CN1074202C - 交流到直流电力变换器及变换方法 - Google Patents

交流到直流电力变换器及变换方法 Download PDF

Info

Publication number
CN1074202C
CN1074202C CN96119275A CN96119275A CN1074202C CN 1074202 C CN1074202 C CN 1074202C CN 96119275 A CN96119275 A CN 96119275A CN 96119275 A CN96119275 A CN 96119275A CN 1074202 C CN1074202 C CN 1074202C
Authority
CN
China
Prior art keywords
terminal
elementary winding
diode
mains switch
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN96119275A
Other languages
English (en)
Other versions
CN1151630A (zh
Inventor
何民信
李震锋
蔡富生
潘毅杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artesyn Embedded Technologies Inc
Original Assignee
Computer Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/543,561 external-priority patent/US5600546A/en
Application filed by Computer Products Inc filed Critical Computer Products Inc
Publication of CN1151630A publication Critical patent/CN1151630A/zh
Application granted granted Critical
Publication of CN1074202C publication Critical patent/CN1074202C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4258Arrangements for improving power factor of AC input using a single converter stage both for correction of AC input power factor and generation of a regulated and galvanically isolated DC output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种AC到DC电力变换器只使用一个电源开关,只一个磁性元件,只一个控制回路,和一个储能电容器,可改善功率因数校正和效率。仅有的磁性元件是一变压器,具有第一初级绕组,第二初级绕组和至少一次级绕组。在AC输入电流周期的第一时间间隔期间,第二初级绕组用先前存储在储能电容器中的能量来激励。在AC输入电流周期的第二时间间隔期间,第一初级绕组是用流过AC输入端子的输入电流的能量来激励。降低了输入电流谐波的大小。

Description

交流到直流电力变换器及变换方法
本发明涉及AC到DC(交流到直流)变换器及AC到DC变换方法。
接收来自AC输电线的电力的AC到DC变换器通常将正弦波(AC)电源电压进行整流,并将能量储存在一电容器中。该电容器通常充电至峰值电源电压,使得电流只在输入电压的峰值附近流入电源。这使得输入到电源的电流波形成为基波供电频率和基波供电频率的整数倍(谐波)的组合。这些谐波输入电流幅值可以占基波输入电流幅值的相当大的百分比。因此,谐波输入电流会产生畸变,这种畸变会影响与电源线连接的其它敏感器件;或者会产生畸变,其会累积在配电网元件上,给这些元件带来不希望的压力。
通常被称作“功率因数校正”(PFC)技术的各项技术可用来通过将输入电流改变成近似正弦波来降低输入电流的谐波含量。然而,这种功率因数电路通常是复杂的。
图1(现有技术)是一种这样的功率因数校正电路的简图。一种升压变换器包括一电感器1,高频开关2,二极管3,电流敏感电阻(current senseresistor)4,和控制电路5,该升压变换器设置在电力线端子6和储能电容器7之间。控制电路5调制开关2的导通,以便将输入电流整形为近似正弦波。独立的DC到DC变换器包括变压器8,高频开关9,控制电路10,和输出整流器11,其将储能电容器7用作为电压源,并将电容器上的电压变换为可使用的DC输出电压电平,该电平可提供到输出端子12上。DC到DC变换器的控制电路10调制开关9的导通,以提供对输出电压的调节(regulation)。
虽然这些现有技术的功率因数校正电路对于许多应用可令人满意地工作,然而,两个分别的开关2和9和两个分别的控制电路5和10却增加了复杂性和成本。另外,许多应用并不需要几乎完全消除谐波,而只是需要将谐波降低到工业标准所确定的值以下。因此,人们试图寻求一种较便宜的AC到DC变换器,其可得到具有降低了谐波的输入电流,从而不需要两个控制电路和两个开关。
本发明的目的即在于提供AC到DC变换器,使输入电流的谐波成分降低,且复杂性和成本都降低了。
本发明的另一目的在于提供AC到DC变换方法,使输入电流谐波成分降低。
本发明提供一种AC到DC功率变换器,其可获得大于80%的功率因数校正,其只用一个电源开关,只一个磁性元件,只一个控制回路,和一个电容器便可达到75%以上的效率。其仅有的磁性元件是一变压器,其具有第一初级绕组,第二初级绕组,和至少一次级绕组。在AC输入电流周期的第一时间间隔期间中,第二初级绕组是由先前存储在一储能电容器中的能量来激励的。在第二时间间隔期间中,第一初级绕组是由流经AC输入端子的输入电流能量来激励的。因此,AC到DC电力变换器在输入电压达到峰值的时间点以前一段延伸的时间期间得到输入电流,并且在输入电压达到峰值的时间点以后一段延伸的时间期间也得到输入电流。因此,采用只有一个磁性元件的AC到DC电力变换器可降低与基波输入电流相关的输入电流谐波的幅值。为了滤去交流声(ripple)和/或噪声,可增加一附加磁性元件或多个元件。
为了实现本发明的目的,提供了一种AC到DC电力变换器,包括电源开关、储能电容器和控制电路,还包括:变压器,其具有第一初级绕组,第二初级绕组和次级绕组,其中所述电源开关的第一端与所述第二初级绕组的第二端相连,所述电源开关的第二端与所述储能电容器的第一端相连,所述电源开关的第三端与所述控制电路的输出端相连,所述储能电容器的第二端与所述第二初级绕组的第一端相连,变压器的所述次级绕组的一输出端与所述控制电路的输入端相连,所述控制电路用以控制所述电源开关的装置,使得所述第二初级绕组在第一时间间隔用先前存储在所述储能电容器中的能量来激励,并使得所述第一初级绕组在第二时间间隔用流过所述AC输入电流端子的电流能量来激励。
本发明还提供了一种AC到DC电力变换器,包括桥式整流电路、电源开关、电容器、整流电路和控制电路,还包括变压器,其具有第一初级绕组,第二初级绕组和次级绕组,所述第一初级绕组的第一端子连接于所述整流电桥的所述第一输出端子上;第一二极管,其具有第一端子和第二端子,所述第一二极管的第一端子连接于所述变压器的所述第一初级绕组的第二端子上;第二二极管,其具有第一端子和第二端子,所述第二二极管的第一端子连接于所述第一二极管的第二端子上,所述第二二极管的第二端子连接于所述变压器的所述第二初级绕组的第一端子上,其中所述电源开关,其具有第一端子、第二端子和第三端子,所述电源开关的第一端子连接于所述第二初级绕组的第二端子上;所述电容器,其具有第一端子和第二端子,所述电容器的第一端子连接于所述电源开关的第二端子上,并还连接到所述桥式整流器的所述第二输出端子上,所述电容器的第二端子连接于所述第一二极管的第二端子上;所述整流电路,其连接于所述变压器的所述次级绕组的第一和第二端子上;和所述控制电路,其具有输入端子和输出端子,所述控制电路的输入端子连接于所述整流电路的一端上,所述控制电路的所述输出端子连接于所述电源开关的所述第三端子上。
本发明还提供了一种AC到DC电力变换的方法,包括下列步骤:(a)在AC输入电压周期的第一时间间隔中,将能量从一AC到DC变换器的储能电容器传送到所述AC到DC变换器的DC输出端,其方式是用先前存储于所述储能电容器中的能量来激励所述AC到DC变换器的变压器第一初级绕组;(b)在所述AC输入电压的所述周期的第二时间间隔中,将能量由所述AC到DC变换器的AC输入端传送给所述AC到DC变换器的DC输出端,其方式是用流过所述AC输入端子的电流来激励所述变压器的第三初级绕组;和(c)将所述变压器的所述次级绕组两端感应的电压整流成为所述DC输出端子上的DC电压。
本发明还提供了一种AC到DC电力变换器,包括:桥式整流电路、电源开关、电容器、整流电路和控制电路,还包括变压器,其具有第一初级绕组、第二初级绕组、和次级绕组,所述第一初级绕组具有第一端子和第二端子,第二初级绕组具有第一端子和第二端子,所述第一初级绕组的第二端子连接于所述第二初级绕组的第二端子上;第一二极管,其具有第一端子和第二端子,第一二极管的第二端子连接于第二初级绕组的第一端子上;第二二极管,其具有第一端子和第二端子,第二二极管的第一端子连接于第一二极管的第一端子上,第二二极管的第二端子连接于第一初级绕组的第一端子上;电感器,其具有第一端子和第二端子,所述电感器的第二端子连接于第一二极管的第一端子上,电感器的第一端子连接于所述桥式整流器的第一输出端子上,其中所述电源开关,其具有第一端子,第二端子和第三端子,电源开关的第一端子连接于第二初级绕组的第二端子上,电源开关的第二端子连接于所述桥式整流器的第二输出端子上;所述储能电容器,其具有第一端子和第二端子,储能电容器的第一端子连接于第二初级绕组的第一端子上,储能电容器的第二端子连接于电源开关的第二端子上;所述整流电路,其连接于所述次级绕组,该整流电路具有DC输出端子;和所述控制电路,其具有输入端子和输出端子,所述控制电路的输入端子连接于所述整流电路的DC输出端子上,所述控制电路的输出端子连接于所述电源开关的第三控制端子上,所述控制电路控制所述电源开关,使得所述电源开关在桥式整流器的第一和第二端子之间出现AC电压的周期期间接通和断开多次。
本发明还提供了一种具有AC输入电流端子的AC到DC电力变换器包括:电源开关、储能电容器、控制装置,还包括:变压器,其具有第一初级绕组,第二初级绕组,和次级绕组,所述第一初级绕组具有第一端子和第二端子,所述第二初级绕组具有第一端子和第二端子,所述第一初级绕组的第二端子连接于第二初级绕组的第二端子上;第一二极管,其具有第一端子和第二端子,所述第一二极管的第二端子连接于第二初级绕组的第一端子上;第二二极管,其具有第一端子和第二端子,第二二极管的第一端子连接于第一二极管的第一端子上,第二二极管的第二端子连接于第一初级绕组的第一端子上;电感器,其具有第一端子和第二端子,所述电感器的第二端子连接于所述第一二极管的第一端子上,其中所述电源开关,其具有第一端子,第二端子和第三端子,所述电源开关的第一端子连接于所述第一初级绕组的第二端子上;所述储能电容器,其具有第一端子和第二端子,所述储能电容器的第一端子连接于第二初级绕组的第一端子上,储能电容器的第二端子连接于电源开关的第二端子上;用以控制所述电源开关的装置,使得1)在AC输入电流端子上出现AC电压周期的第一时间间隔中,当所述电源开关接通时,所述第二初级绕组通过从所述储能电容器的第一端子流过所述第二初级绕组、并流过所述电源开关的电流来激励,而在该第一时间间隔期间中没有电流流过所述第一初级绕组,并且使得2)在AC输入端子上出现AC电压周期的第二时间间隔中,当所述电源开关接通时,一电流流过所述电感器,流过第二二极管,流过第一初级绕组并流过所述电源开关,并且另一电流则从所述储能电容器的第一端子流过第二初级绕组,并流过所述电源开关,和使得3)在该周期期间电源开关接通和断开多次。
图1(现有技术)是具有两个开关和两个控制电路的功率因数校正电路的简化示意图;
图2是按照本发明一实施例的电力变换器的简化示意图;
图3是表示图2电力变换器工作的简化波形图;
图4-7是表示流入图2电力变换器中的电流流动的简化图;
图8是按照本发明特定实施例的详细电路图;
图9A-9I是各种其它实施例的简化图。
图2是本发明的一电力变换器100的简化图,其将输入端子101上所接收的交流电变成输出端子102上所输出的直流电。电力变换器100包括初级电路103,次级电路104,和控制电路105。桥式整流器二极管106-109将从AC电源线输入端101上所接收的AC电压进行整流。电力变换器100只包括一个电源开关元件(大功率场效应晶体管110)和只一个磁性元件(电源变压器111)。电源变压器包括两个初级绕组112和113和一个次级绕组114。初级绕组112具有N1匝,初级绕组113具有N2匝和次级绕组114具有N3匝。初级电路的二极管115-117确定在电源开关110导通时激励哪个初级绕组。储能电容器118在电源电压较低时提供能量以运行电力变换器。
次级电路104包括整流器电路119和120,用以对流自变压器次级114的电流进行整流。控制电路105控制开关110的接通时间,以保持在输出端子102上有受控的DC电压。控制电路105可以用可变频率、可变工作循环(duty cycle)、或两者都用来驱动开关110。在一实施例中,控制电路105是Unitrode的UC 3843集成电路,其管脚2连接于输出端子102上,管脚6则连接到开关110的控制极上。
图3是表示图2电力变换器工作的简化波形图。电力变换器100的工作将结合四种工作模式进行描述。开关110在每种工作模式下接通和断开许多次。在模式一中,能量从储能电容器118经变压器111传送给连接于输出端子102的负载(未示出)。然后在模式三中,从储能电容器118耗掉的能量在下一个模式一期间之前恢复。
如上所述,开关110在模式一中接通和断开多次。图4描绘出了开关110在模式一中接通时的电流流动,并且图5描绘出了开关110在模式一中断开时的电流流动。二极管106-109对输入电压正弦波VIN进行整流,使得图3中所示的整流输入电压VR出现在结点121上。图2中的虚线接地符号表示图3电压波形的地基准。模式一的初始条件是,在绕组113两端所感应的电压VY等于储能电容器118上的电压VC,即:
         VY=VC=VR/(N1/N2)                      (式1)
其中VY是在模式2,3,和4中在开关110接通期间在绕组113两端所感应的电压(结点124上的电压),其中VC是电容器118上的电压(结点123上的电压),其中VR是整流后的输入电压(结点121上的电压),和其中N1/N2是绕组112与绕组113的匝数比。为了简明而清楚地分析和说明,可将二极管视为理想二极管,其没有正向二极管电压降。
在式1的条件出现以后,整流的输入电压VR持续降低,并且电容器118上的电压VC保持相对大的电压。因此,二极管116导通,并且绕组113在开关110如图4所示接通时由在储能电容器118上的电压来激励。因此,在模式一中储能电容器118中的能量在开关110接通时被消耗。在模式一期间中,输出电流ILOAD在开关110接通时由次级电路的电容器120来提供。
图5表示在开关110断开时以模式1的电流流动。由于将开关110断开,在次级114感应出电流,其经正向偏置二极管119对输出电容器120充电。由于在开关110如图4中所示接通时电容器118将能量提供给绕组113,并且由于在开关如图5中所示断开时电容器118未再被充电,所以电容器118上的电压VC在模式一中降低。该VC的降低(如图3中所示)具有由平均放电电流所确定的近似线性的斜率。对于多次开关循环平均的平均放电电流IDIS由下式给出:
        IDIS=ILOAD·VOUT/VC=C118·dVC/dt          (式2)
其中ILOAD是经输出端子102所提供的平均负载电流,其中VOUT是在输出端子102两端的DC电压幅值,和其中C118是储能电容器118的电容量。在模式一中控制电路105改变开关110接通和断开次数的工作循环,以计及电容器118上的电压降低,并用以保持恒定的能量流至绕组113中。
如图3中所示,在模式一中,整流的输入电压VR降低,达到零,并且然后开始升高。当开关110接通使整流输入电压VR超过在绕组112两端感应的电压时(见图3中的电压VR1),二极管115变为正向偏置。此时,变压器111的激励源由初级绕组113变为初级绕组112。这就由模式一转为模式二。转为模式二的条件是:
               VR=VC·N1/N2                          (式3)
图6表示在开关110接通时模式二中的电路工作情况。电流从AC电源流经整流二极管107,经过绕组112,经过二极管115,经过导通开关110,返回经过整流二极管108,并返回至AC电源。由此绕组112被激励。
图5表示在开关110断开时模式二中的电路工作。开关110的断开使得在次级114感应出电流,其经过正向偏置二极管119给输出电容器120充电。
由于在模式二中没有从储能电容器118中提取能量,所以电容器118上的电压保持恒定,并且实质上由整流输入电压VR传送给绕组112的所有能量都被传送给输出电容器120,输出端子102和负载。对许多个开关循环进行平均的从AC电源流经绕组112的输入电流可由下式给出:
            iIN=ILOAD·VOUT/VIN                     (式4)
由于整流输入电压VR在模式二的整个时间期间随时间持续上升,如图3中所示,在开关110断开期间电压VR和绕组112的端电压的总和也升高。当该总和电压超过电容器118上的电压时,二极管117变为正向偏置,电流从AC电源流入电容器118。这就是模式三的开始。模式三的起始条件为:
            VC=VIN+V112=VIN+VOUT·N1/N3            (式5)
其中V112是开关110断开期间绕组112的端电压,V112是模式二中的恒定值,并取决于输出电压和匝数比。
图6表示模式三期间当开关110接通时的电路工作。图7表示模式三期间当开关110断开时的电路工作。在模式一期间由电容器118所消耗的能量在模式三中被恢复。控制电路105改变开关110接通和断开次数的工作循环,用以在绕组112的电感中存储附加能量,以便提供来传送能量给输出端,以及用来恢复电容器118。在模式三中当开关110断开时流入储能电容器118中的充电电流iCHG为:
      iCHG=C118·dVC/dt=C118·d(V112+VR)/dt        (式6)
当流入电容器118的交电电流iCHG停止流动时,模式四在输入电压VIN的峰值开始。图6表示开关110在模式四中接通时的电路工作,并且图5表示开关110在模式四中断开时的电路工作。在模式四中开关110的断开在次级114感应出电流,其经过正向偏置二极管119给输出电容器120充电。
由于电容器118在图7中所示的模式3期间中被充至输入电压加绕组112电压的峰值电压,所以这时二极管117在输入电压开始降低时变为模式四中的反向偏置。然而,二极管115导通,使得在开关110接通时绕组112被激励,如图6中所示。由于未从电容器118中提取能量,所以在电容器118上的电压保持恒定,并且由输入端传送给绕组112的能量被传送给负载。输入电流如同模式二中一样由式4来确定。当输入电压VIN降低,使得满足式1的条件时,再开始模式一。
正如从图3中由AC电源输入的电流绝对值波形所看到的,输入电流在输入电压峰值附近流动一段相当长的时间间隔。该相当长时间间隔导致了输入电流中谐波含量的降低。对于足够高的整流输入电压(如大于图3中的电压VR2),AC到DC变换器通过将能量由AC电源端子经过第一初级112传送给输出端子而工作。对于太低的整流输入电压(如小于图3中的电压VR1),AC到DC变换器切换为这种操作,即其中存储在电容器118中的能量通过第二初级113被传递给输出端子。导通角(degree of conduction)可通过设定N1/N2的比来编程。通过使N1/N2变小来提高导通角的度数。
在一实施例中,按照本发明的AC到DC变换器具有下述特性,如在下表1中所示,其对应于220伏正弦输入电压和45瓦负载。注意,该AC到DC变换器只有一个开关,一个磁性元件(具有两个初级绕组的变压器),和一个控制回路。匝数比N1/N2约为8。其切换频率约为100-120KHz,并且储能电容器较小(在电容量和尺寸方面),约47微法。
              表1
    功率固数     >80%
    总RMS(均方根)谐波电流     <60%
    效率     >75%
    导通角     >70°
在上述表中的总RMS(均方根)谐波输入电流将所有输入电流的谐波成分(RMS值)与输入电流大小相关联。在上表中的效率值是提供给输出端的功率,它是从AC到DC变换器的输入端子所提取功率的一个百分数。导通角是在其中在正弦输入电压一个周期上从输入端提取有效电流的总角度数。
图8是根据本发明的AC到DC变换器特定实施例的详细电路图。提供电感器800398和电容器C5来滤掉10KHz以上频率的电磁干扰(EMI)。因此,电感器800398调节为对1000倍于电源频率量级的频率起作用,并且具有小于约1mH的大小。虽然在桥式整流二极管106-109和第一初级112之间设有电感器800398,但电感800398仅用来滤掉EMI而不被认为是AC到DC变换器的一部分。电感器800398可以被去掉,而电路仍将作为AC到DC变换器来工作。开关110是一600伏场效应晶体管。
图9A-9I是各种其它实施例的简图。在每个图中,AC输入端子标为101,DC输出端子标为102,整流二极管标为106-109,第一初级,第二初级和次级分别标为112,113,和114,开关标为110,储能电容器标为118,控制电路标为105,和输出电容器标为120,还标记了二极管116和117。
在图9A的实施例中,可提供附加二极管115A。二极管115A的正极连接于桥式整流二极管输出端上的结点121上,且二极管115A的负极连接于第二初级113的第三端子上,使得在模式2,3,和4期间中的输入电流在二极管115和115A之间,以及在绕组112和绕组113的一部分之间共享。在图9B的实施例中,二极管115的负极连接于第二初级113的第三端子上,使得对于式1和3的匝数N1的总数为绕组112和绕组113一部分的匝数总和。对于式5的匝数N1则等于绕组112的匝数。这具有降低电容器118上最大电压的效果,同时保持了其它操作特性不变。在图9C的实施例中,变压器具有第三初级112A。该第三初级112A在模式2,3和4中在开关110接通期间起作用。在开关110断开期间,初级112在模式3期间中承载电流。图9D的实施例与图9C的实施例相同,只是将绕组112A结合作为绕组113的一部分。图9E的实施例类似于图9C的,只是其次级电路是使用由二极管119A和电感器119B组成的平均滤波器的正向转换器。在该实施例中,初级绕组112和112A在模式3变换整流输入电压,用以给电容器118充电达到更高电平,同时在开关110接通期间提供能量给次级。绕组113在输入电压处于很低时使用来自电容器118的能量。图9F的实施例类似于图9E,只是初级绕组113的一部分代替了初级绕组112A。图9F的实施例与图9D的实施例相同,只是使用了图9E的输出整流电路。图9G和9H的实施例表示可以使用的第二开关110A。在图9G的实施例中,开关110A在模式2,3和4的期间中承载输入电流,而开关110在模式1的期间中承载输入电流。这使得对于在这些不同电路功能中出现的电流和电压,开关可以单独地设计(rated)。在图9H的实施例中,增加了加法附加比较器,以确定整流输入电压的电平,其中耗用功率从绕组112变至绕组113,并因此从输入电源变至储能电容器。在图9I的实施例中,初级125,初级113和次级114形成一变压器。电感器126是一分开的电感器,它具有大于约100mH的电感。
虽然以上为说明的目的结合一些特定实施例对本发明加以了说明,但它们并不成为对本发明的限制。可以将附加磁性元件加到AC到DC变换器中用于滤波。因此,这些特定实施例特征的各种调整、改变和组合均是可能的,但其均未脱离下述权利要求所限定的发明范围。

Claims (21)

1、一种具有AC输入电流端子的AC到DC电力变换器,包括电源开关、储能电容器和控制电路,其特征在于,还包括:
变压器,其具有第一初级绕组,第二初级绕组和次级绕组,
其中所述电源开关的第一端与所述第二初级绕组的第二端相连,所述电源开关的第二端与所述储能电容器的第一端相连,所述电源开关的第三端与所述控制电路的输出端相连,所述储能电容器的第二端与所述第二初级绕组的第一端相连,变压器的所述次级绕组的一输出端与所述控制电路的输入端相连,
所述控制电路用以控制所述电源开关的装置,使得所述第二初级绕组在第一时间间隔用先前存储在所述储能电容器中的能量来激励,并使得所述第一初级绕组在第二时间间隔用流过所述AC输入电流端子的电流能量来激励。
2、如权利要求1的AC到DC电力变换器,其特征在于,所述变压器是所述AC到DC电力变换器仅有的磁性元件。
3、如权利要求1的AC到DC电力变换器,其特征在于,所述电源开关是所述AC到DC电力变换器仅有的电源开关。
4、如权利要求1的AC到DC电力变换器,其特征在于,进一步包括:
第一二极管,其具有第一端子和第二端子,所述第一端子连接于所述第一初级绕组的一端上;
第二二极管,其具有第一端子和第二端子,所述第二二极管的所述第一端子连接于所述第一二极管的第二端子上,并连接于所述储能电容器的第一端子上,所述第二二极管的第二端子连接于所述第二初级绕组的第一端子上;
其中所述第二初级绕组的第二端子连接于所述电源开关的第一端子上,并且其中所述电源开关的第二端子连接于所述储能电容器的第二端子上。
5、如权利要求1的AC到DC电力变换器,其特征在于,在所述开关断开期间将能量传送给所述次级绕组。
6、如权利要求1的AC到DC电力变换器,其特征在于,在所述开关断开期间将能量传送给所述次级绕组,并且其中在所述开关接通期间实质上没有能量传送给所述次级绕组。
7、如权利要求1的AC到DC电力变换器,其特征在于,在所述开关接通期间将能量传送给所述次级绕组。
8、如权利要求1的AC到DC电力变换器,其特征在于,在所述开关接通期间将能量传送给所述次级绕组,并且其中在所述开关断开期间实质上没有能量传送给次级绕组。
9、一种AC到DC电力变换器,包括桥式整流电路、电源开关、电容器、整流电路和控制电路,其特征在于,还包括:
变压器,其具有第一初级绕组,第二初级绕组和次级绕组,所述第一初级绕组的第一端子连接于所述整流电桥的所述第一输出端子上;
第一二极管,其具有第一端子和第二端子,所述第一二极管的第一端子连接于所述变压器的所述第一初级绕组的第二端子上;
第二二极管,其具有第一端子和第二端子,所述第二二极管的第一端子连接于所述第一二极管的第二端子上,所述第二二极管的第二端子连接于所述变压器的所述第二初级绕组的第一端子上,
其中所述电源开关,其具有第一端子、第二端子和第三端子,所述电源开关的第一端子连接于所述第二初级绕组的第二端子上;
所述电容器,其具有第一端子和第二端子,所述电容器的第一端子连接于所述电源开关的第二端子上,并还连接到所述桥式整流器的所述第二输出端子上,所述电容器的第二端子连接于所述第一二极管的第二端子上;
所述整流电路,其连接于所述变压器的所述次级绕组的第一和第二端子上;和
所述控制电路,其具有输入端子和输出端子,所述控制电路的输入端子连接于所述整流电路的一端上,所述控制电路的所述输出端子连接于所述电源开关的所述第三端子上。
10、如权利要求9的AC到DC电力变换器,其特征在于,所述第一初级绕组的所述第一端子由一高频滤波电感连接于所述桥式整流器的所述第一输出端子上。
11、如权利要求9的AC到DC电力变换器,其特征在于,进一步包括:
第三二极管,其具有第一端子和第二端子,所述第三二极管的第一端子连接于所述第一初级绕组的第二端子上,所述第三二极管的第二端子连接于所述第二初级绕组的所述第二端子上。
12、如权利要求10的AC到DC电力变换器,其特征在于,进一步包括:
第三二极管,其具有第一端子和第二端子,所述第三二极管的第一端子连接于所述第一初级绕组的第二端子上,所述第三二极管的第二端子连接于所述第二初级绕组的一第三端子上。
13、如权利要求10的AC到DC电力变换器,其特征在于,进一步包括:
一第三二极管,其具有第一端子和第二端子,所述第三二极管的第一端子连接于所述第一初级绕组的第一端子上,所述第三二极管的第二端子连接于所述第二初级绕组的一第三端子上。
14、如权利要求10的AC到DC电力变换器,其特征在于,所述变压器进一步包括第三初级绕组,所述第三初级绕组的第一端子连接于所述第一初级绕组的第一端子上,所述AC到DC电力变换器进一步包括:
第三二极管,其具有第一端子和第二端子,所述第三二极管的第一端子连接于所述第三初级绕组的第二端子上,所述第三二极管的第二端子连接于所述第二初级绕组的第二端子上。
15、一种AC到DC电力变换的方法,其特征在于,包括下列步骤:
(a)在AC输入电压周期的第一时间间隔中,将能量从一AC到DC变换器的储能电容器传送到所述AC到DC变换器的DC输出端,其方式是用先前存储于所述储能电容器中的能量来激励所述AC到DC变换器的变压器第一初级绕组;
(b)在所述AC输入电压的所述周期的第二时间间隔中,将能量由所述AC到DC变换器的AC输入端传送给所述AC到DC变换器的DC输出端,其方式是用流过所述AC输入端子的电流来激励所述变压器的第三初级绕组;和
(c)将所述变压器的所述次级绕组两端感应的电压整流成为所述DC输出端子上的DC电压。
16、如权利要求15的方法,其特征在于,所述传送步骤(a)包括接通和断开流过所述第一初级绕组的电流多次,使得能量由所述第一初级绕组传送给所述次级绕组,并且其中所述传送步骤(b)包括接通和断开流过所述第二初级绕组的电流多次,使得能量由所述第二初级绕组耦合到所述次级绕组上。
17、如权利要求15的方法,其特征在于,所述第一时间间隔是这样一个时间间隔,其中在所述AC输入端上出现的AC电压的绝对值低于一定电压,并且其中所述第二时间间隔是这样一个时间间隔,其中在所述AC输入端上出现的所述AC电压的绝对值在所述电压以上,并且其中所述第一和第二时间间隔不重叠。
18、如权利要求15的方法,其特征在于,来自在所述第一时间间隔期间激励所述第一初级绕组的所述储能电容器的能量是在所述第二时间间隔的一部分中再充满的。
19、一种AC到DC电力变换器,包括:桥式整流电路、电源开关、电容器、整流电路和控制电路,其特征在于,还包括:
变压器,其具有第一初级绕组、第二初级绕组、和次级绕组,所述第一初级绕组具有第一端子和第二端子,第二初级绕组具有第一端子和第二端子,所述第一初级绕组的第二端子连接于所述第二初级绕组的第二端子上;
第一二极管,其具有第一端子和第二端子,第一二极管的第二端子连接于第二初级绕组的第一端子上;
第二二极管,其具有第一端子和第二端子,第二二极管的第一端子连接于第一二极管的第一端子上,第二二极管的第二端子连接于第一初级绕组的第一端子上;
电感器,其具有第一端子和第二端子,所述电感器的第二端子连接于第一二极管的第一端子上,电感器的第一端子连接于所述桥式整流器的第一输出端子上,
其中所述电源开关,其具有第一端子,第二端子和第三端子,电源开关的第一端子连接于第二初级绕组的第二端子上,电源开关的第二端子连接于所述桥式整流器的第二输出端子上;
所述储能电容器,其具有第一端子和第二端子,储能电容器的第一端子连接于第二初级绕组的第一端子上,储能电容器的第二端子连接于电源开关的第二端子上;
所述整流电路,其连接于所述次级绕组,该整流电路具有DC输出端子;和
所述控制电路,其具有输入端子和输出端子,所述控制电路的输入端子连接于所述整流电路的DC输出端子上,所述控制电路的输出端子连接于所述电源开关的第三控制端子上,所述控制电路控制所述电源开关,使得所述电源开关在桥式整流器的第一和第二端子之间出现AC电压的周期期间接通和断开多次。
20、一种具有AC输入电流端子的AC到DC电力变换器,包括:电源开关、储能电容器、控制装置,其特征在于,还包括:
变压器,其具有第一初级绕组,第二初级绕组,和次级绕组,所述第一初级绕组具有第一端子和第二端子,所述第二初级绕组具有第一端子和第二端子,所述第一初级绕组的第二端子连接于第二初级绕组的第二端子上;
第一二极管,其具有第一端子和第二端子,所述第一二极管的第二端子连接于第二初级绕组的第一端子上;
第二二极管,其具有第一端子和第二端子,第二二极管的第一端子连接于第一二极管的第一端子上,第二二极管的第二端子连接于第一初级绕组的第一端子上;
电感器,其具有第一端子和第二端子,所述电感器的第二端子连接于所述第一二极管的第一端子上,
其中所述电源开关,其具有第一端子,第二端子和第三端子,所述电源开关的第一端子连接于所述第一初级绕组的第二端子上;
所述储能电容器,其具有第一端子和第二端子,所述储能电容器的第一端子连接于第二初级绕组的第一端子上,储能电容器的第二端子连接于电源开关的第二端子上;
用以控制所述电源开关的装置,使得1)在AC输入电流端子上出现AC电压周期的第一时间间隔中,当所述电源开关接通时,所述第二初级绕组通过从所述储能电容器的第一端子流过所述第二初级绕组、并流过所述电源开关的电流来激励,而在该第一时间间隔期间中没有电流流过所述第一初级绕组,并且使得2)在AC输入端子上出现AC电压周期的第二时间间隔中,当所述电源开关接通时,一电流流过所述电感器,流过第二二极管,流过第一初级绕组并流过所述电源开关,并且另一电流则从所述储能电容器的第一端子流过第二初级绕组,并流过所述电源开关,和使得3)在该周期期间电源开关接通和断开多次。
21、如权利要求20的AC到DC电力变换器,其特征在于,进一步包括:
整流电路,其连接于所述次级绕组,该整流电路具有DC输出端子;
其中所述用于控制电源开关的装置具有输入端子和输出端子,该用于控制的装置的输入端子连接于所述整流电路的DC输出端子上,该用于控制的装置的输出端子连接于所述电源开关的第三端子上。
CN96119275A 1995-10-16 1996-10-16 交流到直流电力变换器及变换方法 Expired - Fee Related CN1074202C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US08/543,561 US5600546A (en) 1995-10-16 1995-10-16 Input harmonic current corrected AC-to-DC converter with multiple coupled primary windings
US543561 1995-10-16
US08/588,054 US5652700A (en) 1995-10-16 1996-01-19 Low cost AC-to-DC converter having input current with reduced harmonics
US588054 1996-01-19

Publications (2)

Publication Number Publication Date
CN1151630A CN1151630A (zh) 1997-06-11
CN1074202C true CN1074202C (zh) 2001-10-31

Family

ID=27067368

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96119275A Expired - Fee Related CN1074202C (zh) 1995-10-16 1996-10-16 交流到直流电力变换器及变换方法

Country Status (5)

Country Link
US (2) US5652700A (zh)
EP (1) EP0768748B1 (zh)
JP (1) JP3749579B2 (zh)
CN (1) CN1074202C (zh)
DE (1) DE69635645T2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100438285C (zh) * 2003-06-06 2008-11-26 半导体元件工业有限责任公司 频率受控的功率因数校正电路和方法
CN107210683A (zh) * 2015-02-13 2017-09-26 住友电气工业株式会社 转换器和控制电路

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08223907A (ja) * 1995-02-06 1996-08-30 Internatl Business Mach Corp <Ibm> 電源装置及び電源供給方法
US5652700A (en) * 1995-10-16 1997-07-29 Computer Products, Inc. Low cost AC-to-DC converter having input current with reduced harmonics
US5757626A (en) * 1996-06-21 1998-05-26 Delta Electronics Inc. Single-stage, single-switch, islolated power-supply technique with input-current shaping and fast output-voltage regulation
US6005780A (en) * 1997-08-29 1999-12-21 Hua; Guichao Single-stage AC/DC conversion with PFC-tapped transformers
US5920473A (en) * 1998-03-09 1999-07-06 Magnetic Technology, Inc. Dc-to-Dc power converter with integrated magnetic power transformer
US6011702A (en) * 1998-03-31 2000-01-04 Gucyski; Jeff Low noise forward/flyback switching power supply
US6118673A (en) * 1998-06-01 2000-09-12 Virginia Power Technologies, Inc. Single-stage AC/DC converters with saturable conductor PFC
US6147882A (en) * 1998-12-19 2000-11-14 Delta Electronics, Inc. Single-stage input current shaping technique with voltage-doubler rectifier front-end
US6181113B1 (en) 1999-07-29 2001-01-30 Abb Power T&D Company Inc. Harmonic resonance control and protection system for switched power factor control capacitor devices
US6249444B1 (en) * 1999-11-01 2001-06-19 Astec International Limited Offset resonant ZVS forward converter
DE10004983C1 (de) * 2000-02-04 2001-09-13 Infineon Technologies Ag Schutzanordnung für Schottky-Diode
GB2380073B (en) * 2001-06-15 2005-02-02 Vestel Elekt Sanayi Ve Ticaret Fly-back converter switched-mode power supply with reduced power dissipation and limited line harmonics
US6421256B1 (en) * 2001-06-25 2002-07-16 Koninklijke Philips Electronics N.V. Method for reducing mains harmonics and switching losses in discontinuous-mode, switching power converters
DE10144540A1 (de) 2001-09-11 2003-04-03 Infineon Technologies Ag Spannungswandler
JP4193536B2 (ja) * 2003-03-24 2008-12-10 横河電機株式会社 スイッチング電源
CN100411273C (zh) * 2006-08-31 2008-08-13 上海交通大学 串联补偿升压的单相功率因数校正电路
CN100401625C (zh) * 2006-08-31 2008-07-09 上海交通大学 有源无源混合的单相功率因数校正电路
US7636246B2 (en) * 2007-08-10 2009-12-22 Active-Semi, Inc. Start-up time reduction in switching regulators
US20090059623A1 (en) * 2007-08-29 2009-03-05 Jun Cai Switched-mode Power Supply With EMI Isolation
KR101468719B1 (ko) * 2008-03-12 2014-12-05 페어차일드코리아반도체 주식회사 전력 변환기 및 그 구동 방법
US7898826B2 (en) * 2009-04-13 2011-03-01 Power Integrations, Inc. Method and apparatus for limiting maximum output power of a power converter
US20120014142A1 (en) * 2010-07-19 2012-01-19 Welland Industrial Co., Ltd. Power conversion apparatus for correcting power factor
US8335096B2 (en) 2010-11-12 2012-12-18 Don Roy Sauer Rectifier less bidirectional AC to DC converter
WO2012112461A2 (en) * 2011-02-14 2012-08-23 Kogel Frank William Parameter configuration method for elements of a power factor correction converter
KR101496819B1 (ko) * 2012-08-03 2015-03-02 삼성전기주식회사 싱글 스테이지 포워드-플라이백 컨버터, 전원 공급 장치 및 발광 다이오드 전원 공급 장치
KR101434110B1 (ko) 2012-08-03 2014-09-23 삼성전기주식회사 싱글 스테이지 포워드-플라이백 컨버터, 전원 공급 장치 및 발광 다이오드용 전원 공급 장치
KR101415169B1 (ko) 2013-05-31 2014-07-04 인하대학교 산학협력단 낮은 전압 스트레스의 스위칭 트랜지스터를 가지는 단일단 비대칭 llc 공진형 컨버터 장치 및 방법
KR101332195B1 (ko) * 2013-07-31 2013-11-27 (주)이미지스테크놀로지 고효율 스위칭 모드 파워 서플라이 장치
JP2015177650A (ja) * 2014-03-14 2015-10-05 株式会社東芝 電源回路
CN103840654B (zh) * 2014-04-02 2016-03-16 哈尔滨工业大学 变压器原边带辅助环节的三相单级全桥功率因数校正器
JP6266171B2 (ja) * 2014-09-12 2018-01-24 フィリップス ライティング ホールディング ビー ヴィ 電源回路
CN108390555B (zh) * 2018-04-24 2019-09-10 上海推拓科技有限公司 用于Boost与桥式DC-DC转换电路组合的开关电源的PFWM控制方法
US11863079B2 (en) 2021-06-30 2024-01-02 Dialog Semiconductor Inc. Switching power converter with secondary-side control

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5168436A (en) * 1990-09-26 1992-12-01 Allied-Signal Inc. Uninterruptible power supply
US5301095A (en) * 1991-10-01 1994-04-05 Origin Electric Company, Limited High power factor AC/DC converter
US5343378A (en) * 1992-01-30 1994-08-30 Nec Corporation Power circuit

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4437146A (en) * 1982-08-09 1984-03-13 Pacific Electro Dynamics, Inc. Boost power supply having power factor correction circuit
US4412277A (en) * 1982-09-03 1983-10-25 Rockwell International Corporation AC-DC Converter having an improved power factor
US4677366A (en) * 1986-05-12 1987-06-30 Pioneer Research, Inc. Unity power factor power supply
US4974141A (en) * 1988-05-18 1990-11-27 Viteq Corporation AC to DC power converter with input current waveform control for buck-boost regualtion of output
US4853837A (en) * 1988-08-08 1989-08-01 Zdzislaw Gulczynski Synchronous switching power supply with flyback converter
US4940929A (en) * 1989-06-23 1990-07-10 Apollo Computer, Inc. AC to DC converter with unity power factor
US5066900A (en) * 1989-11-14 1991-11-19 Computer Products, Inc. Dc/dc converter switching at zero voltage
IL92514A (en) * 1989-12-01 1994-08-26 Systel Dev & Ind Ltd Diode switching circuit protection circuit
JPH03230752A (ja) * 1990-02-06 1991-10-14 Fujitsu Ltd 電圧共振形dc/dcコンバータ
DE4008652C2 (de) * 1990-03-17 2000-06-21 Schneider Automation Gmbh Netzteil mit Gleichspannungs-Gleichspannungs-Wandler
US5180964A (en) * 1990-03-28 1993-01-19 Ewing Gerald D Zero-voltage switched FM-PWM converter
US5231563A (en) * 1990-09-07 1993-07-27 Itt Corporation Square wave converter having an improved zero voltage switching operation
US5126931A (en) * 1990-09-07 1992-06-30 Itt Corporation Fixed frequency single ended forward converter switching at zero voltage
US5088019A (en) * 1990-09-18 1992-02-11 Hewlett-Packard Company Low harmonic current and fault tolerant power supply
US5134355A (en) * 1990-12-31 1992-07-28 Texas Instruments Incorporated Power factor correction control for switch-mode power converters
US5206800A (en) * 1991-03-13 1993-04-27 Astec International, Ltd. Zero voltage switching power converter with secondary side regulation
US5173846A (en) * 1991-03-13 1992-12-22 Astec International Ltd. Zero voltage switching power converter
US5097196A (en) * 1991-05-24 1992-03-17 Rockwell International Corporation Zero-voltage-switched multiresonant DC to DC converter
JP3199423B2 (ja) * 1991-11-01 2001-08-20 オリジン電気株式会社 共振形フォワードコンバ−タ
US5331534A (en) * 1991-11-20 1994-07-19 Tokyo Electric Co., Ltd. Power supply apparatus
US5224025A (en) * 1992-04-21 1993-06-29 Wisconsin Alumni Research Foundation Forward converter with two active switches and unity power factor capability
US5262930A (en) * 1992-06-12 1993-11-16 The Center For Innovative Technology Zero-voltage transition PWM converters
US5264780A (en) * 1992-08-10 1993-11-23 International Business Machines Corporation On time control and gain circuit
DE4328458B4 (de) * 1992-08-25 2005-09-22 Matsushita Electric Industrial Co., Ltd., Kadoma Schalt-Spannungsversorgung
US5442539A (en) * 1992-10-02 1995-08-15 California Institute Of Technology CuK DC-to-DC switching converter with input current shaping for unity power factor operation
US5327333A (en) * 1992-11-25 1994-07-05 At&T Bell Laboratories Push push DC-DC reduced/zero voltage switching converter with off-set tapped secondary winding
JP2767781B2 (ja) * 1993-09-17 1998-06-18 東光株式会社 Ac−dcコンバータ
JP3260024B2 (ja) * 1993-11-15 2002-02-25 株式会社東芝 電源回路
US5446366A (en) * 1994-02-08 1995-08-29 Computer Products, Inc. Boost converter power supply with reduced losses, control circuit and method therefor
US5673184A (en) * 1994-09-01 1997-09-30 Deutsche Thomson-Brandt Gmbh Switch mode power supply circuit with increased power factor for mains
US5600546A (en) * 1995-10-16 1997-02-04 Computer Products, Inc. Input harmonic current corrected AC-to-DC converter with multiple coupled primary windings
US5652700A (en) * 1995-10-16 1997-07-29 Computer Products, Inc. Low cost AC-to-DC converter having input current with reduced harmonics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5168436A (en) * 1990-09-26 1992-12-01 Allied-Signal Inc. Uninterruptible power supply
US5301095A (en) * 1991-10-01 1994-04-05 Origin Electric Company, Limited High power factor AC/DC converter
US5343378A (en) * 1992-01-30 1994-08-30 Nec Corporation Power circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100438285C (zh) * 2003-06-06 2008-11-26 半导体元件工业有限责任公司 频率受控的功率因数校正电路和方法
CN107210683A (zh) * 2015-02-13 2017-09-26 住友电气工业株式会社 转换器和控制电路
CN107210683B (zh) * 2015-02-13 2019-08-16 住友电气工业株式会社 转换器和控制电路

Also Published As

Publication number Publication date
US5652700A (en) 1997-07-29
DE69635645D1 (de) 2006-02-02
JP3749579B2 (ja) 2006-03-01
JPH09266670A (ja) 1997-10-07
CN1151630A (zh) 1997-06-11
EP0768748A3 (en) 1998-10-14
EP0768748A2 (en) 1997-04-16
EP0768748B1 (en) 2005-12-28
DE69635645T2 (de) 2006-07-06
US5995383A (en) 1999-11-30

Similar Documents

Publication Publication Date Title
CN1074202C (zh) 交流到直流电力变换器及变换方法
Poorali et al. Analysis of the integrated SEPIC-flyback converter as a single-stage single-switch power-factor-correction LED driver
US8233298B2 (en) Power factor correction rectifier that operates efficiently over a range of input voltage conditions
US8503199B1 (en) AC/DC power converter with active rectification and input current shaping
CN1041984C (zh) 脉宽调制直流-直流升压转换器
US5600546A (en) Input harmonic current corrected AC-to-DC converter with multiple coupled primary windings
CN100438291C (zh) 开关电源装置
CN102332813B (zh) 功率因数校正效能改进电路、使用该电路的变换器以及制造变换器的方法
US9444355B2 (en) Method and apparatus for determining a bridge mode for power conversion
TWI813687B (zh) 圖騰柱型單相功因修正轉接器
CN211656002U (zh) 一种谐振无桥升压功率因数校正ac-dc变换器
KR20190115364A (ko) 단상 및 3상 겸용 충전기
CN110808681A (zh) 一种无源pfc谐振变换器及其控制方法
CN215528878U (zh) 一种开关电源装置
KR20170116415A (ko) 단일-스테이지 ac-dc 플라이백 컨버터 회로
CN111543001A (zh) 具有ac正激电桥和改进的dc/dc拓扑的逆变器
Jiang et al. A single-stage 6.78 MHz transmitter with the improved light load efficiency for wireless power transfer applications
CN1243405C (zh) 分布式电源系统
CN1220324C (zh) 开关电源电路
CN111835208B (zh) 一种具有pfc电路的开关电源
CN209767394U (zh) 自跟随飞跨电容五电平ac-ac变换器
Farcas et al. A novel topology based on forward converter with passive power factor correction
KR102456452B1 (ko) 액티브 디커플링 동작을 수행하는 전력 변환 장치
CN111414032B (zh) 一种调压电路
Babaei et al. A New Topology of Embedded ZH Buck-Boost Converter

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: HARTING TECHNOLOGY CO., LTD.

Free format text: FORMER NAME OR ADDRESS: COMPUTER PRODUCT COMPANY

CP01 Change in the name or title of a patent holder

Address after: American Florida

Patentee after: Artesyn Technologies Inc.

Address before: American Florida

Patentee before: Computer Products, Inc.

C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee