CN107491616A - 一种适用于格栅构型舵面的结构有限元参数化建模方法 - Google Patents

一种适用于格栅构型舵面的结构有限元参数化建模方法 Download PDF

Info

Publication number
CN107491616A
CN107491616A CN201710737781.6A CN201710737781A CN107491616A CN 107491616 A CN107491616 A CN 107491616A CN 201710737781 A CN201710737781 A CN 201710737781A CN 107491616 A CN107491616 A CN 107491616A
Authority
CN
China
Prior art keywords
mtd
grid
rudder face
mrow
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710737781.6A
Other languages
English (en)
Other versions
CN107491616B (zh
Inventor
宋晨
陈晨
杨超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201710737781.6A priority Critical patent/CN107491616B/zh
Publication of CN107491616A publication Critical patent/CN107491616A/zh
Application granted granted Critical
Publication of CN107491616B publication Critical patent/CN107491616B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Graphics (AREA)
  • Software Systems (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Processing Or Creating Images (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明提出了一种适用于格栅构型舵面的结构有限元参数化建模方法,其采用了“基于有限元模型的映射变换”方法以及“由二维网格参数化剖分向三维外形展开”的参数化途径。该方法包括:针对栅格构型舵面进行二维平面投影,提取特征参数,进行二维参数化剖分;建立二维与三维有限元网格的映射关系,设计了有限元网格点的编号规则,实现二维网格到三维外形展开;通过计算机高级语言程序,实现格栅构型舵面的结构有限元参数化建模流程。本发明在概念设计或初步设计阶段能极大提高结构建模效率,人力和时间成本较低,自编程序调参便捷,分析适用性强,得到的模型适用于结构振动,结构动力学等的分析计算,适用于格栅构型的舵面、机翼。

Description

一种适用于格栅构型舵面的结构有限元参数化建模方法
技术领域
本发明涉及一种舵面的结构有限元参数化建模方法,属于飞行器结构有限元建模领域,适用于格栅构型的舵面有限元参数化建模。
背景技术
飞行器设计是一项庞大复杂的工程,有着研制周期长、研制费用高、投入人力大等特点。新飞行器的研制通常经过论证阶段,方案阶段(概念设计和初步设计阶段)、工程研制阶段(详细设计阶段),设计定型阶段以及生产定型阶段。其中论证阶段和方案阶段为主要的设计阶段,这两个设计阶段完成后,基本确定了飞行器的整个构型,即飞行器构型的确定程度达到70%-80%。但是在这两个阶段中,各种飞行器外形、结构等参数具有还未完全确定,根据不同的参数需要分别建立相应的模型,所需的人力和时间成本比较高。参数化的模型能够满足不同的设计参数,而且能大大提高这两个阶段中的设计效率。因此参数化的模型是设计过程中所需要考虑的。
舵面是飞行器实现操纵的典型部件。格栅构型舵面是飞行器中最为常用的舵面,也是影响飞行器动力学特性最为关键的部件。传统的舵面动力学分析工作往往处于飞行器研制的后期,需要依据设计完成的舵面结构建立准确的有限元分析模型,此时若动力学性能不满足使用要求,结构已难以更改或付出较高的重量代价。另一方面,在飞行器研制的早期往往结构参数尚不确定,若要进行动力学分析,每一轮舵面外形参数的调整都需要重新建立结构有限元模型,该过程随伴大量繁冗、重复的操作,严重影响飞行器研制的进度。上述设计中存在的问题与矛盾都迫切需要一种能够参数化描述的舵面快速有限元建模方法,以适应飞行器研制进度的需要。
从公开文献中的方法来看,参数化建模方法的主流是基于商业软件的二次开发,其次是通过计算机高级语言实现模型参数化描述。商业软件多具有几何造型和分析功能模块,对其进行二次开发可与软件的模块及功能相合,具有一定的优势。但是模型的参数化实现亦受到数据接口及模型描述方式的制约,对于复杂的真实模型参数化实现存在困难;计算机高级语言能从几何造型的底层出发,算法的设计具有灵活性,参数化描述不受软件模块功能和模型的复杂性限制,但是方法的通用性是其面临的主要挑战。
发明内容
根据本发明的一个方面,提供了一种适用于格栅构型舵面的参数化建模方法,其特征在于包括:
1)将舵面的模型投影到二维的投影平面上;
2)提取投影平面内的模型特征参数;
3)根据所述模型特征参数,对投影平面内的舵面结构进行参数化网格剖分,形成二维网格;
4)通过变换矩阵将二维网格映射到三维空间,得到模型的三维网格;
5)对所述三维网格的网格点进行编号;
6)对所述三维网格进行属性划分;
7)建立舵面模型的约束条件,选取将要被约束的网格点,设置约束自由度。
附图说明
图1是本发明的流程框图;
图2是模型投影过程示意图;
图3是平面内格栅构型舵面示意图;
图4是二维平面网格划分;
图5是二维网格向三维空间映射;
图6是网格点编号规则;
图7显示了建模对象的一个实例;
图8显示了图7所示的建模对象的舵面材料参数和外形尺寸;
图9和图10分别为应用本发明的上述方法得到的图7的建模对象的有限元模型;
图11为图7中的舵面1/4弦线后掠角分别取20°、33°和45°时的有限元模型。
图12和图13分别显示了颤振计算曲线的V-g图和V-f图。
具体实施方式
本发明的目的是提供一种能够兼顾模型复杂性和通用性的格栅构型舵面的结构有限元参数化建模方法。
根据本发明的一个实施例,提出了一种基于有限元和映射变换的“由二维网格参数化剖分向三维外形展开”的参数化描述方法,通过自编计算机高级语言程序,生成.bdf格式的MSC.PATRAN软件的模型文件,实现格栅构型舵面的结构有限元参数化建模,具体包括以下步骤:
第一步,调整舵面模型视图,找到合适的投影面,能够参数化描述二维平面内的舵面结构,将舵面模型投影到该投影面上;
第二步,根据第一步中二维平面内舵面结构的投影,提取投影面内的模型特征参数,特征参数为展长、展弦比、根梢比、1/4弦线后掠角、翼根上梁的站位、翼梢上梁的站位、翼肋与机身夹角、前梁上翼肋的站位;
第三步,由第二步中的特征参数,通过简单计算能够得到二维平面内的舵面外形参数化描述;对二维平面内的舵面结构进行参数化网格剖分,采用沿舵面展向和弦向的参考网格长度对二维网格疏密进行控制;如将投影区域划分为m×n的网格,则投影区域的网格点可写成如下矩阵:
第四步,通过对舵面模型的轮廓外形进行提取,得到不同截面处的高度函数h(x,y),即翼型函数;采用位置向量的齐次坐标表示方法,根据高度函数h(x,y)和第三步中投影区域的网格点的坐标分布,通过变换矩阵将二维网格映射到三维空间,得到模型的三维网格,计算公式如下:
式中,变换矩阵T(即映射法则)为:
变换前投影区域网格点列向量Pij为:
Pij=[xj yj 0 1]T
变换后三维模型上的网格点列向量Pij *为:
第五步,对第四步生成的三维网格点进行编号,设计参数化的编号规则:先对结构交点处进行编号,再对结构自由边进行编号,保证网格点与编号呈一一对应的关系;
第六步,对映射到三维空间中的网格进行单元属性划分,各属性分区的材料和厚度均能分别定义,同一属性分区的材料和厚度相同,不同属性分区的材料和厚度可以不同,用含参量的形式定义单元属性,便于单元属性的划分;
第七步,建立舵面模型的约束条件,选取第四步中的参数化网格点,设置约束自由度;
第八步,通过高级程序语言(如MATLAB)编程,将第三步到第七步的算法集成并运行程序,得到.bdf格式的模型文件,将.bdf文件导入到MSC.PATRAN软件,生成参数化模型。
本发明的有益效果包括:
1.本发明提出了一种基于有限元和映射变换的“由二维网格参数化剖分向三维外形展开”的参数化描述方法,能够快速准确地对格栅构型舵面进行参数化描述;
2.本发明有效地提高了格栅构型舵面在概念设计或初步设计阶段时建模效率,大大节约了设计及更改设计尺寸时所需的时间和人力成本;
3.本发明采用自编算法实现结构有限元参数化建模,程序可修改性强,可根据分析需求增加分析模块,实现有限元参数化建模和分析集成。
以下结合附图说明本发明的具体实施方式。
本发明提出了一种格栅构型舵面的结构有限元参数化建模方法,其基于有限元和映射变换的“由二维网格参数化剖分向三维外形展开”的参数化描述方法,通过自编计算机高级语言程序,生成.bdf格式的MSC.PATRAN软件的模型文件。
以某格栅构型舵面为例,说明根据本发明的格栅构型舵面的结构有限元参数化建模方法进行的结构有限元参数化建模,其建模流程如图1所示,具体实施步骤为:
第一步,找到合适的投影面,使其能够参数化描述二维平面内的舵面结构,将舵面模型投影到该投影面上,投影过程如图2所示;图2中选取xOy平面为投影面,阴影部分为舵面的二维投影;
第二步,根据第一步中二维平面内舵面结构的投影,提取投影面内的模型特征参数,包括:展长、展弦比、根梢比、1/4弦线后掠角、翼根上梁的站位、翼梢上梁的站位、翼肋与机身夹角、前梁上翼肋的站位;用这些参数描述二维舵面的构型。舵面在二维平面内的投影如图3所示,图中Ls为展长,Λ为展弦比,η为梢根比;
第三步,根据舵面在二维平面内的构型,进行二维网格参数化划分,如图4所示(图4的舵面也就是图7所示的实例)。图4中选取一块典型格栅区域的二维网格划分进行说明,图4中黑色三角形、白色三角形和黑色圆点分别为沿x轴自由边、沿y轴自由边和结构交点处的网格种子,通过网格种子的连接形成网格,网格交点即为网格点,如将投影区域划分为m×n的网格,则投影区域的网格点可写成如下矩阵:
第四步,通过对舵面模型的轮廓外形进行提取,得到不同截面处的高度函数h(x,y),即翼型函数,如图5所示;图5中,白色三角形为沿y轴自由边的网格点,黑色圆点为结构交点处的网格点;通过位置向量的齐次坐标表示方法,将二维平面的网格点映射到三维空间中,得到三维网格点,将三维网格点进行联结,从而得到模型的三维网格;位置向量的齐次坐标表示方法具体如下:
式中,变换矩阵T(即映射法则)为:
变换前投影区域网格点列向量Pij为:
Pij=[xj yj 0 1]T
变换后三维模型上的网格点列向量Pij *为:
第五步,对三维网格点进行编号,设计参数化的编号规则,如图6所示;以格栅区域为例,进行参数化编号规则描述:先对结构交点进行提取并编号,再对结构自由边进行网格点布置及编号,如图6所示,图中黑色圆点表示结构交点处的网格点,黑色三角形、白色三角形和白色圆点分别表示沿x轴方向自由边、沿y轴方向自由边和沿z轴方向自由边的网格点;
第六步,对映射到三维空间中的网格进行单元属性划分,各属性分区的材料和厚度均被分别定义,同一属性分区的材料和厚度相同,不同属性分区的材料和厚度可以不同,用含参量的形式定义单元属性,便于单元属性的划分;
第七步,建立舵面模型的约束条件,选取第四步中的参数化网格点,设置约束自由度;
第八步,通过高级程序语言(如MATLAB)编程,将第三步到第七步的算法集成并运行程序,得到.bdf格式的模型文件,将.bdf文件导入到MSC.PATRAN软件,生成参数化模型。
为了验证本发明提出的参数化建模方法的有效性以及对不同尺寸模型的适用性,取某飞行器格栅构型舵面作为建模对象进行验证,建模对象的一个实例如图7所示(图7的实例也就是图4的舵面),图中为清晰显示舵面内部结构,隐藏了上蒙皮;舵面的材料参数和模型外形尺寸如图8所示,图中Ls为展长,Λ为展弦比,η为梢根比,α为1/4弦线后掠角。
图9和图10分别为应用本发明的上述方法得到的图7的建模对象的有限元模型。图9和图10分别为舵面的表层蒙皮和内部骨架的有限元网格。图11为图7中的舵面1/4弦线后掠角分别取20°、33°和45°时的有限元模型。由图11可得,对于不同尺寸的格栅构型舵面有着良好的适用性。
为了验证参数化模型的分析适用性,对由本发明方法得到的图10的参数化模型,进行颤振分析。计算条件如下:
舵面约束条件为根部固支,采用ZONA51方法计算非定常气动力,p-k法求解颤振行列式,参考马赫数Ma=1.5,大气密度为ρ=1.225kg/m3。颤振计算曲线V-g图和V-f图分别如图12和图13所示。图12中,曲线在速度为1856m/s时由负到正,发生穿越,可得颤振速度为1856m/s,远大于飞行速度,满足了设计要求;图13中,在第一和第三阶模态发生耦合,为经典的弯扭耦合形式。图12和13所示的结果验证了本发明方法得到的参数化模型的分析适用性。

Claims (5)

1.一种适用于格栅构型舵面的参数化建模方法,其特征在于包括:
1)将舵面的模型投影到二维的投影平面上;
2)提取投影平面内的模型特征参数;
3)根据所述模型特征参数,对投影平面内的舵面结构进行参数化网格剖分,形成二维网格;
4)通过变换矩阵将二维网格映射到三维空间,得到模型的三维网格;
5)对所述三维网格的网格点进行编号;
6)对所述三维网格进行属性划分;
7)建立舵面模型的约束条件,选取将要被约束的网格点,设置约束自由度。
2.根据权利要求1所述的参数化建模方法,其特征在于所述模型特征参数包括展长、展弦比、根梢比、1/4弦线后掠角、翼根上梁的站位、翼梢上梁的站位、翼肋与机身夹角、前梁上翼肋的站位。
3.根据权利要求1或2所述的参数化建模方法,其特征在于步骤3)包括:
由模型特征参数,通过计算得到投影平面内的模型外形的参数化描述;
对投影平面内的模型结构进行参数化网格剖分,采用沿舵面展向和弦向的参考网格长度对二维网格的疏密进行控制,将投影区域划分为m×n的网格,把投影平面上模型所在区域的网格点写成矩阵:
4.根据权利要求3所述的参数化建模方法,其特征在于步骤4)包括:
通过对舵面模型的轮廓外形进行提取,得到不同截面处的高度函数h(x,y),该高度函数h(x,y)即翼型函数;
采用位置向量的齐次坐标表示方法,根据高度函数h(x,y)和步骤3)中投影区域的网格点的坐标分布,通过变换矩阵将二维网格映射到三维空间,得到模型的三维网格,变换公式如下:
<mrow> <mi>T</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mo>*</mo> </msubsup> </mrow>
式中,变换矩阵T即映射法则为:
<mrow> <mi>T</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow>
变换前投影区域网格点列向量Pij为:
Pij=[xj yj 0 1]T
变换后三维模型上的网格点列向量Pij *为:
<mrow> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mo>*</mo> </msubsup> <mo>=</mo> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mi>j</mi> </msub> </mtd> <mtd> <msub> <mi>y</mi> <mi>j</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>.</mo> </mrow>
5.根据权利要求4所述的参数化建模方法,其特征在于:
步骤5)包括对步骤4)生成的三维网格点进行编号,该编号所依照的编号规则是:先对结构交点处进行编号,再对结构自由边进行编号,保证网格点与编号呈一一对应的关系;所述步骤6)包括所述三维网格进行单元属性划分,分别定义各属性分区的材料和厚度,同一属性分区的材料和厚度相同,不同属性分区的材料和/或厚度可以不同;
所述步骤7)包括建立舵面模型的约束条件,选取第四步中的参数化网格点,设置约束自由度。
CN201710737781.6A 2017-08-24 2017-08-24 一种适用于格栅构型舵面的结构有限元参数化建模方法 Active CN107491616B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710737781.6A CN107491616B (zh) 2017-08-24 2017-08-24 一种适用于格栅构型舵面的结构有限元参数化建模方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710737781.6A CN107491616B (zh) 2017-08-24 2017-08-24 一种适用于格栅构型舵面的结构有限元参数化建模方法

Publications (2)

Publication Number Publication Date
CN107491616A true CN107491616A (zh) 2017-12-19
CN107491616B CN107491616B (zh) 2020-09-18

Family

ID=60646685

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710737781.6A Active CN107491616B (zh) 2017-08-24 2017-08-24 一种适用于格栅构型舵面的结构有限元参数化建模方法

Country Status (1)

Country Link
CN (1) CN107491616B (zh)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108398231A (zh) * 2018-03-02 2018-08-14 西安费斯达自动化工程有限公司 飞行器颤振分析网格模型Hartley建模方法
CN108446462A (zh) * 2018-03-02 2018-08-24 西安费斯达自动化工程有限公司 飞行器颤振分析网格模型埃米特建模方法
CN109086492A (zh) * 2018-07-11 2018-12-25 大连理工大学 一种车身结构三维模型的线框表示及变形方法及系统
CN109102570A (zh) * 2018-07-05 2018-12-28 三峡大学 一种三维有限元模型的建模方法
CN109376433A (zh) * 2018-10-26 2019-02-22 北京市水文总站 基于土壤非饱和水和地下水耦合的区域水流运动模拟方法
CN110188423A (zh) * 2019-05-16 2019-08-30 广西交通设计集团有限公司 一种基于有限元网格划分的线性工程结构快速bim建模方法
CN110457860A (zh) * 2019-08-22 2019-11-15 中国商用飞机有限责任公司北京民用飞机技术研究中心 网格的自动生成、装置、设备和存储介质
CN110991114A (zh) * 2019-12-02 2020-04-10 中冶南方工程技术有限公司 一种基于有限元分析确定台背填土中土工格栅铺设的方法
CN111026028A (zh) * 2019-12-11 2020-04-17 上海维宏电子科技股份有限公司 数控系统中针对加工工件实现二维平面化网格划分处理的方法
CN111027250A (zh) * 2019-12-11 2020-04-17 大连理工大学 一种基于网格变形技术的异形曲面加筋壳建模方法
CN111159815A (zh) * 2019-12-24 2020-05-15 中国航空工业集团公司西安飞机设计研究所 一种飞机机翼平面参数快速优化方法
CN111985030A (zh) * 2020-08-18 2020-11-24 上海外高桥造船有限公司 一种基于Smart3D实现的三维检查焊接坡口的方法
CN112257183A (zh) * 2020-10-27 2021-01-22 东风商用车有限公司 一种汽车类格栅参数化建模方法及装置
CN112685936A (zh) * 2020-12-25 2021-04-20 中国航天空气动力技术研究院 一种用于贝壳珍珠母微结构有限元分析的建模方法
CN112699539A (zh) * 2020-12-16 2021-04-23 邯郸钢铁集团有限责任公司 一种用实体建模及质量属性分析法确定冲压力的方法
CN112926138A (zh) * 2021-03-23 2021-06-08 中国空气动力研究与发展中心低速空气动力研究所 一种应用于风洞试验模型的舵面角度片的建模方法
CN112966398A (zh) * 2021-04-13 2021-06-15 宁波大学 一种基于应力分布的Voronoi多孔梯度结构生成方法
CN113094805A (zh) * 2021-02-25 2021-07-09 南京远思智能科技有限公司 结构分析参数化模型生成系统及其生成方法
CN113283012A (zh) * 2021-06-09 2021-08-20 中车青岛四方机车车辆股份有限公司 中空型材形成的车体结构有限元建模仿真方法及装置
CN114192796A (zh) * 2021-10-27 2022-03-18 北京星航机电装备有限公司 一种激光选区熔化成形钛合金舵面防变形方法及其舵面
CN114704006A (zh) * 2022-03-30 2022-07-05 中国五冶集团有限公司 一种基于bim的开合式仿生月牙金属格栅施工方法
CN115057001A (zh) * 2022-08-17 2022-09-16 中国空气动力研究与发展中心空天技术研究所 一种基于网格的翼面后缘舵面快速生成与舵效评估方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103577630A (zh) * 2013-10-11 2014-02-12 中航飞机股份有限公司西安飞机分公司 一种基于切面模线的飞机零件逆向建模方法
CN103914582A (zh) * 2012-12-31 2014-07-09 达索系统公司 从服务器向远程客户端流传输模拟的三维建模的对象
CN104036532A (zh) * 2014-05-29 2014-09-10 浙江工业大学 基于三维到二维服装图案无缝映射的服装制作方法
CN104679955A (zh) * 2015-02-15 2015-06-03 北京宇航系统工程研究所 一种三角形网格加筋圆筒结构有限元参数化建模方法
CN104794756A (zh) * 2014-01-20 2015-07-22 鸿富锦精密工业(深圳)有限公司 点云模型贴图系统及方法
CN105760572A (zh) * 2016-01-16 2016-07-13 上海大学 面向三维表面网格模型的有限元网格编码与索引方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103914582A (zh) * 2012-12-31 2014-07-09 达索系统公司 从服务器向远程客户端流传输模拟的三维建模的对象
CN103577630A (zh) * 2013-10-11 2014-02-12 中航飞机股份有限公司西安飞机分公司 一种基于切面模线的飞机零件逆向建模方法
CN104794756A (zh) * 2014-01-20 2015-07-22 鸿富锦精密工业(深圳)有限公司 点云模型贴图系统及方法
CN104036532A (zh) * 2014-05-29 2014-09-10 浙江工业大学 基于三维到二维服装图案无缝映射的服装制作方法
CN104679955A (zh) * 2015-02-15 2015-06-03 北京宇航系统工程研究所 一种三角形网格加筋圆筒结构有限元参数化建模方法
CN105760572A (zh) * 2016-01-16 2016-07-13 上海大学 面向三维表面网格模型的有限元网格编码与索引方法

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108398231A (zh) * 2018-03-02 2018-08-14 西安费斯达自动化工程有限公司 飞行器颤振分析网格模型Hartley建模方法
CN108446462A (zh) * 2018-03-02 2018-08-24 西安费斯达自动化工程有限公司 飞行器颤振分析网格模型埃米特建模方法
CN109102570A (zh) * 2018-07-05 2018-12-28 三峡大学 一种三维有限元模型的建模方法
CN109102570B (zh) * 2018-07-05 2023-07-14 三峡大学 一种三维有限元模型的建模方法
CN109086492A (zh) * 2018-07-11 2018-12-25 大连理工大学 一种车身结构三维模型的线框表示及变形方法及系统
CN109086492B (zh) * 2018-07-11 2022-12-13 大连理工大学 一种车身结构三维模型的线框表示及变形方法及系统
CN109376433A (zh) * 2018-10-26 2019-02-22 北京市水文总站 基于土壤非饱和水和地下水耦合的区域水流运动模拟方法
CN109376433B (zh) * 2018-10-26 2020-06-09 北京市水文总站 基于土壤非饱和水和地下水耦合的区域水流运动模拟方法
CN110188423B (zh) * 2019-05-16 2022-08-09 广西交通设计集团有限公司 一种基于有限元网格划分的线性工程结构快速bim建模方法
CN110188423A (zh) * 2019-05-16 2019-08-30 广西交通设计集团有限公司 一种基于有限元网格划分的线性工程结构快速bim建模方法
CN110457860A (zh) * 2019-08-22 2019-11-15 中国商用飞机有限责任公司北京民用飞机技术研究中心 网格的自动生成、装置、设备和存储介质
CN110991114A (zh) * 2019-12-02 2020-04-10 中冶南方工程技术有限公司 一种基于有限元分析确定台背填土中土工格栅铺设的方法
CN110991114B (zh) * 2019-12-02 2023-07-25 中冶南方工程技术有限公司 一种基于有限元分析确定台背填土中土工格栅铺设的方法
CN111026028A (zh) * 2019-12-11 2020-04-17 上海维宏电子科技股份有限公司 数控系统中针对加工工件实现二维平面化网格划分处理的方法
CN111026028B (zh) * 2019-12-11 2022-12-06 上海维宏电子科技股份有限公司 针对加工工件实现二维平面化网格划分处理的方法
CN111027250B (zh) * 2019-12-11 2023-06-16 大连理工大学 一种基于网格变形技术的异形曲面加筋壳建模方法
CN111027250A (zh) * 2019-12-11 2020-04-17 大连理工大学 一种基于网格变形技术的异形曲面加筋壳建模方法
CN111159815B (zh) * 2019-12-24 2023-05-23 中国航空工业集团公司西安飞机设计研究所 一种飞机机翼平面参数快速优化方法
CN111159815A (zh) * 2019-12-24 2020-05-15 中国航空工业集团公司西安飞机设计研究所 一种飞机机翼平面参数快速优化方法
CN111985030B (zh) * 2020-08-18 2023-11-17 上海外高桥造船有限公司 一种基于Smart3D实现的三维检查焊接坡口的方法
CN111985030A (zh) * 2020-08-18 2020-11-24 上海外高桥造船有限公司 一种基于Smart3D实现的三维检查焊接坡口的方法
CN112257183A (zh) * 2020-10-27 2021-01-22 东风商用车有限公司 一种汽车类格栅参数化建模方法及装置
CN112257183B (zh) * 2020-10-27 2022-12-06 东风商用车有限公司 一种汽车类格栅参数化建模方法及装置
CN112699539B (zh) * 2020-12-16 2023-03-28 邯郸钢铁集团有限责任公司 一种用实体建模及质量属性分析法确定冲压力的方法
CN112699539A (zh) * 2020-12-16 2021-04-23 邯郸钢铁集团有限责任公司 一种用实体建模及质量属性分析法确定冲压力的方法
CN112685936A (zh) * 2020-12-25 2021-04-20 中国航天空气动力技术研究院 一种用于贝壳珍珠母微结构有限元分析的建模方法
CN112685936B (zh) * 2020-12-25 2022-10-28 中国航天空气动力技术研究院 一种用于贝壳珍珠母微结构有限元分析的建模方法
CN113094805B (zh) * 2021-02-25 2024-02-27 南京远思智能科技有限公司 结构分析参数化模型生成系统及其生成方法
CN113094805A (zh) * 2021-02-25 2021-07-09 南京远思智能科技有限公司 结构分析参数化模型生成系统及其生成方法
CN112926138B (zh) * 2021-03-23 2022-08-26 中国空气动力研究与发展中心低速空气动力研究所 一种应用于风洞试验模型的舵面角度片的建模方法
CN112926138A (zh) * 2021-03-23 2021-06-08 中国空气动力研究与发展中心低速空气动力研究所 一种应用于风洞试验模型的舵面角度片的建模方法
CN112966398A (zh) * 2021-04-13 2021-06-15 宁波大学 一种基于应力分布的Voronoi多孔梯度结构生成方法
CN113283012B (zh) * 2021-06-09 2023-03-24 中车青岛四方机车车辆股份有限公司 中空型材形成的车体结构有限元建模仿真方法及装置
CN113283012A (zh) * 2021-06-09 2021-08-20 中车青岛四方机车车辆股份有限公司 中空型材形成的车体结构有限元建模仿真方法及装置
CN114192796A (zh) * 2021-10-27 2022-03-18 北京星航机电装备有限公司 一种激光选区熔化成形钛合金舵面防变形方法及其舵面
CN114192796B (zh) * 2021-10-27 2024-04-05 北京星航机电装备有限公司 一种激光选区熔化成形钛合金舵面防变形方法及其舵面
CN114704006B (zh) * 2022-03-30 2023-04-11 中国五冶集团有限公司 一种基于bim的开合式仿生月牙金属格栅施工方法
CN114704006A (zh) * 2022-03-30 2022-07-05 中国五冶集团有限公司 一种基于bim的开合式仿生月牙金属格栅施工方法
CN115057001B (zh) * 2022-08-17 2023-03-24 中国空气动力研究与发展中心空天技术研究所 一种基于网格的翼面后缘舵面快速生成与舵效评估方法
CN115057001A (zh) * 2022-08-17 2022-09-16 中国空气动力研究与发展中心空天技术研究所 一种基于网格的翼面后缘舵面快速生成与舵效评估方法

Also Published As

Publication number Publication date
CN107491616B (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
CN107491616A (zh) 一种适用于格栅构型舵面的结构有限元参数化建模方法
CN102203782B (zh) 求解拉格朗日形式的欧拉方程的数值方法
Tomac et al. From geometry to CFD grids—an automated approach for conceptual design
Pirzadeh Advanced unstructured grid generation for complex aerodynamic applications
Aftosmis et al. Adjoint-based low-boom design with Cart3D
Ito et al. Efficient hybrid surface/volume mesh generation using suppressed marching-direction method
Tang et al. A finite element parametric modeling technique of aircraft wing structures
CN109063275A (zh) 基于feap的三维多晶微观结构材料模型的构建方法
Anderson et al. Parametric deformation of discrete geometry for aerodynamic shape design
CN107391891A (zh) 一种基于模型融合方法的大展弦比机翼优化设计方法
Andreoli et al. Free-form-deformation parameterization for multilevel 3D shape optimization in aerodynamics
CN115438598A (zh) 基于一般时间根方尺度的雷诺应力湍流模型的数值方法
Abdessemed et al. Unsteady parametrization of a morphing wing design for improved aerodynamic performance
Leng et al. Parameterized modeling and optimization of reusable launch vehicles based on reverse design approach
Willis An unsteady, accelerated, high order panel method with vortex particle wakes
Ito et al. Efficient hybrid surface and volume mesh generation for viscous flow simulations
Jameson Advances in bringing high-order methods to practical applications in computational fluid dynamics
Ito et al. Efficient computational fluid dynamics evaluation of small-device locations with automatic local remeshing
Streit et al. DLR transonic inverse design code, extensions and modifications to increase versatility and robustness
Kaynak et al. Advances in the computation of transonic separated flows over finite wings
Eliasson et al. Improved CFD predictions for high lift flows in the European project EUROLIFT II
Chang Development of Physics-Based Transition Models for Unstructured-Mesh CFD Codes Using Deep Learning Models
Wang et al. Smoothing methods based on coordinate transformation in a linear space and application in airfoil aerodynamic design optimization
Poole et al. Optimal domain element shapes for free-form aerodynamic shape control
Long et al. Multi-objective multidisciplinary optimization of long-endurance UAV wing using surrogate model in modelcenter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant