CN107385360A - 一种双相不锈钢钢筋及其制备方法 - Google Patents

一种双相不锈钢钢筋及其制备方法 Download PDF

Info

Publication number
CN107385360A
CN107385360A CN201710544580.4A CN201710544580A CN107385360A CN 107385360 A CN107385360 A CN 107385360A CN 201710544580 A CN201710544580 A CN 201710544580A CN 107385360 A CN107385360 A CN 107385360A
Authority
CN
China
Prior art keywords
reinforcing bar
stainless steel
phase stainless
phase
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710544580.4A
Other languages
English (en)
Other versions
CN107385360B (zh
Inventor
陈颖
杨忠民
王慧敏
李昭东
雍岐龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ADVANCED STEEL TECHNOLOGY Co Ltd
Central Iron and Steel Research Institute
Original Assignee
ADVANCED STEEL TECHNOLOGY Co Ltd
Central Iron and Steel Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ADVANCED STEEL TECHNOLOGY Co Ltd, Central Iron and Steel Research Institute filed Critical ADVANCED STEEL TECHNOLOGY Co Ltd
Priority to CN201710544580.4A priority Critical patent/CN107385360B/zh
Publication of CN107385360A publication Critical patent/CN107385360A/zh
Application granted granted Critical
Publication of CN107385360B publication Critical patent/CN107385360B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/08Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires for concrete reinforcement
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Abstract

本发明涉及一种双相不锈钢钢筋及其制备方法,属于高强不锈钢技术领域,其合金成分包括C、Si、Mn、Cr、Ni、Mo、微合金元素、N、P、S和Fe;微合金元素为Nb、V和Ti中的一种或多种;并通过熔炼、连铸、热轧、冷却和固溶,得到双相不锈钢钢筋,在保证生产成本基本不变的前提下,提高了双相不锈钢钢筋的屈服强度,使其能够满足500MPa级不锈钢钢筋的要求,同时,提高了双相不锈钢钢筋的耐腐蚀性能,使其能够满足海洋环境重点工程需要。

Description

一种双相不锈钢钢筋及其制备方法
技术领域
本发明涉及一种高强不锈钢,尤其涉及一种双相不锈钢钢筋及其制备方法。
背景技术
在海洋环境中,氯离子对混凝土建筑结构的腐蚀最为严重,导致常规的普碳钢和低合金钢钢筋无法应用于苛刻的海洋腐蚀环境。
双相不锈钢具有优异的耐氯离子腐蚀性能,使其适合开发不同强度等级的钢筋材料。现有技术中,采用双相不锈钢生产钢筋,在轧制过程中钢筋的累积变形量大,钢筋的屈服强度在650MPa以上,过高的强度超出500MPa级不锈钢钢筋使用设计要求。
虽然,通过提高不锈钢钢筋中Ni和Cr的含量,能够使其达到500MPa级不锈钢钢筋的要求,但是,针对2205双相不锈钢筋没有生产数据和文献报道,同时,Ni和Cr的价格较高,提高Ni和Cr的含量会造成不锈钢钢筋生产成本加大,不利于双相不锈钢钢筋推广应用。
发明内容
鉴于上述的分析,本发明旨在提供一种双相不锈钢钢筋及其制备方法,在保证双相不锈钢钢筋生产成本基本不变的前提下,使其能够满足500MPa级不锈钢钢筋的要求,同时,提高了双相不锈钢钢筋的耐腐蚀性能,使其能够满足海洋环境重点工程需要。
本发明的目的主要是通过以下技术方案实现的:
第一方面,本发明提供了一种双相不锈钢钢筋,其合金成分包括C、Si、Mn、Cr、Ni、Mo、微合金元素、N、P、S和Fe;微合金元素为Nb、V和Ti中的一种或多种;合金成分组成的按照质量百分比为:C≤0.03%,Si 0.20%~0.80%,Mn 0.80%~1.60%,Cr 21.00%~23.00%,Ni 4.50%~5.50%,Mo 2.50%~3.50%,Nb 0.02~0.05%和/或V 0.02~0.16%和/或Ti 0.005~0.02%,N 0.15%~0.20%,P≤0.020%,S≤0.010%,余量为Fe。
进一步地,双相不锈钢钢筋包括奥氏体相和铁素体相,奥氏体相与铁素体相的组成按体积百分比为:奥氏体相40%~55%,铁素体相45%~60%。
进一步地,双相不锈钢钢筋采用如下制备方法制得:
S11:按照合金成分的组成配制原料,并对配制后的原料进行熔炼和连铸,得到钢坯;
S12:对钢坯进行热轧,得到热轧状态钢筋,开轧温度为1150℃~1200℃,终轧温度为950℃~1000℃;
S13:以150℃/s~200℃/s的速度将热轧状态钢筋冷却至300℃~350℃,冷却后的热轧状态钢筋回温至600℃~680℃;
S14:将回温后的热轧状态钢筋加热至1050℃~1100℃,并保温1h~2h,保温后进行水淬,得到双相不锈钢钢筋。
进一步地,热轧状态钢筋的屈服强度≥700MPa,抗拉强度≥780MPa,伸长率≥16%,最大力下的总伸长率≥7.5%,强屈比≥1.10。
进一步地,双相不锈钢钢筋的屈服强度≥500MPa,抗拉强度≥630MPa,伸长率≥16%,最大力下的总伸长率≥7.5%,强屈比≥1.25,室温冲击功≥200J。
另一方面,本发明还提供了一种双相不锈钢钢筋的制备方法,包括如下步骤:
S21:按照合金成分的组成配制原料,并对配制后的原料进行熔炼和连铸,得到钢坯,合金成分组成的质量百分比为:C≤0.03%,Si 0.20%~0.80%,Mn 0.80%~1.60%,Cr 21.00%~23.00%,Ni 4.50%~5.50%,Mo 2.50%~3.50%,Nb 0~0.05%,V 0~0.16%,Ti 0~0.02%,N 0.15%~0.20%,P≤0.020%,S≤0.010%,余量为Fe;
S22:对钢坯进行热轧,得到热轧状态钢筋;
S23:对热轧状态钢筋进行冷却回温;
S24:对回温后的热轧状态钢筋进行固溶,得到双相不锈钢钢筋。
进一步地,S22中,开轧温度为1150℃~1200℃,终轧温度为950℃~1000℃。
进一步地,S23中,以150℃/s~200℃/s的速度将热轧状态钢筋冷却至300℃~350℃,冷却后的热轧状态钢筋回温至600℃~680℃。
进一步地,S24中,将回温后的热轧状态钢筋加热至1050℃~1100℃,并保温1h~2h,保温后进行水淬,得到双相不锈钢钢筋。
与现有技术相比,本发明有益效果如下:
a)本发明提供的双相不锈钢钢筋与现有的2205不锈钢相比,Cr和Ni的含量基本保持不变,从而保证了后续固溶处理后该双相不锈钢钢筋的耐腐蚀性能。在保证双相不锈钢钢筋主要合金成分基本不变的前提下,添加微合金元素(Nb、V或Ti的一种或多种),并调节其他各合金成分的含量,使得上述双相不锈钢钢筋能够满足500MPa级不锈钢钢筋,以满足海洋环境重点工程的要求。
b)本发明提供的双相不锈钢钢筋中铁素体相和奥氏体相的体积接近,Cr和Ni均匀固溶于铁素体相和奥氏体相中,从而实现提高屈服强度和抗拉强度、耐氯离子腐蚀、耐应力腐蚀、耐点蚀的性能。
c)本发明提供的双相不锈钢钢筋在制备过程中,对钢坯进行热轧以及快速冷却,能够利用微合金元素的作用细化奥氏体晶粒,利用析出强化,细化和强化双相不锈钢钢筋中的铁素体相,轧制后快速冷却避免了σ脆性相在奥氏体和铁素体两相的界面析出带来的韧性降低以及耐孔蚀性能降低的问题。而对冷却后的热轧状态钢筋进行固溶,有利于碳化物的溶解以及Cr、Ni在奥氏体相和铁素体相中的均匀化,使得Ni、Cr分别固溶于奥氏体相和铁素体相中,保证双相不锈钢钢筋中铁素体相和奥氏体相的比例接近,从而提高耐Cl-腐蚀、耐应力腐蚀、耐点蚀的性能。固溶温度和保温时间是决定两相比例的关键因素。而在固溶的保温过程中,微合金元素能够钉扎奥氏体晶界,抑制铁素体晶粒的生长,抵消了固溶而造成的屈服强度和抗拉强度下降,使双相不锈钢钢筋的屈服强度和抗拉强度等指标满足500MPa级钢筋的性能要求。
d)本发明提供的双相不锈钢钢筋在热轧状态下的Rp0.2(屈服强度)可以达到700MPa以上,Rm(抗拉强度)为780MPa以上,A(伸长率)为16%以上,Agt(最大力下的总伸长率)为7.5%以上,强屈比为1.10以上;而其在固溶状态下的Rp0.2可以达到500MPa以上,Rm为630MPa以上,A为16%以上,Agt为7.5%以上,强屈比为1.25以上,室温冲击功为200J以上,上述性能均满足500MPa级不锈钢钢筋的要求。
本发明的其他特征和优点将在随后的说明书中阐述,并且,部分的从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在所写的说明书、权利要求书、以及实施例所特别指出的结构来实现和获得。
具体实施方式
下面具体描述本发明的优选实施例。
第一方面,本发明提供了一种双相不锈钢钢筋,在2205不锈钢的成分基础上通过添加微合金元素来提高双相不锈钢钢筋的屈服强度和抗拉强度,该双相不锈钢钢筋的合金成分组成的质量百分比为:C≤0.03%,Si 0.20%~0.80%,Mn 0.80%~1.60%,Cr21.00%~23.00%,Ni 4.50%~5.50%,Mo 2.50%~3.50%,Nb 0~0.05%,V 0~0.16%,Ti 0~0.02%,N 0.15%~0.20%,P≤0.020%,S≤0.010%,余量为Fe以及不可避免的杂质元素。
其中,所谓微合金元素是指Nb、V和Ti中的一种或多种。需要说明的是,由于本发明的设计思路是通过添加微合金素来提高固溶处理的双相不锈钢钢筋的屈服强度和抗拉强度,因此,不存在双相不锈钢钢筋的合金成分中不包括微合金元素的情况。
本发明提供的双相不锈钢钢筋与现有的2205不锈钢相比,Cr和Ni的含量可采用下限控制,从而降低了该双相不锈钢钢筋的生产成本。在保证双相不锈钢钢筋主要合金成分基本不变的前提下,添加微合金元素(Nb、V或Ti的一种或多种),并调节其他各合金成分的含量,使得上述双相不锈钢钢筋能够满足500MPa级不锈钢钢筋,以满足海洋环境重点工程的要求。
具体来说,上述各元素的作用及含量的依据如下:
C是碳化物形成元素和奥氏体稳定元素,其与Cr的亲和力很大,容易形成复杂的Cr的碳化物;但是,C的含量过高会导致双相不锈钢钢筋的耐晶间腐蚀性能下降。C的含量在≤0.03%范围内,能够保证双相不锈钢钢筋的耐晶间腐蚀性能和焊接性能。
Si是铁素体形成元素,其固溶于铁素体中有明显的强化作用。同时,Si能够降低C在奥氏体中的溶解度,促使碳化物析出,提高双向不锈钢的屈服强度、抗拉强度和硬度,但是,Si的含量过高会增加双向不锈钢的脆性,不利于加工。Si的含量在0.20%~0.80%范围内,能够保证双向不锈钢具有良好的韧性和耐晶间腐蚀性能。
Mn可以作为脱氧剂、脱硫剂和奥氏体稳定化元素,用于净化钢液,提高双相不锈钢钢筋的屈服强度和抗拉强度,但是,Mn的含量过高会导致双相不锈钢钢筋的腐蚀性和耐氧化性下降。因此,上述双相不锈钢钢筋中,根据钢筋的尺寸规格,Mn的含量在0.80%~1.60%范围内。
Cr是铁素体形成元素和铁素体稳定元素,其可以促进双相不锈钢钢筋的钝化并保持稳定的钝态。同时,Cr固溶于奥氏体中,能够提高双相不锈钢钢筋的屈服强度和抗拉强度且不会降低韧性,缩小奥氏体区,推迟过冷奥氏体转变,增加双相不锈钢钢筋的淬透性,提高双相不锈钢钢筋的耐晶间腐蚀性和抗氧化性。因此,上述双相不锈钢钢筋中,Cr的含量在21.00%~23.00%范围内。
Ni是奥氏体形成元素,能够减缓双相不锈钢钢筋的腐蚀现象,且在加热过程中,Ni可以抑制晶粒的生长,改善双相不锈钢钢筋钢筋的组织,提高双相不锈钢钢筋的耐腐蚀性能及加工性能,使其具有良好的强度、塑性和韧性。因此,上述双相不锈钢钢筋中,Ni的含量在4.50%~5.50%范围内。
Mo是碳化物形成元素和形成铁素体的元素,能够抑制奥氏体在加热过程中晶粒的生长,降低双相不锈钢钢筋的过热敏感性。同时,Mo能够使双相不锈钢钢筋的钝化层更加致密牢固,从而有效地提高双相不锈钢钢筋的耐Cl-腐蚀性。因此,上述双相不锈钢钢筋中,Mo的含量在2.50%~3.50%范围。
N是奥氏体形成元素和奥氏体稳定元素,能够提高双相不锈钢钢筋的屈服强度、抗拉强度和耐腐蚀性能,用于代替部分Ni,由于N的价格通常低于Ni,从而能够在保证屈服强度、抗拉强度和耐腐蚀性能的前提下,降低双相不锈钢钢筋的生产成本。因此,上述双相不锈钢钢筋中,N的含量在0.15%~20%范围内。
Nb/V/Ti用于减少碳化铬的形成,扎钉奥氏体晶界,抑制铁素体晶粒生长,从而能够提高双相不锈钢钢筋的屈服强度和抗拉强度。其中,Ti的析出物能够提高耐晶间腐蚀能力,但是会导致耐点腐蚀性能的降低。因此,上述双相不锈钢钢筋中,Nb的含量在0~0.05%范围内,V的含量在0.02%~0.16%范围内,Ti的含量在0.005%~0.02%范围内。
P/S是双相不锈钢钢筋中的有害元素,对双相不锈钢钢筋的耐腐蚀性会产生不利影响,尤其是硫化物会形成腐蚀源。因此,上述双相不锈钢钢筋中,P和S的含量在P≤0.020%,S≤0.010%范围内。
为了能够进一步提高上述双相不锈钢钢筋的耐腐蚀性能,可以使铁素体相和奥氏体相的体积接近,示例性地,奥氏体相与铁素体相的组成按体积百分比为:奥氏体相40%~55%,铁素体相45%~60%。铁素体相和奥氏体相的比例接近,Cr和Ni均匀固溶于铁素体相和奥氏体相中,从而实现提高屈服强度和抗拉强度、耐氯离子腐蚀、耐应力腐蚀、耐点蚀的性能。
考虑到,上述双相不锈钢钢筋在制备过程中,制备方法以及工艺参数会对双相不锈钢钢筋的微观结构产生影响,其可以采用如下制备方法制得:
S11:按照上述合金成分的组成配制原料,并对配制后的原料进行熔炼和连铸,得到钢坯;
S12:对钢坯进行热轧,得到热轧状态钢筋,开轧温度为1150℃~1200℃,终轧温度为950℃~1000℃;
S13:以150℃/s~200℃/s的速度将热轧状态钢筋冷却至300℃~350℃,冷却后的热轧状态钢筋回温至600℃~680℃;
S14:将回温后的热轧状态钢筋加热至1050℃~1100℃,并保温1h~2h,保温后进行水淬,从而完成对冷却后的热轧状态钢筋的固溶处理,得到两相比例接近的双相不锈钢钢筋。
在上述制备过程中,对钢坯进行热轧以及快速冷却,能够细化和强化奥氏体相和铁素体相,同时避免脆性相析出。而对冷却后的热轧状态钢筋进行合理设置固溶温度和保温时间,有利于碳化物的溶解以及Cr、Ni在奥氏体相和铁素体相中的均匀化,使得Ni、Cr分别固溶于奥氏体相和铁素体相中,保证双相不锈钢钢筋中铁素体相和奥氏体相的比例接近,从而提高耐Cl-腐蚀、耐应力腐蚀、耐点蚀的性能。而在固溶的保温过程中,微合金元素能够钉扎奥氏体晶界,抑制铁素体晶粒的生长,从而使双相不锈钢钢筋的屈服强度和抗拉强度等指标满足500MPa级钢筋的性能要求。
采用上述合金成分和制备方法制得的双相不锈钢钢筋,热轧状态钢筋的Rp0.2(屈服强度)可以达到700MPa以上,Rm(抗拉强度)为780MPa以上,A(伸长率)为16%以上,Agt(最大力下的总伸长率)为7.5%以上,强屈比为1.10以上;而双相不锈钢钢筋的Rp0.2可以达到500MPa以上,Rm为630MPa以上,A为16%以上,Agt为7.5以上,强屈比为1.25以上,室温冲击功为200J以上。
另一方面,本发明还提供了一种双相不锈钢钢筋的制备方法,包括如下步骤:
S21:按照合金成分的组成配制原料,并对配制后的原料进行熔炼和连铸,得到钢坯,其中,合金成分组成的质量百分比为:C≤0.03%,Si 0.20%~0.80%,Mn 0.80%~1.60%,Cr 21.00%~23.00%,Ni 4.50%~5.50%,Mo 2.50%~3.50%,Nb 0~0.05%,V0~0.16%,Ti 0~0.02%,N 0.15%~0.20%,P≤0.020%,S≤0.010%,余量为Fe;
S22:对钢坯进行热轧,得到热轧状态钢筋;
S23:对热轧状态钢筋进行冷却回温;
S24:对回温后的热轧状态钢筋进行固溶,得到双相不锈钢钢筋。
与现有技术相比,本发明提供的双相不锈钢钢筋的制备方法中,对钢坯进行热轧以及快速冷却,能够细化和强化奥氏体相和铁素体相,同时避免脆性相析出。而对冷区后的热轧状态钢筋进行固溶,有利于碳化物的溶解以及Cr、Ni在奥氏体相和铁素体相中的均匀化,使得Ni、Cr分别固溶于奥氏体相和铁素体相中,保证双相不锈钢钢筋中铁素体相和奥氏体相的比例接近,从而提高耐Cl-腐蚀、耐应力腐蚀、耐点蚀的性能。而在固溶的保温过程中,微合金元素能够钉扎奥氏体晶界,抑制铁素体晶粒的生长,从而抵消了固溶而造成的强度下降,使双相不锈钢钢筋的屈服强度和抗拉强度等性能指标满足500MPa级钢筋的要求。
需要说明的是,热轧状态钢筋冷却后的回温为自然回温,不涉及加热的过程,之所以存在回温过程是因为,热轧状态钢筋在冷却过程中存在温度不均匀的现象,钢筋内部的温度高、钢筋表面的温度低,从而在冷却完成后,会存在自然回温。
具体来说,上述双相不锈钢钢筋的制备方法,包括如下步骤:
S21:按照上述合金成分的组成配制原料,并对配制后的原料进行熔炼和连铸,得到钢坯;
S22:对钢坯进行热轧,得到热轧状态钢筋,开轧温度为1150℃~1200℃,终轧温度为950℃~1000℃;
S23:以150℃/s~200℃/s的速度将热轧状态钢筋冷却至300℃~350℃,冷却后的热轧状态钢筋回温至600℃~680℃;
S24:将回温后的热轧状态钢筋加热至1050℃~1100℃,并保温1h~2h,保温后进行水淬,从而完成对冷却后的热轧状态钢筋的固溶处理,得到双相不锈钢钢筋。
采用本发明提供的合金成分的组成以及制备方法制备直径为16mm~32mm的双相不锈钢钢筋(实施例1至实施例9),合金成分的组成如表1如示,工艺参数如表2所示。
表1实施例1至实施例9的合金成分组成(wt%)
表2实施例1至实施例9的工艺参数
对上述实施例1至实施例9的双相不锈钢钢筋进行分别进行热轧状态性能测试(如表3所示)以及固溶状态性能测试(如表4所示)。
表3本发明不锈钢钢筋热轧状态的拉伸性能
Rp0.2/MPa Rm/MPa A/% Agt/% 强屈比
实施例1 720 799 29.5 17.5 1.11
实施例2 731 813 30.0 18.8 1.11
实施例3 730 817 33.0 20.5 1.12
实施例4 718 792 30.5 16.8 1.10
实施例5 720 801 31.5 18.3 1.11
实施例6 725 805 30.0 18.5 1.11
实施例7 728 810 34.0 21.8 1.11
实施例8 739 819 35.5 20.9 1.11
实施例9 723 798 37.0 23.0 1.10
表4本发明不锈钢钢筋固溶处理状态的拉伸性能
Rp0.2/MPa Rm/MPa A/% Agt/% 强屈比 室温冲击功/J
实施例1 530 771 42.5 25.0 1.45 335
实施例2 583 795 35.5 19.5 1.36 328
实施例3 557 762 36.8 20.6 1.37 331
实施例4 522 772 39.5 25.0 1.48 333
实施例5 522 776 44.0 25.5 1.49 341
实施例6 538 773 39.0 21.5 1.44 335
实施例7 541 759 36.5 20.5 1.40 323
实施例8 558 770 37.0 21.0 1.38 329
实施例9 561 765 37.0 23.0 1.36 325
从表3和表4可以看出,采用本发明提供的合金成分的组成以及制备方法制备的双相不锈钢钢筋,其在热轧状态下的Rp0.2为718MPa以上(718MPa~739MPa),Rm为792MPa以上(792MPa~819MPa),A为29.5%以上(29.5%~37.0%),Agt为16.8%以上(16.8%~23%),强屈比为1.10以上(1.10~1.12);而其在固溶状态下的Rp0.2为522MPa以上(522MPa~583MPa),Rm为759MPa以上(759MPa~795MPa),A为35.5%以上(35.5%~44.0%),Agt为19.5%以上(19.5%~25.5%),强屈比为1.36以上(1.36~1.49),室温冲击功为325J以上(325J~341J),实施例1至实施例9的全部性能参数均满足500MPa级不锈钢钢筋的要求。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (9)

1.一种双相不锈钢钢筋,其特征在于,所述双相不锈钢钢筋的合金成分包括C、Si、Mn、Cr、Ni、Mo、微合金元素、N、P、S和Fe;
所述微合金元素为Nb、V和Ti中的一种或多种;
所述合金成分组成的质量百分比为:C≤0.03%,Si 0.20%~0.80%,Mn 0.80%~1.60%,Cr 21.00%~23.00%,Ni 4.50%~5.50%,Mo2.50%~3.50%,Nb 0.02~0.05%和/或V 0.02~0.16%和/或Ti 0.005~0.02%,N 0.15%~0.20%,P≤0.020%,S≤0.010%,余量为Fe。
2.根据权利要求1所述的双相不锈钢钢筋,其特征在于,所述双相不锈钢钢筋包括奥氏体相和铁素体相,所述奥氏体相与所述铁素体相的组成按体积百分比为:奥氏体相40%~55%,铁素体相45%~60%。
3.根据权利要求1所述的双相不锈钢钢筋,其特征在于,所述双相不锈钢钢筋采用如下制备方法制得:
S11:按照所述合金成分的组成配制原料,并对配制后的原料进行熔炼和连铸,得到钢坯;
S12:对所述钢坯进行热轧,得到热轧状态钢筋,开轧温度为1150℃~1200℃,终轧温度为950℃~1000℃;
S13:以150℃/s~200℃/s的速度将所述热轧状态钢筋冷却至300℃~350℃,冷却后的热轧状态钢筋回温至600℃~680℃;
S14:将回温后的热轧状态钢筋固溶处理,加热至1050℃~1100℃,并保温1h~2h,保温后进行水淬,得到双相不锈钢钢筋。
4.根据权利要求3所述的双相不锈钢钢筋,其特征在于,所述热轧状态钢筋的屈服强度≥700MPa,抗拉强度≥780MPa,伸长率≥16%,最大力下的总伸长率≥7.5%,强屈比≥1.10。
5.根据权利要求3所述的双相不锈钢钢筋,其特征在于,所述双相不锈钢钢筋的屈服强度≥500MPa,抗拉强度≥630MPa,伸长率≥16%,最大力下的总伸长率≥7.5%,强屈比≥1.25,室温冲击功≥200J。
6.一种双相不锈钢钢筋的制备方法,其特征在于,所述制备方法包括如下步骤:
S21:按照合金成分的组成配制原料,并对配制后的原料进行熔炼和连铸,得到钢坯,所述合金成分组成的质量百分比为:C≤0.03%,Si0.20%~0.80%,Mn 0.80%~1.60%,Cr21.00%~23.00%,Ni 4.50%~5.50%,Mo 2.50%~3.50%,Nb 0~0.05%,V 0~0.16%,Ti 0~0.02%,N 0.15%~0.20%,P≤0.020%,S≤0.010%,余量为Fe;
S22:对所述钢坯进行热轧,得到热轧状态钢筋;
S23:对所述热轧状态钢筋进行冷却回温;
S24:对回温后的热轧状态钢筋进行固溶处理,得到双相不锈钢钢筋。
7.根据权利要求6所述双相不锈钢钢筋的制备方法,其特征在于,所述S22中,开轧温度为1150℃~1200℃,终轧温度为950℃~1000℃。
8.根据权利要求6所述双相不锈钢钢筋的制备方法,其特征在于,所述S23中,以150℃/s~200℃/s的速度将所述热轧状态钢筋冷却至300℃~350℃,冷却后的热轧状态钢筋回温至600℃~680℃。
9.根据权利要求6所述双相不锈钢钢筋的制备方法,其特征在于,所述S24中,将回温后的热轧状态钢筋加热至1050℃~1100℃,并保温1h~2h,保温后进行水淬,得到双相不锈钢钢筋。
CN201710544580.4A 2017-07-06 2017-07-06 一种双相不锈钢钢筋及其制备方法 Active CN107385360B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710544580.4A CN107385360B (zh) 2017-07-06 2017-07-06 一种双相不锈钢钢筋及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710544580.4A CN107385360B (zh) 2017-07-06 2017-07-06 一种双相不锈钢钢筋及其制备方法

Publications (2)

Publication Number Publication Date
CN107385360A true CN107385360A (zh) 2017-11-24
CN107385360B CN107385360B (zh) 2019-03-05

Family

ID=60335485

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710544580.4A Active CN107385360B (zh) 2017-07-06 2017-07-06 一种双相不锈钢钢筋及其制备方法

Country Status (1)

Country Link
CN (1) CN107385360B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109022731A (zh) * 2018-08-09 2018-12-18 江苏星火特钢有限公司 一种高强度高耐蚀双相不锈螺纹钢及其生产方法
CN109487174A (zh) * 2018-11-30 2019-03-19 山西太钢不锈钢股份有限公司 一种兼顾高温强度与低温韧性的双相不锈钢板材制造方法
CN110212211A (zh) * 2018-02-28 2019-09-06 丰田自动车株式会社 不锈钢基材
CN110983164A (zh) * 2019-12-31 2020-04-10 福州大学 一种微合金元素Nb强化的双相不锈钢及其制备方法
JP2020100872A (ja) * 2018-12-21 2020-07-02 日鉄ステンレス株式会社 二相ステンレス鋼および溶接構造物
CN113846264A (zh) * 2021-08-27 2021-12-28 马鞍山钢铁股份有限公司 一种含锡500MPa级海洋岛礁混凝土工程用高耐蚀钢筋及其生产方法

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0220141A2 (en) * 1985-09-05 1987-04-29 Santrade Ltd. High nitrogen containing duplex stainless steel having high corrosion resistance and good structure stability
JPH0488151A (ja) * 1990-08-01 1992-03-23 Nisshin Steel Co Ltd 熱間加工性に優れた二相ステンレス鋼
CN101117689A (zh) * 2007-08-20 2008-02-06 江阴市江东不锈钢制造有限公司 03Cr22Ni4NbN奥氏体-铁素体类不锈钢及其生产工艺
CN101748343A (zh) * 2008-12-01 2010-06-23 朱浩锋 一种高耐蚀性高强度双相热轧不锈带钢及其热轧工艺
CN101812647A (zh) * 2009-02-25 2010-08-25 宝山钢铁股份有限公司 一种双相不锈钢及其制造方法
CN102021496A (zh) * 2010-12-17 2011-04-20 何建 一种双相不锈钢及其生产工艺
CN102120166A (zh) * 2010-12-17 2011-07-13 中国科学技术大学 一种低温冷等离子体磁流化床反应器
JP2011157601A (ja) * 2010-02-02 2011-08-18 Nippon Steel & Sumikin Stainless Steel Corp 耐スラブ置き割れ性および熱間加工性に優れた二相ステンレス鋼
KR20120074603A (ko) * 2010-12-28 2012-07-06 주식회사 포스코 표면품질이 우수한 듀플렉스 스테인리스강 및 이의 제조방법
CN102770572A (zh) * 2010-02-18 2012-11-07 新日铁住金不锈钢株式会社 真空容器用双相不锈钢材及其制造方法
CN102888550A (zh) * 2012-10-31 2013-01-23 钢铁研究总院 一种高纯洁度高氮双相不锈钢的冶炼方法
CN103074551A (zh) * 2013-01-14 2013-05-01 浙江大学 一种双相不锈钢合金及其制备方法
CN103298965A (zh) * 2011-01-27 2013-09-11 新日铁住金不锈钢株式会社 合金元素节减型双相不锈钢热轧钢材、具备双相不锈钢作为夹层材料的包层钢板及它们的制造方法
CN103602914A (zh) * 2013-11-15 2014-02-26 上海大学兴化特种不锈钢研究院 一种组织稳定的经济型高性能双相不锈钢
JP2016003377A (ja) * 2014-06-18 2016-01-12 新日鐵住金株式会社 二相ステンレス鋼管
CN105803351A (zh) * 2016-04-27 2016-07-27 无锡环宇精密铸造有限公司 耐腐蚀双相不锈钢铸件铸造方法
CN106391704A (zh) * 2016-11-23 2017-02-15 东北大学 一种消除2205双相不锈钢中板热加工表面裂纹的方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0220141A2 (en) * 1985-09-05 1987-04-29 Santrade Ltd. High nitrogen containing duplex stainless steel having high corrosion resistance and good structure stability
JPH0488151A (ja) * 1990-08-01 1992-03-23 Nisshin Steel Co Ltd 熱間加工性に優れた二相ステンレス鋼
CN101117689A (zh) * 2007-08-20 2008-02-06 江阴市江东不锈钢制造有限公司 03Cr22Ni4NbN奥氏体-铁素体类不锈钢及其生产工艺
CN101748343A (zh) * 2008-12-01 2010-06-23 朱浩锋 一种高耐蚀性高强度双相热轧不锈带钢及其热轧工艺
CN101812647A (zh) * 2009-02-25 2010-08-25 宝山钢铁股份有限公司 一种双相不锈钢及其制造方法
JP2011157601A (ja) * 2010-02-02 2011-08-18 Nippon Steel & Sumikin Stainless Steel Corp 耐スラブ置き割れ性および熱間加工性に優れた二相ステンレス鋼
CN102770572A (zh) * 2010-02-18 2012-11-07 新日铁住金不锈钢株式会社 真空容器用双相不锈钢材及其制造方法
CN102021496A (zh) * 2010-12-17 2011-04-20 何建 一种双相不锈钢及其生产工艺
CN102120166A (zh) * 2010-12-17 2011-07-13 中国科学技术大学 一种低温冷等离子体磁流化床反应器
KR20120074603A (ko) * 2010-12-28 2012-07-06 주식회사 포스코 표면품질이 우수한 듀플렉스 스테인리스강 및 이의 제조방법
CN103298965A (zh) * 2011-01-27 2013-09-11 新日铁住金不锈钢株式会社 合金元素节减型双相不锈钢热轧钢材、具备双相不锈钢作为夹层材料的包层钢板及它们的制造方法
CN102888550A (zh) * 2012-10-31 2013-01-23 钢铁研究总院 一种高纯洁度高氮双相不锈钢的冶炼方法
CN103074551A (zh) * 2013-01-14 2013-05-01 浙江大学 一种双相不锈钢合金及其制备方法
CN103602914A (zh) * 2013-11-15 2014-02-26 上海大学兴化特种不锈钢研究院 一种组织稳定的经济型高性能双相不锈钢
JP2016003377A (ja) * 2014-06-18 2016-01-12 新日鐵住金株式会社 二相ステンレス鋼管
CN105803351A (zh) * 2016-04-27 2016-07-27 无锡环宇精密铸造有限公司 耐腐蚀双相不锈钢铸件铸造方法
CN106391704A (zh) * 2016-11-23 2017-02-15 东北大学 一种消除2205双相不锈钢中板热加工表面裂纹的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孙玮: "《中厚板生产900问》", 31 July 2014, 冶金工业出版社 *
王振东: "《感应炉冶炼工艺技术》", 31 January 2012, 机械工业出版社 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212211A (zh) * 2018-02-28 2019-09-06 丰田自动车株式会社 不锈钢基材
CN109022731A (zh) * 2018-08-09 2018-12-18 江苏星火特钢有限公司 一种高强度高耐蚀双相不锈螺纹钢及其生产方法
CN109487174A (zh) * 2018-11-30 2019-03-19 山西太钢不锈钢股份有限公司 一种兼顾高温强度与低温韧性的双相不锈钢板材制造方法
JP2020100872A (ja) * 2018-12-21 2020-07-02 日鉄ステンレス株式会社 二相ステンレス鋼および溶接構造物
JP7183027B2 (ja) 2018-12-21 2022-12-05 日鉄ステンレス株式会社 二相ステンレス熱間圧延鋼材および溶接構造物
CN110983164A (zh) * 2019-12-31 2020-04-10 福州大学 一种微合金元素Nb强化的双相不锈钢及其制备方法
CN113846264A (zh) * 2021-08-27 2021-12-28 马鞍山钢铁股份有限公司 一种含锡500MPa级海洋岛礁混凝土工程用高耐蚀钢筋及其生产方法

Also Published As

Publication number Publication date
CN107385360B (zh) 2019-03-05

Similar Documents

Publication Publication Date Title
CN107385360B (zh) 一种双相不锈钢钢筋及其制备方法
CN103233183B (zh) 一种屈服强度960MPa级超高强度钢板及其制造方法
CN109023119B (zh) 一种具有优异塑韧性的耐磨钢及其制造方法
US10851432B2 (en) Ultra-high strength and ultra-high toughness casing steel, oil casing, and manufacturing method thereof
JP5423806B2 (ja) 高靱性耐摩耗鋼およびその製造方法
CN103422021B (zh) 一种屈服强度≥550MPa的低屈强比结构用钢及其生产方法
CN105543704A (zh) 一种高强度抗震耐火耐蚀钢板及制造方法
CN112011725A (zh) 一种低温韧性优异的钢板及其制造方法
CN102560284A (zh) 高强度高韧性x100管线钢热轧钢带及其制造方法
CN110172646A (zh) 一种船用储罐p690ql1钢板及制造方法
CN110616366A (zh) 一种125ksi钢级抗硫油井管及其制造方法
CN111809115B (zh) 耐冲击腐蚀磨损性能优异的特厚塑料模具钢及其制备方法
CN112011724B (zh) 一种极寒环境下使用的高韧性钢板及其制造方法
CN104451436A (zh) 贝氏体-马氏体-奥氏体复相耐磨钢板及制造方法
CN110358970B (zh) 屈服强度1100MPa级的焊接结构贝氏体高强钢及其制备方法
CN111809114B (zh) 具有优异高温强度的塑料模具钢及其制备方法
CN113637925B (zh) 一种调质型连续油管用钢、热轧钢带、钢管及其制造方法
CN104862612A (zh) 一种460MPa级耐低温正火钢、钢管及其制造方法
CN108300943B (zh) 一种热轧耐磨钢板及其制造方法
JP2000160300A (ja) 高耐食性を有する655Nmm−2級低C高Cr合金油井管およびその製造方法
JP4123597B2 (ja) 強度と靱性に優れた鋼材の製造法
JP6459704B2 (ja) 冷間鍛造部品用鋼
KR102174416B1 (ko) 강도 및 충격인성이 우수한 냉간압조용 저탄소 베이나이트 비조질강 및 그 제조 방법
JP3536687B2 (ja) 高耐食性および高強度を有する低C高Cr合金鋼及びその製造方法
JP2017071859A (ja) 非調質鋼およびその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant