CN107505947A - 一种空间机器人捕获目标后消旋及协调控制方法 - Google Patents

一种空间机器人捕获目标后消旋及协调控制方法 Download PDF

Info

Publication number
CN107505947A
CN107505947A CN201710465424.9A CN201710465424A CN107505947A CN 107505947 A CN107505947 A CN 107505947A CN 201710465424 A CN201710465424 A CN 201710465424A CN 107505947 A CN107505947 A CN 107505947A
Authority
CN
China
Prior art keywords
racemization
robot
space
target
coordinating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710465424.9A
Other languages
English (en)
Other versions
CN107505947B (zh
Inventor
王明明
罗建军
余敏
袁建平
朱战霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Shenzhen Institute of Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Shenzhen Institute of Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University, Shenzhen Institute of Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201710465424.9A priority Critical patent/CN107505947B/zh
Publication of CN107505947A publication Critical patent/CN107505947A/zh
Application granted granted Critical
Publication of CN107505947B publication Critical patent/CN107505947B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/244Spacecraft control systems

Abstract

本发明公开了一种空间机器人捕获目标后消旋及协调控制方法,包括建立捕获目标后的空间机器人与捕获目标构成的组合体的动力学方程;然后,利用贝塞尔曲线规划捕获目标后抓捕点的轨迹,并且利用带自适应惯性权重受约束的粒子群优化算法搜索最优消旋时间和目标的位姿,生成了机械臂末端的参考消旋轨迹;最后,设计能够同时稳定基座姿态和保证末端跟踪参考消旋轨迹的协调控制方法。提供了一种考虑能量最少、消旋时间最少,基于粒子群优化算法的冗余空间机器人抓捕翻滚目标后的消旋策略与协调控制方法。

Description

一种空间机器人捕获目标后消旋及协调控制方法
技术领域
本发明属于空间机器人捕获目标技术领域;涉及一种空间机器人捕获目标后消旋及协调控 制方法。
背景技术
卫星维护、在轨装配和空间碎片去除的需求日益增长,要求空间机器人在特定恶劣的空间 环境中执行任务。具体事例有“机器人技术试验(ROTEX)”、“工程试验卫星VII(ETS-VII)”、 “轨道快车(OE)”、“机器宇航员2”等。根据目前世界各空间机构计划的空间机器人,在空间 任务中机器人数量和性能的增加在未来已成定局。在这些空间机器人项目中,研究人员对自由 漂浮模式下执行的空间任务有很大兴趣。针对抓捕后阶段,由于空间机械臂与非合作目标间仍 存在相对运动,不利于空间机器人对目标进行后续维修等操作。因此,需要发展特定的消旋技 术以应对自由漂浮空间机器人抓捕非合作目标后的组合体稳定控制问题。
现有技术中提出了很多空间机器人轨迹规划和运动控制方法。基于零作用空间(RNS)的 概念,Yoshida等人提出了无反作用机械臂,解决了运动学非冗余臂和冗余臂时间损失和机械 臂速度限制的问题。Sharf等人也采用了基于RNS的轨迹规划方法,依据动量守恒定律实现了 对翻滚目标的抓捕。之后,徐等人利用自由漂浮空间机器人非完整特性提出了一种点到点的路 径规划方法,同时调节基座姿态和末端的位姿。Lampariello等人研究了一种机器人最优抓捕 机动目标的实时轨迹规划方法,利用B样条参数化期望的关节轨迹,采用序列二次规划方法 搜索最优解。针对机器人运动控制问题,考虑到动力学不确定特性,徐等人提出了一种针对自 由飞行机器人的自适应控制方法。Matsuno等人引入了一种协调和输入转换算法,将含漂移项 的仿射系统转换成与时间有关的控制项。王等人提出了一种考虑避撞的非线性模型预测控制方 法,实现了末端的路径跟踪控制。
以上研究主要关注抓捕前的轨迹规划与运动控制。当机械臂抓捕一个不可控的卫星后,机 械臂应逐渐对目标施加力矩,以消除二者间的相对速度。然而,针对抓捕后阶段消旋运动规划 的研究却很少。Nenchev等人中提出了一种基于RNS的抓捕后机械臂控制方法,将基座的角 动量传到机械臂,减小了关节角速度。Yoshida等人提出了一种抓捕后动量分布控制方法,保 证对基座姿态干扰最小情况下将目标角动量传到反作用轮。基于庞特里亚金极小值原理,Aghili 等人提出了一种机械臂先拦截非合作目标后再消旋的方法,主要考虑最少消旋时间。考虑了初 末边界不确定性,Abad等人设计了最优控制方法减小对基座姿态的干扰。未来在轨服务中如 何消除捕获后目标的自旋运动是至关重要的研究领域,设计机械臂的消旋策略至今仍是一个具 有挑战性的问题。针对抓捕后阶段,近期王等人提出了一种利用贝塞尔曲线规划机械臂末端路 径的消旋策略,并设计了同时稳定基座姿态和保证末端准确跟踪参考消旋轨迹的协调控制方 法。
发明内容
本发明提供了一种空间机器人捕获目标后消旋及协调控制方法;提供了一种考虑能量最 少、消旋时间最少,基于粒子群优化算法的冗余空间机器人抓捕翻滚目标后的消旋策略与协调 控制方法。
本发明的技术方案是:一种空间机器人捕获目标后消旋及协调控制方法,包括建立捕获目 标后的空间机器人与捕获目标构成的组合体的动力学方程;然后,利用贝塞尔曲线规划捕获目 标后抓捕点的轨迹,并且利用带自适应惯性权重受约束的粒子群优化算法搜索最优消旋时间和 目标的位姿,生成了机械臂末端的参考消旋轨迹;最后,设计能够同时稳定基座姿态和保证末 端跟踪参考消旋轨迹的协调控制方法。
更进一步的,本发明的特点还在于:
空间机器人捕获目标后消旋及协调控制方法的具体过程是:
步骤1,将空间机器人捕获目标后的消旋问题转化为优化问题;
步骤2,建立捕获目标后的空间机器人组合体的动力学方程;
步骤3,将目标抓捕点的轨迹参数化为贝塞尔曲线;
步骤4,建立空间机器人机械臂消旋轨迹的目标函数和约束条件;
步骤5,利用带自适应惯性权重的粒子群优化算法寻找符合约束条件的关节轨迹最优方 案;
步骤6,基于跟踪空间机器人机械臂末端消旋轨迹和基座的稳定实现空间机器人的协调控 制。
其中步骤1中将空间机器人捕获目标后的消旋问题表示为一个非凸优化问题。
其中步骤3中采用四阶贝塞尔曲线描述目标的自旋运动。
其中步骤4中消旋策略转换为能够通过粒子群优化算法解决的最优化问题。
其中步骤5中粒子群优化算法的具体过程是:首先在搜索空间内初始化具有随机初始值的 粒子群;然后评估各粒子,在搜索空间内搜索目前已知的自身最佳位置和集群最佳位置;最后 粒子的位置随其以前位置和新的速度引起的位移更新。
其中步骤6中基座和机械臂末端的速度组合成广义速度形成。
其中空间机器人捕获目标之后,基座姿态保持不变。
与现有技术相比,本发明的有益效果是:同时考虑了基座和末端执行器的速度,即构建广 义速度项,推导了运动学冗余空间机器人抓捕非合作目标卫星后的动力学方程;采用四阶贝塞 尔曲线规划消旋轨迹,利用带自适应惯性权重的粒子群优化算法搜索预设约束条件下的最优终 端状态,优化过程中同时考虑了消旋时间和控制力矩;设计了一种新的协调控制方法,不仅可 以消除目标自旋运动,还可以调节基座姿态。
附图说明
图1为本发明实施例中空间机器人与捕获目标的示意图;
图2为本发明实施例中6参数粒子群优化算法原理图;
图3为本发明实施例中消旋策略的粒子群优化算法流程图;
图4为本发明实施例中协调控制的结构示意图。
具体实施方式
下面结合附图和具体实施例对本发明的技术方案进一步说明。
本发明基于粒子群优化算法,提出一种空间机器人抓捕目标后的消旋和协调控制方法。选 择运动学冗余机械臂的原因是它存在无穷多个解,利用此特性可以满足附加的约束条件。首先, 建立了捕获后机器人与目标构成的组合体的动力学方程;然后,利用贝塞尔曲线规划捕获后目 标上抓捕点的轨迹;此外,利用带自适应惯性权重受约束的粒子群优化算法搜索最优消旋时间 和目标末时刻的位姿,生成了机械臂末端的参考消旋轨迹;最后,设计了一种同时稳定基座姿 态和保证末端跟踪参考消旋轨迹的协调控制方法。其具体过程为:
步骤1,将空间机器人捕获目标后的消旋问题转化为一个非凸优化问题。
步骤2,建立捕获目标后的空间机器人组合体的动力学方程。
步骤3,将目标抓捕点的轨迹参数化为四阶贝塞尔曲线。
步骤4,建立空间机器人机械臂消旋轨迹的目标函数和约束条件;具体的将消旋策略转化 为粒子群优化算法能够解决的最优问题的目标函数和约束条件。
步骤5,利用带自适应惯性权重的粒子群优化算法寻找符合约束条件的关节轨迹最优方 案;粒子群优化算法的具体过程是:首先在搜索空间内初始化具有随机初始值的粒子群;然后 评估各粒子,在搜索空间内搜索目前已知的自身最佳位置和集群最佳位置;最后粒子的位置随 其以前位置和新的速度引起的位移更新。
步骤6,基于跟踪空间机器人机械臂末端消旋轨迹和基座的稳定实现空间机器人的协调控 制,其中空间机器人基座和机械臂末端的速度组合成广义速度形成。
如图1所示,本发明实施例的空间机器人和捕获目标的组合体示意图,其具体实施过程是:
步骤1,将捕获目标后的消旋问题转化为特定约束下的优化问题;具体的空间机器人消旋 轨迹规划的目标是生成合适的关节运动规律θ(t)同时不违反规定的约束已完成预期目标。通常 它可以表示为一个非凸优化问题,如在满足一系列不等式约束gi(θ)和等式约束hi(θ)的条件下
最小化Γ(θ)
最小化一个特定目标Γ(θ):满足条件:gi(θ(t))<0,i=1,2,…,niep(1)。
hi(θ(t))=0,i=1,2,…,nep
步骤2,建立捕获后机器人与目标构成的组合体的动力学方程;具体的,基于拉格朗日原 理,其动力学方程表示为:其中 是空间机器人系统的广义质量矩阵,是广义科氏力和离心力, 表示基座的线速度、角速度矢量,是机械臂关节运动速率。分别是 施加在基座和末端的力和力矩。是机械臂关节力矩,Jse=[Jb Jm],其中Jb和Jm分别 表示基座和机械臂的雅克比矩阵。
因此空间机器人的动力学方程表示为:其中mt和It分别是目标卫 星的质量和惯性张量。抓捕矩阵表示为: 是从末端坐标系到目标体坐标 系的旋转矩阵,ρtg是抓捕点相对目标质心的位置矢量。对一个任意矢量ρ=[ρxyz],定 义如下:
参考空间机器人的动力学方程,其机械臂施加的力和力矩fe在抓捕后的过程中,机械臂末端与抓捕点的速度和加速度关系建立如下: 将公式(4)和公式(7)带入公式(2)中,消除fe,得到其中
步骤3,将目标抓捕点的轨迹参数转化为贝塞尔曲线。具体的本方法中采用ZYX顺序的 欧拉角φ=[α β γ]表示目标的自旋运动,利用Bézier曲线参数化φ。变量上标s,d,f分别表 示初始值、期望值和终端值。采用四阶Bézier曲线(m=4)描述目标的自旋运动:其中多项式bj,m(τ)是阶数为m的Bernstein基函数,是二项式系数。Pij是给定的构建Bézier曲线的控制点。由于τ是归一化时间,对于消旋执行时间T=tf-ts,若定义t=τ·T,目标自旋运动表示如下:
目标的初始自旋状态φs是已知的。消旋策略的目标是令其中φf通过最优化方法决定。将初末状态变量代入式(9)和式(10),可得:捕获后,末端的角速度ωe=ωt。此外, 施加于末端的力矩τe=-τt。操作过程中为保持末端不对目标造成损坏,施加于末端的力矩必 须限制在预设的范围||τe||≤τmax内。将式(12)代入式(11),得到: 通过τt决策施加于末端的力矩,联合其中目标卫星旋转运 动的动力学模型如下:
步骤4,建立空间机器人机械臂消旋轨迹的目标函数和约束条件;具体的如图3所示,为 本实施例中的消旋则略的粒子群优化算法流程图,将和ωt的表达式代入式(14),考虑力矩 约束,可得如下不等式组给定一系列目标 的终端状态,通过式(9)-(12)可得仅含一个变量T的目标消旋轨迹。参考式(16)在预设 的约束下,通过二进制搜索可决策相应的最优消旋时间T: T≥max{Ti=min(fi1(T)≥0∩fi2(T)≥0)},i=1,2,3(17);实际上不仅要考虑最优消旋时间,施 加于目标的控制力矩也要尽量减小。因此,在最优化过程中,定义目标函数如下: 其中ω12>0分别是最优时间和控制力矩的权重因子。
涉及定义变量为消旋策略可转化成如下可用粒子群优化算法解决的最优化问题:其中根据目标自旋运动的初始状态可决定搜索域[pmin,pmax]。一旦确定了p,可相应的解算最优消旋时间T和目标自旋运动。推导出末端执行器的期望轨迹,如下:其中Rt(φ)是从目标体坐标系到惯性系的坐标转换矩阵,Euler2quat(φ)函数将以欧拉角形式表 示的姿态转化为以四元数形式表示。
步骤5,利用带自适应惯性权重的粒子群优化算法寻找满足特定约束的关节轨迹最优方案;具体的假设第i个粒子的位置和速度分别表示为pi=(xi1,xi2,…xiK)和υi=(υi1i2,…υiK)。按粒子群优化算法,第i个粒子的更新形式如下:其中c1、c2是加速度常数,r1、r2为[0,1]间的均匀分布值。向量存有第i个粒子目前的局部最佳位置,表示粒子群目前总体最佳位置。w为自适应惯性权重因子,有效地控制搜索范围。由此可见,集群中每个粒子的状态由随机影响、感知能力和社 会影响共同作用。
如图2所示,为本实施例中6参数粒子群优化算法的原理图,其具体步骤如下,首先在合理的搜索空间内初始化具有随机初始值的粒子群。粒子维数代表了设计变量的数目。然后,利用适宜函数评估各粒子,在搜索空间内搜索目前已知的自身最佳位置(局部)和集群最佳位置(整体)。各粒子的运动由局部及整体最佳位置指导,每一代更新一次。当发现更好的位置时,就选作粒子群运动的指导。不断重复此过程,直到满足一个特定条件或找到可行解。
本方法中w采用线性递减策略其中itermax是最大 迭代次数。wmin和wmax分别为惯性权重的下界和上界。由式(22),第i个粒子的更新速度包含 三部分内容:当前速度的动量,根据其局部最佳位置和全局最佳位置决定的速度增量。最终, 粒子的位置随其以前位置和新的速度引起的位移更新。
为了在每次优化回合中选择局部和整体最优粒子,粒子群优化算法中采用适宜函数评估群 中各粒子并将它们逐步驱动到最优目标。每次迭代中,利用已迭代计算出的数值对适宜函数进 行评估、对比。如果新的数值更好,存下新的估计值。粒子群优化算法中另一个问题是施加于 设计变量的实际约束,如式(19)所示。迭代完成后,带自适应惯性权重因子的粒子群优化算 法可以给出T*和p*的最优解。
步骤6,设计同时跟踪末端消旋轨迹和稳定基座姿态的协调控制方法。为了同时控制基座和末端执行器,将式(8)中的速度写成由基座和末端执行器组合的广义速度形式,即定义如下新的速度向量由于Jse=[Jb Jm],参考式(6),可推导关节角加速度为利用式(25)代替式(8)中相应项,可得如下动力学方 程为其中
公式(26)阐明了空间机器人与抓捕目标组合体关于其任务空间变量的动力学运动。实际上,在抓捕后阶段保持基座姿态不变十分重要,因为:1)保持基座上指向仪器和扫描设备的方向;2)在消旋过程中减小碰撞的风险。本专利中,不考虑基座位移。因此,广义力输入us表示为:可以推导出简化形式的动力学方程若质量矩阵Ds和非线性项可按以下形式划分: 其中得到:其中
如图4所示,为本发明实施例中协调控制的结构示意图,其中公式(30)表明通过合适的设计控制力矩,可以同时控制基座姿态和末端执行器的位姿。针对基座姿态控制和末端位姿跟踪的协调控制力矩计算方式为:其中表示变量的估计值。反馈线性化后对控制输入y设计比例微分(PD)控制策略:其中K.p,K.d分别表示位姿和 速度的反馈增益,均为正定矩阵。这里,采用单位四元数设计协调控制方法(η 是四元数中标量部分,ε是其矢量部分)。q1与q2的四元数误差计算为: 其中是四元数乘法符号。
要求抓捕目标后基座姿态保持不变,即由式(20)和(21)可得将式(32)中的控制律代入式(30),可得如下非耦合微分方程: 其中

Claims (8)

1.一种空间机器人捕获目标后消旋及协调控制方法,其特征在于,包括建立捕获目标后的空间机器人与捕获目标构成的组合体的动力学方程;然后,利用贝塞尔曲线规划捕获目标后抓捕点的轨迹,并且利用带自适应惯性权重受约束的粒子群优化算法搜索最优消旋时间和目标的位姿,生成了机械臂末端的参考消旋轨迹;最后,设计能够同时稳定基座姿态和保证末端跟踪参考消旋轨迹的协调控制方法。
2.根据权利要求1所述的空间机器人捕获目标后消旋及协调控制方法,其特征在于,其具体过程为:
步骤1,将空间机器人捕获目标后的消旋问题转化为优化问题;
步骤2,建立捕获目标后的空间机器人组合体的动力学方程;
步骤3,将目标抓捕点的轨迹参数化为贝塞尔曲线;
步骤4,建立空间机器人机械臂消旋轨迹的目标函数和约束条件;
步骤5,利用带自适应惯性权重的粒子群优化算法寻找符合约束条件的关节轨迹最优方案;
步骤6,基于跟踪空间机器人机械臂末端消旋轨迹和基座的稳定实现空间机器人的协调控制。
3.根据权利要求2所述的空间机器人捕获目标后消旋及协调控制方法,其特征在于,所述步骤1中将空间机器人捕获目标后的消旋问题表示为一个非凸优化问题。
4.根据权利要求2所述的空间机器人捕获目标后消旋及协调控制方法,其特征在于,所述步骤3中采用四阶贝塞尔曲线描述目标的自旋运动。
5.根据权利要求2所述的空间机器人捕获目标后消旋及协调控制方法,其特征在于,所述步骤4中消旋策略转换为能够通过粒子群优化算法解决的最优化问题。
6.根据权利要求2所述的空间机器人捕获目标后消旋及协调控制方法,其特征在于,所述步骤5中粒子群优化算法的具体过程是:首先在搜索空间内初始化具有随机初始值的粒子群;然后评估各粒子,在搜索空间内搜索目前已知的自身最佳位置和集群最佳位置;最后粒子的位置随其以前位置和新的速度引起的位移更新。
7.根据权利要求2所述的空间机器人捕获目标后消旋及协调控制方法,其特征在于,所述步骤6中基座和机械臂末端的速度组合成广义速度形成。
8.根据权利要求1-7任意一项所述的空间机器人捕获目标后消旋及协调控制方法,其特征在于,所述空间机器人捕获目标之后,基座姿态保持不变。
CN201710465424.9A 2017-06-19 2017-06-19 一种空间机器人捕获目标后消旋及协调控制方法 Active CN107505947B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710465424.9A CN107505947B (zh) 2017-06-19 2017-06-19 一种空间机器人捕获目标后消旋及协调控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710465424.9A CN107505947B (zh) 2017-06-19 2017-06-19 一种空间机器人捕获目标后消旋及协调控制方法

Publications (2)

Publication Number Publication Date
CN107505947A true CN107505947A (zh) 2017-12-22
CN107505947B CN107505947B (zh) 2021-03-16

Family

ID=60679518

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710465424.9A Active CN107505947B (zh) 2017-06-19 2017-06-19 一种空间机器人捕获目标后消旋及协调控制方法

Country Status (1)

Country Link
CN (1) CN107505947B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108919649A (zh) * 2018-07-26 2018-11-30 西北工业大学 一种针对故障卫星外包络抓捕的抓捕最优路径设计方法
CN108927803A (zh) * 2018-07-25 2018-12-04 西北工业大学 一种在连续碰撞条件下空间机器人目标抓捕稳定方法
CN109270955A (zh) * 2018-10-30 2019-01-25 中国运载火箭技术研究院 一种基于机械臂驱动的飞行器位姿耦合快速稳定控制方法
CN109591017A (zh) * 2019-01-07 2019-04-09 西北工业大学 空间机器人捕获翻滚目标后的轨迹规划方法
CN109591018A (zh) * 2019-01-07 2019-04-09 北京邮电大学 一种用于目标捕获后稳定的自由漂浮空间机械臂控制方法
CN109987258A (zh) * 2019-01-28 2019-07-09 西北工业大学深圳研究院 一种空间机器人捕获非合作目标后的消旋方法
CN110450991A (zh) * 2019-08-16 2019-11-15 西北工业大学 微纳卫星集群捕获空间非合作目标的方法
CN110450989A (zh) * 2019-08-16 2019-11-15 西北工业大学 微纳卫星集群捕获空间非合作目标的贴附消旋与轨控方法
CN110456808A (zh) * 2019-07-15 2019-11-15 西北工业大学 面向目标抓捕的空间机器人快速非奇异终端滑模控制方法
CN110450990A (zh) * 2019-08-16 2019-11-15 西北工业大学 基于微纳卫星集群的空间非合作目标捕获系统及捕获方法
CN110844121A (zh) * 2019-10-22 2020-02-28 西北工业大学深圳研究院 一种在轨装配航天器协同运输的合作博弈控制方法
CN111290406A (zh) * 2020-03-30 2020-06-16 深圳前海达闼云端智能科技有限公司 一种路径规划的方法、机器人及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5390288A (en) * 1991-10-16 1995-02-14 Director-General Of Agency Of Industrial Science And Technology Control apparatus for a space robot
CN102207736A (zh) * 2010-03-31 2011-10-05 中国科学院自动化研究所 基于贝塞尔曲线的机器人路径规划方法及装置
CN103869704A (zh) * 2014-04-08 2014-06-18 哈尔滨工业大学 基于扩展雅克比矩阵的空间机器人星臂协调控制方法
CN105988366A (zh) * 2015-02-13 2016-10-05 大连大学 一种空间机器人最小基座扰动轨迹规划方法
CN106272380A (zh) * 2016-09-30 2017-01-04 西北工业大学 一种抓捕高速旋转目标后机械臂组合体的姿态稳定方法
CN106502101A (zh) * 2016-12-23 2017-03-15 西北工业大学 航天器抓捕目标后组合体无模型快速消旋稳定控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5390288A (en) * 1991-10-16 1995-02-14 Director-General Of Agency Of Industrial Science And Technology Control apparatus for a space robot
CN102207736A (zh) * 2010-03-31 2011-10-05 中国科学院自动化研究所 基于贝塞尔曲线的机器人路径规划方法及装置
CN103869704A (zh) * 2014-04-08 2014-06-18 哈尔滨工业大学 基于扩展雅克比矩阵的空间机器人星臂协调控制方法
CN105988366A (zh) * 2015-02-13 2016-10-05 大连大学 一种空间机器人最小基座扰动轨迹规划方法
CN106272380A (zh) * 2016-09-30 2017-01-04 西北工业大学 一种抓捕高速旋转目标后机械臂组合体的姿态稳定方法
CN106502101A (zh) * 2016-12-23 2017-03-15 西北工业大学 航天器抓捕目标后组合体无模型快速消旋稳定控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘勇 等: "基于多目标粒子群优化算法的自由漂浮空间机器人负载最大化轨迹优化", 《机器人》 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108927803A (zh) * 2018-07-25 2018-12-04 西北工业大学 一种在连续碰撞条件下空间机器人目标抓捕稳定方法
CN108919649B (zh) * 2018-07-26 2021-01-08 西北工业大学 一种针对故障卫星外包络抓捕的抓捕最优路径设计方法
CN108919649A (zh) * 2018-07-26 2018-11-30 西北工业大学 一种针对故障卫星外包络抓捕的抓捕最优路径设计方法
CN109270955A (zh) * 2018-10-30 2019-01-25 中国运载火箭技术研究院 一种基于机械臂驱动的飞行器位姿耦合快速稳定控制方法
CN109270955B (zh) * 2018-10-30 2021-08-10 中国运载火箭技术研究院 一种基于机械臂驱动的飞行器位姿耦合快速稳定控制方法
CN109591018A (zh) * 2019-01-07 2019-04-09 北京邮电大学 一种用于目标捕获后稳定的自由漂浮空间机械臂控制方法
CN109591017A (zh) * 2019-01-07 2019-04-09 西北工业大学 空间机器人捕获翻滚目标后的轨迹规划方法
CN109591017B (zh) * 2019-01-07 2021-11-09 西北工业大学 空间机器人捕获翻滚目标后的轨迹规划方法
CN109591018B (zh) * 2019-01-07 2021-10-08 北京邮电大学 一种用于目标捕获后稳定的自由漂浮空间机械臂控制方法
CN109987258A (zh) * 2019-01-28 2019-07-09 西北工业大学深圳研究院 一种空间机器人捕获非合作目标后的消旋方法
CN110456808A (zh) * 2019-07-15 2019-11-15 西北工业大学 面向目标抓捕的空间机器人快速非奇异终端滑模控制方法
CN110450991A (zh) * 2019-08-16 2019-11-15 西北工业大学 微纳卫星集群捕获空间非合作目标的方法
CN110450989B (zh) * 2019-08-16 2021-03-30 西北工业大学 微纳卫星集群捕获空间非合作目标的贴附消旋与轨控方法
CN110450991B (zh) * 2019-08-16 2021-03-30 西北工业大学 微纳卫星集群捕获空间非合作目标的方法
CN110450990A (zh) * 2019-08-16 2019-11-15 西北工业大学 基于微纳卫星集群的空间非合作目标捕获系统及捕获方法
CN110450989A (zh) * 2019-08-16 2019-11-15 西北工业大学 微纳卫星集群捕获空间非合作目标的贴附消旋与轨控方法
CN110844121A (zh) * 2019-10-22 2020-02-28 西北工业大学深圳研究院 一种在轨装配航天器协同运输的合作博弈控制方法
CN110844121B (zh) * 2019-10-22 2022-07-12 西北工业大学深圳研究院 一种在轨装配航天器协同运输的合作博弈控制方法
CN111290406A (zh) * 2020-03-30 2020-06-16 深圳前海达闼云端智能科技有限公司 一种路径规划的方法、机器人及存储介质

Also Published As

Publication number Publication date
CN107505947B (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
CN107505947A (zh) 一种空间机器人捕获目标后消旋及协调控制方法
Li et al. Deep neural networks for improved, impromptu trajectory tracking of quadrotors
CN107490965B (zh) 一种空间自由漂浮机械臂的多约束轨迹规划方法
Wang et al. Optimal trajectory planning of free-floating space manipulator using differential evolution algorithm
Wang et al. Coordinated trajectory planning of dual-arm space robot using constrained particle swarm optimization
CN111538949B (zh) 冗余机器人逆运动学求解方法、装置和冗余机器人
Zhang et al. Real-time kinematic control for redundant manipulators in a time-varying environment: Multiple-dynamic obstacle avoidance and fast tracking of a moving object
Peters et al. Reinforcement learning by reward-weighted regression for operational space control
Lai et al. Comprehensive unified control strategy for underactuated two-link manipulators
Li et al. Learning unmanned aerial vehicle control for autonomous target following
Rubies-Royo et al. A classification-based approach for approximate reachability
Lin et al. Flying through a narrow gap using neural network: an end-to-end planning and control approach
Zhang et al. An obstacle avoidance algorithm for robot manipulators based on decision-making force
CN108445768B (zh) 空间机器人操作空间轨迹跟踪的增广自适应模糊控制方法
CN107685343A (zh) 一种机械臂运动学参数标定构型优化方法
CN112605996A (zh) 一种面向冗余机械臂的无模型碰撞避免控制方法
Qiu et al. Model predictive control for uncalibrated and constrained image-based visual servoing without joint velocity measurements
Dai et al. A fast tube model predictive control scheme based on sliding mode control for underwater vehicle-manipulator system
Kayastha et al. Comparative study of post-impact motion control of a flexible arm space robot
Zhang et al. Nonholonomic motion planning for minimizing base disturbances of space manipulators based on multi-swarm PSO
Razinkova et al. Adaptive control over quadcopter UAV under disturbances
Zhang et al. Learning impedance regulation skills for robot belt grinding from human demonstrations
Yang et al. Adaptive fault-tolerant visual control of robot manipulators using an uncalibrated camera
Zhang et al. A new neural-dynamic control method of position and angular stabilization for autonomous quadrotor UAVs
Peters et al. Learning Operational Space Control.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant