CN107493017A - 一种基于cllc的多端口双向dcdc变换器拓扑 - Google Patents

一种基于cllc的多端口双向dcdc变换器拓扑 Download PDF

Info

Publication number
CN107493017A
CN107493017A CN201710942040.1A CN201710942040A CN107493017A CN 107493017 A CN107493017 A CN 107493017A CN 201710942040 A CN201710942040 A CN 201710942040A CN 107493017 A CN107493017 A CN 107493017A
Authority
CN
China
Prior art keywords
switching tube
bridge arm
electric capacity
inductance
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710942040.1A
Other languages
English (en)
Inventor
张纯江
李鹏程
柴秀慧
阚志忠
赵洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN201710942040.1A priority Critical patent/CN107493017A/zh
Publication of CN107493017A publication Critical patent/CN107493017A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种基于CLLC的多端口双向DCDC变换器拓扑,变换器通过Buck‑Boost与CLLC电路原边集成、CLLC副边母线电容叠加到原边母线电容上实现高增益。半桥CLLC电路与Buck‑Boost电路集成,通过定频PWM同步控制;有助于开关管在较宽输入电压和负载范围实现软开关、高功率密度,能量可以在四个端口之间自由流动。本发明可大幅度减少传统多端口变换器数量,降低成本。

Description

一种基于CLLC的多端口双向DCDC变换器拓扑
技术领域
本发明涉及电能转换技术领域,尤其适用于新能源发电及直流微网。
背景技术
可再生能源发电大多具有直流输出形式,并且输出功率不稳定,需要DCDC变换器连接储能单元和直流母线,提升可再生能源发动系统的可靠性和稳定性。传统的DCDC变换器分为变压器隔离型和非隔离型DCDC变换器;隔离型适用于中小功率应用场合,非隔离型适用于大功率场合。
传统的多端口DCDC变换器所用开关管数量较多,控制器设计较复杂且较难在所有工作状态下实现软开关。
发明内容
本发明目的在于提供一种适合多种电压等级及工作模式需求、最大限度的减少能源转换环节、提高可利用率的CLLC多端口DCDC变换器拓扑。
为实现上述目的,采用了以下技术方案:所述变换器拓扑包括电源UH、电源U1、电源U2、电源UL、电阻RH、电阻R1、电阻R2、电阻RL、电压侧电容CL、电感Lb、开关管S1、开关管S2、开关管S3、开关管S4、高频谐振变压器T、高频谐振变压器T的副边电感n1、高频谐振变压器T的原边电感n2、谐振电容Cr1、谐振电容Cr2、谐振变压器原边漏感Lr1、谐振变压器副边漏感Lr2、励磁电感Lm、桥臂电容C1、桥臂电容C2、桥臂电容C3、桥臂电容C4、输入电容Cb1、输出电容Cb2
电源UH正极分别与电源U2正极、输出电容Cb2一端、开关管S4一端、桥臂电容C4一端连接;
电源UH负极与电阻RH连接后分别与电阻R1一端、输入电容Cb1一端、电阻RL一端、电压侧电容CL一端、开关管S1一端、桥臂电容C1一端连接;
电阻R1另一端与电源U1负极相连,电源U1正极分别与电阻R2一端、输出电容Cb2另一端、输入电容Cb1另一端、开关管S2一端、开关管S3一端、桥臂电容C2一端、桥臂电容C3一端相连,电阻R2另一端与电源U2负极相连;输出电容Cb2另一端与输入电容Cb1另一端相连;开关管S2一端与开关管S3一端相连;桥臂电容C2一端与桥臂电容C3一端相连;
开关管S4另一端分别与开关管S3另一端、谐振电容Cr2一端相连,谐振电容Cr2另一端连接高频谐振变压器T的原边电感n2,原边电感n2另一端连接谐振变压器副边漏感Lr2,谐振变压器副边漏感Lr2另一端分别与桥臂电容C3另一端、桥臂电容C4另一端相连;
电阻RL另一端与电源UL负极相连,电源UL正极分别与电压侧电容CL另一端、电感Lb一端相连,电感Lb另一端分别与开关管S1另一端、开关管S2另一端、谐振电容Cr1一端相连,谐振电容Cr1另一端分别与励磁电感Lm一端、高频谐振变压器T的副边电感n1一端相连,高频谐振变压器T的副边电感n1另一端分别与励磁电感Lm另一端、谐振变压器原边漏感Lr1一端相连,谐振变压器原边漏感Lr1另一端分别与桥臂电容C1另一端、桥臂电容C2另一端相连;
谐振电容Cr1与变压器原边漏感Lr1谐振,谐振电容Cr2与变压器原边漏感Lr2谐振;
电压侧电容CL、电感Lb、开关管S1、开关管S2构成Buck-Boost电路;
高频谐振变压器T、谐振电容Cr1、谐振电容Cr2、两个对称的半桥臂构成CLLC谐振电路,开关管S1、S2和桥臂电容C1、C2组成下桥臂,开关管S3、S4和桥臂电容C3、C4组成上桥臂;
CLLC谐振网络的输出电容Cb2叠加到输入电容Cb1之上;
Buck-Boost电路与CLLC谐振电路共用开关管S1、S2
进一步的,开关管S1、S3为同一驱动信号,开关管S2、S4为同一驱动信号;开关管S1、S2的驱动信号互补,开关管S3、S4的驱动信号互补。
进一步的,Boost模式:D<0.5时,开关管S2、S4实现软开关;D=0.5时,开关管S2、S3、S4实现软开关;D>0.5时,开关管S2、S3实现软开关;
Buck模式:D<0.5时,开关管S1、S3实现软开关;D=0.5时,开关管S1、S3、S4实现软开关;D>0.5时,开关管S1、S4实现软开关;D为占空比。
所述控制策略如下:
端口1接蓄电池或超级电容,端口4接直流母线,通过双闭环PI调节器稳定端口4的输出电压;
当输出电压参考值高于直流母线电压时储能单元放电;当输出电压参考值低于直流母线电压时储能单元充电;
端口2、3电压能够自动均压,可根据需要接入负载或储能元件。
与现有技术相比,本发明具有如下优点:
1、大幅度减少了传统多端口变换器器件数量,降低了成本;
2、融合了非隔离技术和CLLC谐振隔离技术;
3、突破了传统CLLC变换器只能依靠变频调制的技术瓶颈,采用PWM调制降低了磁性元件设计的难度;
4、四个端口之间可以实现能量的自由流动。
附图说明
图1为本发明所提的拓扑结构图。
图2为本发明所提的调制波形及其关键的电压、电流波形图。
图3为本发明所实现的最佳状态波形图。
具体实施方式
下面结合附图对本发明做进一步说明:
如图1所示,本发明所述变换器拓扑包括电源UH、电源U1、电源U2、电源UL、电阻RH、电阻R1、电阻R2、电阻RL、电压侧电容CL、电感Lb、开关管S1、开关管S2、开关管S3、开关管S4、高频谐振变压器T、高频谐振变压器T的副边电感n1、高频谐振变压器T的原边电感n2、谐振电容Cr1、谐振电容Cr2、谐振变压器原边漏感Lr1、谐振变压器副边漏感Lr2、励磁电感Lm、桥臂电容C1、桥臂电容C2、桥臂电容C3、桥臂电容C4、输入电容Cb1、输出电容Cb2
电源UH正极分别与电源U2正极、输出电容Cb2一端、开关管S4一端、桥臂电容C4一端连接;
电源UH负极与电阻RH连接后分别与电阻R1一端、输入电容Cb1一端、电阻RL一端、电压侧电容CL一端、开关管S1一端、桥臂电容C1一端连接;
电阻R1另一端与电源U1负极相连,电源U1正极分别与电阻R2一端、输出电容Cb2另一端、输入电容Cb1另一端、开关管S2一端、开关管S3一端、桥臂电容C2一端、桥臂电容C3一端相连,电阻R2另一端与电源U2负极相连;输出电容Cb2另一端与输入电容Cb1另一端相连;开关管S2一端与开关管S3一端相连;桥臂电容C2一端与桥臂电容C3一端相连;
开关管S4另一端分别与开关管S3另一端、谐振电容Cr2一端相连,谐振电容Cr2另一端连接高频谐振变压器T的原边电感n2,原边电感n2另一端连接谐振变压器副边漏感Lr2,谐振变压器副边漏感Lr2另一端分别与桥臂电容C3另一端、桥臂电容C4另一端相连;
电阻RL另一端与电源UL负极相连,电源UL正极分别与电压侧电容CL另一端、电感Lb一端相连,电感Lb另一端分别与开关管S1另一端、开关管S2另一端、谐振电容Cr1一端相连,谐振电容Cr1另一端分别与励磁电感Lm一端、高频谐振变压器T的副边电感n1一端相连,高频谐振变压器T的副边电感n1另一端分别与励磁电感Lm另一端、谐振变压器原边漏感Lr1一端相连,谐振变压器原边漏感Lr1另一端分别与桥臂电容C1另一端、桥臂电容C2另一端相连;
谐振电容Cr1与变压器原边漏感Lr1谐振,谐振电容Cr2与变压器原边漏感Lr2谐振;
电压侧电容CL、电感Lb、开关管S1、开关管S2构成Buck-Boost电路;
高频谐振变压器T、谐振电容Cr1、谐振电容Cr2、两个对称的半桥臂构成CLLC谐振电路,开关管S1、S2和桥臂电容C1、C2组成下桥臂,开关管S3、S4和桥臂电容C3、C4组成上桥臂;
CLLC谐振网络的输出电容Cb2叠加到输入电容Cb1之上;
Buck-Boost电路与CLLC谐振电路共用开关管S1、S2
开关管S1、S3为同一驱动信号,开关管S2、S4为同一驱动信号;开关管S1、S2的驱动信号互补,开关管S3、S4的驱动信号互补。
Boost模式:D<0.5时,开关管S2、S4实现软开关;D=0.5时,开关管S2、S3、S4实现软开关;D>0.5时,开关管S2、S3实现软开关;
Buck模式:D<0.5时,开关管S1、S3实现软开关;D=0.5时,开关管S1、S3、S4实现软开关;D>0.5时,开关管S1、S4实现软开关;D为占空比。
当变换器达到稳态,占空比D稳定时谐振槽utank1、utank2电压为偶函数,其傅立叶分解后只含直流分量和余弦分量,其傅立叶级数为:
根据伏秒平衡原理得到Buck-Boost电路稳态时电压增益:
考虑谐振电容承担的直流分量,CLLC谐振网络在占空比调制下的电压增益为Mr
端口1到端口4的电压增益为:
以下就超级电容作为储能元件接入端口1,端口4接入直流母线为例分别进行说明。超级电容容量10F,电压等级0~200V,经过DCDC变换器接入直流母线进行仿真分析如图2b、图2e所示。Boost模式D=0.5时S2可实现零电压开通,S3、S4可实现零电流开关;Buck模式D=0.5时S1可实现零电压开通,S3、S4可实现零电流开关。
根据图3所示的实验结果充分说明CLLC多端口可稳定运行,实现了设计要求。
在不同工况下对变换器效率测试进行测试表明:整机效率在92%以上,最优效率在97%以上。
以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (3)

1.一种基于CLLC的多端口双向DCDC变换器拓扑,其特征在于:所述变换器拓扑包括电源UH、电源U1、电源U2、电源UL、电阻RH、电阻R1、电阻R2、电阻RL、电压侧电容CL、电感Lb、开关管S1、开关管S2、开关管S3、开关管S4、高频谐振变压器T、高频谐振变压器T的副边电感n1、高频谐振变压器T的原边电感n2、谐振电容Cr1、谐振电容Cr2、谐振变压器原边漏感Lr1、谐振变压器副边漏感Lr2、励磁电感Lm、桥臂电容C1、桥臂电容C2、桥臂电容C3、桥臂电容C4、输入电容Cb1、输出电容Cb2
电源UH正极分别与电源U2正极、输出电容Cb2一端、开关管S4一端、桥臂电容C4一端连接;
电源UH负极与电阻RH连接后分别与电阻R1一端、输入电容Cb1一端、电阻RL一端、电压侧电容CL一端、开关管S1一端、桥臂电容C1一端连接;
电阻R1另一端与电源U1负极相连,电源U1正极分别与电阻R2一端、输出电容Cb2另一端、输入电容Cb1另一端、开关管S2一端、开关管S3一端、桥臂电容C2一端、桥臂电容C3一端相连,电阻R2另一端与电源U2负极相连;输出电容Cb2另一端与输入电容Cb1另一端相连;开关管S2一端与开关管S3一端相连;桥臂电容C2一端与桥臂电容C3一端相连;
开关管S4另一端分别与开关管S3另一端、谐振电容Cr2一端相连,谐振电容Cr2另一端连接高频谐振变压器T的原边电感n2,原边电感n2另一端连接谐振变压器副边漏感Lr2,谐振变压器副边漏感Lr2另一端分别与桥臂电容C3另一端、桥臂电容C4另一端相连;
电阻RL另一端与电源UL负极相连,电源UL正极分别与电压侧电容CL另一端、电感Lb一端相连,电感Lb另一端分别与开关管S1另一端、开关管S2另一端、谐振电容Cr1一端相连,谐振电容Cr1另一端分别与励磁电感Lm一端、高频谐振变压器T的副边电感n1一端相连,高频谐振变压器T的副边电感n1另一端分别与励磁电感Lm另一端、谐振变压器原边漏感Lr1一端相连,谐振变压器原边漏感Lr1另一端分别与桥臂电容C1另一端、桥臂电容C2另一端相连;
谐振电容Cr1与变压器原边漏感Lr1谐振,谐振电容Cr2与变压器原边漏感Lr2谐振;
电压侧电容CL、电感Lb、开关管S1、开关管S2构成Buck-Boost电路;
高频谐振变压器T、谐振电容Cr1、谐振电容Cr2、两个对称的半桥臂构成CLLC谐振电路,开关管S1、S2和桥臂电容C1、C2组成下桥臂,开关管S3、S4和桥臂电容C3、C4组成上桥臂;
CLLC谐振网络的输出电容Cb2叠加到输入电容Cb1之上;
Buck-Boost电路与CLLC谐振电路共用开关管S1、S2
2.根据权利要求1所述的一种基于CLLC的多端口双向DCDC变换器拓扑,其特征在于:开关管S1、S3为同一驱动信号,开关管S2、S4为同一驱动信号;开关管S1、S2的驱动信号互补,开关管S3、S4的驱动信号互补。
3.根据权利要求1所述的一种基于CLLC的多端口双向DCDC变换器拓扑,其特征在于:Boost模式:D<0.5时,开关管S2、S4实现软开关;D=0.5时,开关管S2、S3、S4实现软开关;D>0.5时,开关管S2、S3实现软开关;
Buck模式:D<0.5时,开关管S1、S3实现软开关;D=0.5时,开关管S1、S3、S4实现软开关;D>0.5时,开关管S1、S4实现软开关;
其中,D为占空比。
CN201710942040.1A 2017-10-11 2017-10-11 一种基于cllc的多端口双向dcdc变换器拓扑 Pending CN107493017A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710942040.1A CN107493017A (zh) 2017-10-11 2017-10-11 一种基于cllc的多端口双向dcdc变换器拓扑

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710942040.1A CN107493017A (zh) 2017-10-11 2017-10-11 一种基于cllc的多端口双向dcdc变换器拓扑

Publications (1)

Publication Number Publication Date
CN107493017A true CN107493017A (zh) 2017-12-19

Family

ID=60653849

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710942040.1A Pending CN107493017A (zh) 2017-10-11 2017-10-11 一种基于cllc的多端口双向dcdc变换器拓扑

Country Status (1)

Country Link
CN (1) CN107493017A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109104088A (zh) * 2018-08-21 2018-12-28 西安理工大学 一种实现大功率电力电子变压器自然均压的参数设计方法
CN110149053A (zh) * 2019-05-22 2019-08-20 湖南大学 三端口隔离dc/dc式变换器暂态直流偏置的抑制方法
CN112398346A (zh) * 2019-08-16 2021-02-23 联合汽车电子有限公司 一种双向变换器拓扑
CN112436730A (zh) * 2020-10-30 2021-03-02 哈尔滨工业大学(深圳) 一种双向cllc谐振变换器的参数设计方法
US11817701B2 (en) 2021-01-29 2023-11-14 Eaton Intelligent Power Limited Multi-port split-phase power system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102290999A (zh) * 2011-08-15 2011-12-21 南京航空航天大学 一种多端口隔离双向dc-dc变换器
CN103151932A (zh) * 2013-02-05 2013-06-12 南京航空航天大学 Buck/Boost集成型三端口直流变换器及其控制方法
CN103944396A (zh) * 2014-04-11 2014-07-23 燕山大学 一种llc谐振型三端口dc-dc变换器及其控制方法
US20150263634A1 (en) * 2014-03-14 2015-09-17 Futurewei Technologies, Inc. Hybrid Power Converter and Method
CN105871215A (zh) * 2016-05-17 2016-08-17 华南理工大学 用于双向clllc谐振变换器的整流控制电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102290999A (zh) * 2011-08-15 2011-12-21 南京航空航天大学 一种多端口隔离双向dc-dc变换器
CN103151932A (zh) * 2013-02-05 2013-06-12 南京航空航天大学 Buck/Boost集成型三端口直流变换器及其控制方法
US20150263634A1 (en) * 2014-03-14 2015-09-17 Futurewei Technologies, Inc. Hybrid Power Converter and Method
CN103944396A (zh) * 2014-04-11 2014-07-23 燕山大学 一种llc谐振型三端口dc-dc变换器及其控制方法
CN105871215A (zh) * 2016-05-17 2016-08-17 华南理工大学 用于双向clllc谐振变换器的整流控制电路

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHUNJIANG ZHANG等: "Integrated Half-Bridge CLLC Bidirectional Converter for Energy Storage Systems", 《IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS》 *
孙孝峰等: "一种具有宽输入电压范围的集成Buck-Boost_LLC级联变换器", 《中国电机工程学报》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109104088A (zh) * 2018-08-21 2018-12-28 西安理工大学 一种实现大功率电力电子变压器自然均压的参数设计方法
CN109104088B (zh) * 2018-08-21 2020-07-28 西安理工大学 一种实现大功率电力电子变压器自然均压的参数设计方法
CN110149053A (zh) * 2019-05-22 2019-08-20 湖南大学 三端口隔离dc/dc式变换器暂态直流偏置的抑制方法
CN112398346A (zh) * 2019-08-16 2021-02-23 联合汽车电子有限公司 一种双向变换器拓扑
CN112398346B (zh) * 2019-08-16 2022-10-04 联合汽车电子有限公司 一种双向变换器拓扑
CN112436730A (zh) * 2020-10-30 2021-03-02 哈尔滨工业大学(深圳) 一种双向cllc谐振变换器的参数设计方法
CN112436730B (zh) * 2020-10-30 2022-03-15 哈尔滨工业大学(深圳) 一种双向cllc谐振变换器的参数设计方法
US11817701B2 (en) 2021-01-29 2023-11-14 Eaton Intelligent Power Limited Multi-port split-phase power system

Similar Documents

Publication Publication Date Title
US10651669B2 (en) Phase shift control method for charging circuit
CN107493017A (zh) 一种基于cllc的多端口双向dcdc变换器拓扑
CN106936319B (zh) 一种隔离型三端口双向dc-dc变换器
CN102290999B (zh) 一种多端口隔离双向dc-dc变换器
CN107346941A (zh) 一种负载范围扩展的软开关双向相移变换器
CN103001484B (zh) 低附加电压零电压开关无桥功率因数校正器的调制方法
CN105939126B (zh) 一种开关电感型混合准z源逆变器
CN109347343A (zh) 一种可实现多分布式储能的多端口储能变流器及方法
CN106208698A (zh) 设有软开关的四开关Buck‑Boost变换器电路及其控制方法
CN102355142A (zh) 一种适应于中小功率场合的简化型高效三相ac-dc-ac变换器
CN103929065A (zh) 基于三绕组变压器的双向隔离dc/dc变换器
CN106787757A (zh) 一种cltcl谐振直流变换器
CN108599346B (zh) 一种三级式电动汽车充电电路
CN110034686A (zh) 基于SiC-Si混合功率半导体器件开关的双有源桥变换器
CN107800292B (zh) 串联能量存储装置的均压电路及含有该电路的均压系统
CN107565841A (zh) 一种钳位级联倍频多电平功率变换器及其控制方法
Jun et al. A novel three-port bi-directional DC-DC converter
CN103633691A (zh) 半桥zvs电池串均衡电路及其控制方法
CN108631326A (zh) 基于Buck型三电平交交变换器的无功和谐波补偿装置
CN107565814A (zh) 一种适用于燃料电池发电的高增益准z源开关升压逆变器
CN106712523A (zh) 一种升压三电平全桥变换器及其控制方法
CN103856061A (zh) 输入串联输出并联移相全桥变换器的全范围软开关方法
CN206023611U (zh) 高频隔离式五电平逆变器
CN106787756A (zh) 一种cl‑ft‑cl谐振直流变换器
CN109713905A (zh) CCM/DCM复用的单耦合电感多输出buck变换器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171219