载量为担载钌的催化剂的总重量的1~10重量百分比。
3.根据权利要求1或2所述的氨合成催化剂,其特征在于,载体上的钌层的厚度为0.1nm以上。
4.一种氨合成催化剂的制备方法,其特征在于,按低温、中温及高温的顺序对氧化镨前驱体进行煅烧处理来获得氧化镨,在溶剂中与钌供给源一同搅拌上述氧化镨之后,通过溶剂的去除及煅烧处理,来使钌以呈层状的方式担载在氧化镨载体。
5.根据权利要求4所述的氨合成催化剂的制备方法,其特征在于,按照在200~400℃温度下进行1~10小时、在400~600℃温度下进行1~10小时、在600~900℃温度下进行1~10小时的顺序依次对氧化镨前驱体进行煅烧处理。
6.根据权利要求4或5所述的氨合成催化剂的制备方法,其特征在于,使用有机金属化合物作为钌供给源。
7.根据权利要求6所述的氨合成催化剂的制备方法,其特征在于,使用有机溶剂作为溶剂。
8.根据权利要求4或5所述的氨合成催化剂的制备方法,其特征在于,使用十二羰基三钌作为钌供给源,使用四氢呋喃作为溶剂。
CN201680011209.5A 2015-02-20 2016-02-19 氨合成催化剂及其制备方法 Pending CN107530686A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2015032192 2015-02-20
JP2015-032192 2015-02-20
JP2016021712A JP2016155123A (ja) 2015-02-20 2016-02-08 アンモニア合成触媒とその製造方法
JP2016-021712 2016-02-08
PCT/JP2016/054941 WO2016133213A1 (ja) 2015-02-20 2016-02-19 アンモニア合成触媒とその製造方法

Publications (1)

Publication Number Publication Date
CN107530686A true CN107530686A (zh) 2018-01-02

Family

ID=56824614

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680011209.5A Pending CN107530686A (zh) 2015-02-20 2016-02-19 氨合成催化剂及其制备方法

Country Status (4)

Country Link
US (1) US20180071719A1 (zh)
EP (1) EP3260198A4 (zh)
JP (1) JP2016155123A (zh)
CN (1) CN107530686A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112387276A (zh) * 2019-08-15 2021-02-23 中国科学院大连化学物理研究所 一种用于氨合成的负载型钌团簇催化剂及其制备方法和应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109126787B (zh) * 2017-06-16 2021-08-03 中国科学院大连化学物理研究所 一种用于氨合成的稀土金属氧化物负载钌催化剂及其应用
JP2022061257A (ja) 2020-10-06 2022-04-18 株式会社豊田中央研究所 アンモニア合成触媒、アンモニア合成触媒の製造方法、及び、アンモニアの合成方法
CN114082413A (zh) * 2021-11-19 2022-02-25 中国科学院城市环境研究所 一种镨氧化物催化剂及其制备方法和用途
CN116272979A (zh) * 2023-03-31 2023-06-23 上海大学 一种钌负载的氧氢化钇合成氨催化剂及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4631263A (en) * 1982-01-18 1986-12-23 Hitachi, Ltd. Water-repellent catalyst for gas/liquid reactions and process for gas/liquid reactions by using the same
CN1390637A (zh) * 2002-06-03 2003-01-15 福州大学 一种钌-氧化铝催化剂及其制备方法
US20060043492A1 (en) * 2004-08-26 2006-03-02 Micron Technology, Inc. Ruthenium gate for a lanthanide oxide dielectric layer
US7255845B2 (en) * 2002-08-15 2007-08-14 Velocys, Inc. Process for conducting an equilibrium limited chemical reaction in a single stage process channel
JP2011056488A (ja) * 2009-09-09 2011-03-24 Yusaku Takita アンモニア改質触媒とこれを用いた水素の製造方法
JP2013111562A (ja) * 2011-11-30 2013-06-10 Sumitomo Chemical Co Ltd 組成物及び該組成物を用いたアンモニア製造方法
JP2013111563A (ja) * 2011-11-30 2013-06-10 Sumitomo Chemical Co Ltd 組成物及び該組成物を用いたアンモニア製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL71514B1 (zh) * 1969-04-09 1974-06-29
JPH08173806A (ja) * 1994-12-26 1996-07-09 Nissan Motor Co Ltd 排気ガス浄化用触媒及びその製造方法
JPH1171138A (ja) * 1997-08-22 1999-03-16 Toto Ltd 光触媒薄膜の形成方法、光触媒薄膜形成用型、及び光触媒薄膜
JP2006290732A (ja) * 2005-03-17 2006-10-26 Toshiba Corp Co除去方法、co除去装置とこの製造方法、これを用いた水素発生装置およびこれを用いた燃料電池システム
US8659869B2 (en) * 2012-01-12 2014-02-25 Nanya Technology Corporation Method for forming rutile titanium oxide and the stacking structure thereof
JP5880193B2 (ja) * 2012-03-23 2016-03-08 昭栄化学工業株式会社 多孔性金属錯体と無機触媒材料との複合触媒の製造方法
EP2792863B1 (en) * 2013-02-20 2019-07-24 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4631263A (en) * 1982-01-18 1986-12-23 Hitachi, Ltd. Water-repellent catalyst for gas/liquid reactions and process for gas/liquid reactions by using the same
CN1390637A (zh) * 2002-06-03 2003-01-15 福州大学 一种钌-氧化铝催化剂及其制备方法
US7255845B2 (en) * 2002-08-15 2007-08-14 Velocys, Inc. Process for conducting an equilibrium limited chemical reaction in a single stage process channel
US20060043492A1 (en) * 2004-08-26 2006-03-02 Micron Technology, Inc. Ruthenium gate for a lanthanide oxide dielectric layer
JP2011056488A (ja) * 2009-09-09 2011-03-24 Yusaku Takita アンモニア改質触媒とこれを用いた水素の製造方法
JP2013111562A (ja) * 2011-11-30 2013-06-10 Sumitomo Chemical Co Ltd 組成物及び該組成物を用いたアンモニア製造方法
JP2013111563A (ja) * 2011-11-30 2013-06-10 Sumitomo Chemical Co Ltd 組成物及び該組成物を用いたアンモニア製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112387276A (zh) * 2019-08-15 2021-02-23 中国科学院大连化学物理研究所 一种用于氨合成的负载型钌团簇催化剂及其制备方法和应用

Also Published As

Publication number Publication date
US20180071719A1 (en) 2018-03-15
EP3260198A1 (en) 2017-12-27
JP2016155123A (ja) 2016-09-01
EP3260198A4 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
JP6802544B2 (ja) 金属担持物、担持金属触媒及び該触媒を用いるアンモニア合成法
CN107530686A (zh) 氨合成催化剂及其制备方法
CN111183115B (zh) 复合氧化物、金属担载物以及氨合成催化剂
Li et al. A novel method for preparation of doped Ba3 (Ca1. 18Nb1. 82) O9− δ: Application to ammonia synthesis at atmospheric pressure
CN104399491B (zh) 一种耐高温甲烷化催化剂及其制备方法
CN112041271B (zh) 复合氧化物、金属担载物以及氨合成催化剂
CN111454462A (zh) 一种Zn-Cu-ZIF双金属有机骨架化合物的制备方法
WO2021042874A1 (zh) 一种二氧化碳甲烷化镍基催化剂及其制备方法和应用
CN109160544A (zh) 一种稀土-过渡金属复合氧化物多孔空心球的制备方法
CN106944159B (zh) 一种甲烷水蒸气重整制氢催化剂的制备方法
CN112941541B (zh) 一种单原子二维材料及其制备方法和应用
Huang et al. Hierarchically porous calcium-based composites synthesized by eggshell membrane templating for thermochemical energy storage of concentrated solar power
WO2016133213A1 (ja) アンモニア合成触媒とその製造方法
JP7285024B2 (ja) 金属酸水素化物の製造方法、金属酸水素化物、及びそれを用いたアンモニア合成方法
CN109433199B (zh) 一种用于二氧化碳还原的钌基催化剂及其制备方法和应用
CN102389827B (zh) 一种负载型金属氢化催化剂及其制备方法和在制备乙二醇的应用
KR101105683B1 (ko) 피셔―트롭쉬 반응용 촉매의 제조방법, 그 방법에 의해 제조된 촉매 및 이를 이용한 고수율의 피셔―트롭쉬 액화공정용 합성가스 제조방법
Ganesan et al. Novel approach for the bulk synthesis of nanocrystalline yttria doped thoria powders via polymeric precursor routes
EP3932546A1 (en) Oxynitride hydride, metal carrier containing oxynitride hydride, and catalyst for ammonia synthesis
CN114602449A (zh) 一种ZnZrO2表面固溶体催化剂及其制备方法和应用
CN106944086B (zh) 一种合成气甲烷化制替代天然气催化剂的制备方法
CN106944068B (zh) 一种用于甲烷部分氧化制合成气催化剂的制备方法
CN112387276A (zh) 一种用于氨合成的负载型钌团簇催化剂及其制备方法和应用
CN114735645B (zh) 一种载氧体及其制备方法和应用
EP4112166A1 (en) Oxynitride-hydride, metal carrier containing oxynitride-hydride, and ammonia synthesis catalyst

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180102

WD01 Invention patent application deemed withdrawn after publication