CN107445625B - 一种高致密度ZrB2陶瓷的制备方法 - Google Patents

一种高致密度ZrB2陶瓷的制备方法 Download PDF

Info

Publication number
CN107445625B
CN107445625B CN201710647330.3A CN201710647330A CN107445625B CN 107445625 B CN107445625 B CN 107445625B CN 201710647330 A CN201710647330 A CN 201710647330A CN 107445625 B CN107445625 B CN 107445625B
Authority
CN
China
Prior art keywords
zrb
powder
ceramic
density
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710647330.3A
Other languages
English (en)
Other versions
CN107445625A (zh
Inventor
王星明
杨磊
桂涛
白雪
刘宇阳
储茂友
彭程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRINM Resources and Environment Technology Co Ltd
Original Assignee
Beijing General Research Institute for Non Ferrous Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing General Research Institute for Non Ferrous Metals filed Critical Beijing General Research Institute for Non Ferrous Metals
Priority to CN201710647330.3A priority Critical patent/CN107445625B/zh
Publication of CN107445625A publication Critical patent/CN107445625A/zh
Application granted granted Critical
Publication of CN107445625B publication Critical patent/CN107445625B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/421Boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于超高温陶瓷材料制备技术领域,提供了一种高致密度ZrB2陶瓷的制备方法。该方法具体步骤为:首先采用碳热还原法和自蔓延法分别制备ZrB2粉体,再将自蔓延法制备的ZrB2粉体作为添加剂按一定比例与碳热还原法制备的ZrB2粉体均匀混合作为原料粉体,最后将该原料粉体装入高强石墨模具中,真空热压烧结实现ZrB2陶瓷的深度致密化。本发明提供的制备方法工艺简单,成本低,可操作性强,易于实现工业化生产,热压烧结过程无须添加烧结助剂,得到的ZrB2陶瓷相结构单一、纯度高、致密度高。

Description

一种高致密度ZrB2陶瓷的制备方法
技术领域
本发明属于超高温陶瓷材料制备技术领域,具体涉及一种高致密度ZrB2陶瓷的制备方法。
背景技术
ZrB2具有高熔点、高硬度、良好的导电性和热稳定性,广泛应用于复合材料、电极材料、耐火材料以及核控制材料等诸多领域。另外,通过添加其他相或一定的热处理制度可提高ZrB2陶瓷的高温抗氧化性,使得ZrB2基复合材料成为一种优良的超高温材料(UHTMs),在航空航天领域应用前景广阔。另外,高度致密化的ZrB2陶瓷靶材可以通过磁控溅射沉积薄膜,用于先进压水堆如 AP1000反应堆的一体化可燃毒物。
ZrB2陶瓷的制备技术主要包括粉体合成和陶瓷深度致密化两部分。粉体合成的方法有很多,包括直接合成法、碳热还原法、金属热还原法、高温自蔓延合成法、电化学合成法、溶胶-凝胶法(Sol-Gel)、PVD、CVD等,其中,碳热还原法和自蔓延法是最常用也是易于实现的两种方法。陶瓷深度致密化的方法有热压烧结、无压烧结、热等静压、原位反应热压以及高温自蔓延烧结等多种方法,无压烧结工艺简单,适用于复杂形状、不同规格制品的烧制,但是无压烧结过程容易引起晶粒异常长大,导致制品致密度降低;热等静压烧结制品致密度高、均匀性好、性能优异,但由于设备昂贵,导致生产成本较高;原位反应热压有效避免了外界杂质元素的污染,同时降低致密化过程温度,缺点是过程不易控制;由于 ZrB2具有超高熔点及其自身的物理化学特性,ZrB2陶瓷尤其是不添加烧结助剂的单相ZrB2陶瓷的深度致密化一直是难点。现有文献通过对ZrB2粉体原料进行处理、控制粉体粒度或者采用纳米原料粉体、添加烧结助剂B等方法实现了单相ZrB2陶瓷的深度致密化,但这些方法对原料的要求苛刻,原料处理也增加了工艺的难度。
发明内容
本发明提供了一种高致密度ZrB2陶瓷的制备方法,包括以下步骤:
(1)碳热还原法制备ZrB2粉体;
(2)自蔓延法制备ZrB2粉体;
(3)将自蔓延法制备的ZrB2粉体作为添加剂按一定比例与碳热还原法制备的ZrB2粉体均匀混合作为原料粉体;
(4)将混合后原料粉体装入高强石墨模具中真空热压烧结。
所述步骤(1)采用碳热还原法制备ZrB2粉体,利用纯度均大于99.9%的ZrO2、H3BO3、C为反应原料,且ZrO2:H3BO3:C的质量比为100:(100~180):(40~70);将原料脱水、球磨后,于真空碳管炉中碳热还原反应得到ZrB2粉体,其中,反应真空度小于10-1Pa,反应温度为1500~2000℃,反应时间为1~6h。
所述步骤(2)采用自蔓延法制备ZrB2粉体,利用纯度大于99.5%、粒度为 -300目的Zr和纯度大于99.9%、粒度为-200目的B为反应原料,且Zr:B的质量比为(80~100):(10~30);再以球料比2:1混料4h,混合后原料压实于自蔓延合成装置中自蔓延反应得到ZrB2粉体,其中,反应起始真空度小于10-1Pa。
步骤(3)中所述自蔓延法制备的ZrB2粉体的添加比例为0~50%,优选为 10~30%。
步骤(4)中所述高强石墨模具的抗压强度大于80MPa,优选大于120MPa,抗折强度大于30MPa,优选大于40MPa。
步骤(4)中将粉体装入石墨模具后,预压后测定料层高度,计算陶瓷热压烧结到设计密度值时压头所需的行程。
步骤(4)中所述热压真空度小于10-1Pa。
步骤(4)中所述高温热压烧结加热方式为中频感应加热,加热功率大于 350KW;烧结温度为1800~2100℃,保温时间3~6h,优选3~5h;
步骤(4)中所述高温热压烧结的压力为30~100MPa,优选为50~80MPa,通过双向加压的方式实现,当上下压头总行程达到计算值时关闭热压加热电源。
步骤(4)中所述高温热压烧结当加热电源关闭后,继续保压,当炉体温度下降到1300~1600℃时停止保压,打开泄压阀,压力缓慢下降到0。
本发明与现有技术相比具有以下优点:
(1)将自蔓延法制备的ZrB2粉体作为添加剂与碳热还原法制备的ZrB2粉体均匀混合作为原料粉体,该原料粉体具有良好的致密化性能,克服了单一方法制备的粉体烧结性能差的缺点,工艺过程简单,易于实现工业化生产;。
(2)采用真空高温热压烧结进行陶瓷深度致密化,无须对粉体粒度有特殊要求,无须对原料粉体进行处理,无须添加任何烧结助剂即可得到相对密度大于 95%的高密度ZrB2陶瓷。
附图说明
附图1:高致密度ZrB2陶瓷制备流程。
附图2:高致密度ZrB2陶瓷的XRD图谱。
具体实施方式
本发明提供了一种高致密度ZrB2陶瓷的制备方法,先分别采用碳热还原法和自蔓延法制备ZrB2粉体原料,随后将自蔓延法制备的ZrB2粉体作为添加剂按一定比例与碳热还原法制备的ZrB2粉体均匀混合作为具有良好致密化性能的原料粉体,最后通过真空高温热压实现陶瓷的深度致密化。
下面结合附图与实施例对本发明作进一步说明。
实施例1
按照图1所示的工艺流程,取ZrO2粉体230g、H3BO3粉体250g、C粉100g,混合均匀后,在碳管炉中高温反应,反应温度为1900℃,反应时间为2小时;取Zr粉90g,B粉20g,在自蔓延合成装置中燃烧反应,反应起始真空度小于 10-1Pa;将自蔓延法制备的ZrB2粉体作为添加剂按照10wt%的比例与碳热还原法制备的ZrB2粉体均匀混合作为原料粉体,将该原料粉体180g装入直径为80mm 的高强石墨模具中,石墨模具的抗压强度为120MPa,预压后测得料层高度26mm,按照100%的密度计算,压头行程约为20mm,将模具装入热压烧结炉中,封闭真空热压炉,抽真空至真空度小于10-1Pa,通过感应石墨元件对模具中的ZrB2粉体原料进行加热,当温度到达1650℃后,通过上下油缸对模具中的ZrB2粉体原料施加压力,并且随温度升高不断增大压力,ZrB2粉体经1980℃、70Mpa压力条件下保温保压3h烧结后停止热压,随炉冷却后将坯体取出,经过后续精密加工得到ZrB2陶瓷。
本实施例所制备的ZrB2陶瓷致密度达到95.7%。
实施例2
按照图1所示的工艺流程,取ZrO2粉体230g、H3BO3粉体250g、C粉100g,混合均匀后,在碳管炉中高温反应,反应温度为1900℃,反应时间为2小时;取Zr粉90g,B粉20g,在自蔓延合成装置中燃烧反应,反应起始真空度小于 10-1Pa;将自蔓延法制备的ZrB2粉体作为添加剂按照15wt%的比例与碳热还原法制备的ZrB2粉体均匀混合作为原料粉体,将该原料粉体180g装入直径为80mm 的高强石墨模具中,石墨模具的抗压强度为120MPa,预压后测得料层高度27mm,按照100%的密度计算,压头行程约为21mm,将模具装入热压烧结炉中,封闭真空热压炉,抽真空至真空度小于10-1Pa,通过感应石墨元件对模具中的ZrB2粉体原料进行加热,当温度到达1650℃后,通过上下油缸对模具中的ZrB2粉体原料施加压力,并且随温度升高不断增大压力,ZrB2粉体经1980℃、70Mpa压力条件下保温保压3h烧结后停止热压,随炉冷却后将坯体取出,经过后续精密加工得到ZrB2陶瓷。
本实施例所制备的ZrB2陶瓷致密度达到97.5%。
实施例3
按照图1所示的工艺流程,取ZrO2粉体230g、H3BO3粉体250g、C粉100g,混合均匀后,在碳管炉中高温反应,反应温度为1900℃,反应时间为2小时;取Zr粉90g,B粉20g,在自蔓延合成装置中燃烧反应,反应起始真空度小于 10-1Pa;将自蔓延法制备的ZrB2粉体作为添加剂按照20wt%的比例与碳热还原法制备的ZrB2粉体均匀混合作为原料粉体,将该原料粉体180g装入直径为80mm 的高强石墨模具中,石墨模具的抗压强度为120MPa,预压后测得料层高度25mm,按照100%的密度计算,压头行程约为19mm,将模具装入热压烧结炉中,封闭真空热压炉,抽真空至真空度小于10-1Pa,通过感应石墨元件对模具中的ZrB2粉体原料进行加热,当温度到达1650℃后,通过上下油缸对模具中的ZrB2粉体原料施加压力,并且随温度升高不断增大压力,ZrB2粉体经1980℃、70Mpa压力条件下保温保压3h烧结后停止热压,随炉冷却后将坯体取出,经过后续精密加工得到ZrB2陶瓷。
本实施例所制备的ZrB2陶瓷致密度达到98.9%。
实施例4
按照图1所示的工艺流程,取ZrO2粉体2300g、H3BO3粉体2500g、C粉1000g,混合均匀后,在碳管炉中高温反应,反应温度为1900℃,反应时间为6小时;取Zr粉900g,B粉200g,在自蔓延合成装置中燃烧反应,反应起始真空度小于 10-1Pa;将自蔓延法制备的ZrB2粉体作为添加剂按照25wt%的比例与碳热还原法制备的ZrB2粉体均匀混合作为原料粉体,将该原料粉体2700g装入尺寸为204 (长)×198(宽)mm的长方形高强石墨模具中,石墨模具的抗压强度为120MPa,预压后测得料层高度51mm,按照100%的密度计算,压头行程约为40mm,将模具装入热压烧结炉中,封闭真空热压炉,抽真空至真空度小于10-1Pa,通过感应石墨元件对模具中的ZrB2粉体原料进行加热,当温度到达1650℃后,通过上下油缸对模具中的ZrB2粉体原料施加压力,并且随温度升高不断增大压力,ZrB2粉体经1980℃、70Mpa压力条件下保温保压7h烧结后停止热压,随炉冷却后将坯体取出,经过后续精密加工得到ZrB2陶瓷。
本实施例所制备的ZrB2陶瓷致密度达到96.2%。
实施例5
按照图1所示的工艺流程,取ZrO2粉体230g、H3BO3粉体250g、C粉100g,混合均匀后,在碳管炉中高温反应,反应温度为1900℃,反应时间为2小时;取Zr粉90g,B粉20g,在自蔓延合成装置中燃烧反应,反应起始真空度小于 10-1Pa;将自蔓延法制备的ZrB2粉体作为添加剂按照30wt%的比例与碳热还原法制备的ZrB2粉体均匀混合作为原料粉体,将该原料粉体180g装入直径为80mm 的高强石墨模具中,石墨模具的抗压强度为120MPa,预压后测得料层高度28mm,按照100%的密度计算,压头行程约为22mm,将模具装入热压烧结炉中,封闭真空热压炉,抽真空至真空度小于10-1Pa,通过感应石墨元件对模具中的ZrB2粉体原料进行加热,当温度到达1650℃后,通过上下油缸对模具中的ZrB2粉体原料施加压力,并且随温度升高不断增大压力,ZrB2粉体经1980℃、70Mpa压力条件下保温保压3h烧结后停止热压,随炉冷却后将坯体取出,经过后续精密加工得到ZrB2陶瓷。
本实施例所制备的ZrB2陶瓷相结构单一,XRD图谱如图2所示,致密度达到99.7%。
通过研究发现,本发明提供的ZrB2陶瓷制备新工艺中,自蔓延法制备的ZrB2粉体添加比例,热压温度,成型压力,保压时间等对得到的ZrB2陶瓷密度均有一定的影响。在优选工艺条件下,得到的ZrB2陶瓷密度较高。

Claims (9)

1.一种高致密度ZrB2陶瓷的制备方法,其特征在于,该方法包括如下步骤:
(1)碳热还原法制备ZrB2粉体;
(2)自蔓延法制备ZrB2粉体;
(3)将自蔓延法制备的ZrB2粉体作为添加剂与碳热还原法制备的ZrB2粉体均匀混合作为原料粉体;所述自蔓延法制备的ZrB2粉体的添加比例为10~50wt%;
(4)将混合后原料粉体装入高强石墨模具中真空热压烧结。
2.根据权利要求1所述的一种高致密度ZrB2陶瓷的制备方法,其特征在于,步骤(1)所述碳热还原法制备ZrB2粉体,利用纯度均大于99.9%的ZrO2、H3BO3、C为反应原料,且ZrO2:H3BO3:C的质量比为100:(100~180):(40~70);将原料脱水、球磨后,于真空碳管炉中碳热还原反应得到ZrB2粉体,其中,反应温度为1500~2000℃,反应时间为1~6h。
3.根据权利要求1所述的一种高致密度ZrB2陶瓷的制备方法,其特征在于,步骤(2)所述自蔓延法制备ZrB2粉体,利用纯度大于99.5%、粒度为-300目的Zr和纯度大于99.9%、粒度为-200目的B为反应原料,且Zr:B的质量比为(80~100):(10~30);再以球料比2:1混料4h,混合后原料压实于自蔓延合成装置中自蔓延反应得到ZrB2粉体,其中,反应起始真空度小于10-1Pa。
4.根据权利要求1所述的一种高致密度ZrB2陶瓷的制备方法,其特征在于,步骤(4)中所述高强石墨模具的抗压强度大于80MPa,抗折强度大于30MPa。
5.根据权利要求1所述的一种高致密度ZrB2陶瓷的制备方法,其特征在于,步骤(4)中所述热压真空度小于10-1Pa。
6.根据权利要求1所述的一种高致密度ZrB2陶瓷的制备方法,其特征在于,步骤(4)中所述热压烧结的温度为1800~2100℃,加热方式为中频感应加热。
7.根据权利要求1所述的一种高致密度ZrB2陶瓷的制备方法,其特征在于,步骤(4)中所述热压烧结的压力为30~100MPa,通过双向加压实现。
8.根据权利要求1所述的一种高致密度ZrB2陶瓷的制备方法,其特征在于,步骤(4)中所述热压保温保压时间3~6h。
9.根据权利要求1所述的一种高致密度ZrB2陶瓷的制备方法,其特征在于,步骤(4)中所述热压保温结束后,压力保持到炉体温度下降到1300~1600℃时卸压。
CN201710647330.3A 2017-08-01 2017-08-01 一种高致密度ZrB2陶瓷的制备方法 Active CN107445625B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710647330.3A CN107445625B (zh) 2017-08-01 2017-08-01 一种高致密度ZrB2陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710647330.3A CN107445625B (zh) 2017-08-01 2017-08-01 一种高致密度ZrB2陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN107445625A CN107445625A (zh) 2017-12-08
CN107445625B true CN107445625B (zh) 2020-09-15

Family

ID=60490642

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710647330.3A Active CN107445625B (zh) 2017-08-01 2017-08-01 一种高致密度ZrB2陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN107445625B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114349015A (zh) * 2022-02-28 2022-04-15 辽宁中色新材科技有限公司 一种低成本高纯二硼化锆或二硼化钛的生产工艺
CN114591089A (zh) * 2022-04-02 2022-06-07 有研资源环境技术研究院(北京)有限公司 一种基于缺陷调控的超高温陶瓷致密化方法、超高温陶瓷

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9580323B2 (en) * 2013-05-31 2017-02-28 University Of Notre Dame Du Lac Method of producing graphene and other carbon materials
CN106631033A (zh) * 2016-12-27 2017-05-10 北京有色金属研究总院 一种ZrB2粉体的制备方法
CN107619290A (zh) * 2017-10-27 2018-01-23 东莞市联洲知识产权运营管理有限公司 一种碳纳米管增强二硼化锆陶瓷基复合材料的制备方法

Also Published As

Publication number Publication date
CN107445625A (zh) 2017-12-08

Similar Documents

Publication Publication Date Title
CN109553419B (zh) 一种气压固相烧结碳化硼复相陶瓷及其制备方法
WO2020042949A1 (zh) 高度取向纳米max相陶瓷和max相原位自生氧化物纳米复相陶瓷的制备方法
Sun et al. Alumina ceramics with uniform grains prepared from Al2O3 nanospheres
CN110698205A (zh) 一种石墨烯增韧碳化硅陶瓷的制备方法
CN102390079A (zh) 高压烧结组合模具及其制备纳米陶瓷的高压快速烧结方法
CN106116593B (zh) 一种四硼化钨陶瓷粉体的制备方法
CN104313380A (zh) 一种分步烧结制备高致密度纳米晶硬质合金的方法
CN105331843A (zh) 一种碳化硼喷头及其制备方法
CN112028635A (zh) 一种超高温陶瓷复合材料及制备方法
CN107445625B (zh) 一种高致密度ZrB2陶瓷的制备方法
CN110436928A (zh) 高性能纳米孪晶碳化硼陶瓷块体材料及其制备方法
CN102786304B (zh) 一种热压碳化硼陶瓷的制备方法
CN104131208A (zh) 一种氧化铝-碳化钛微米复合陶瓷刀具材料及其微波烧结方法
CN112500167A (zh) 一种致密化碳化钛复合陶瓷的制备方法
CN109665848B (zh) 一种超高温SiC-HfB2复合陶瓷及其制备方法和应用
CN111393170A (zh) 一种通过多因素优化制备高致密度氮化硅陶瓷的方法及制备的氮化硅陶瓷
CN101508572B (zh) 高致密单相TiB2陶瓷的快速制备方法
WO2024141077A1 (zh) 一种碳化钨靶材及其制备方法和专用模具
CN112174644B (zh) 一种无压快速烧结致密纳米晶粒陶瓷的方法
CN102731096A (zh) 一种织构化硼化物基超高温陶瓷材料及其制备方法
CN112174645B (zh) 一种制备致密纳米晶粒陶瓷的方法
CN113173788A (zh) 一种红外透明陶瓷的快速烧结制备方法
CN111747748B (zh) 超高温防/隔热一体化ZrC/Zr2C复相材料及其制备方法
CN107190194B (zh) 一种硼化物陶瓷颗粒增强铌钼基复合材料的制备方法
CN115747572B (zh) 一种医用可降解ZnMgCa中熵合金及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210415

Address after: 101407 No. 11 Xingke East Street, Yanqi Economic Development Zone, Huairou District, Beijing

Patentee after: Youyan resources and Environment Technology Research Institute (Beijing) Co.,Ltd.

Address before: 100088, 2, Xinjie street, Xicheng District, Beijing

Patentee before: GENERAL Research Institute FOR NONFERROUS METALS

TR01 Transfer of patent right