CN107383134A - 一种c60富勒烯葡萄糖硫苷衍生物及其作为锂电池正极材料的应用 - Google Patents
一种c60富勒烯葡萄糖硫苷衍生物及其作为锂电池正极材料的应用 Download PDFInfo
- Publication number
- CN107383134A CN107383134A CN201710598278.7A CN201710598278A CN107383134A CN 107383134 A CN107383134 A CN 107383134A CN 201710598278 A CN201710598278 A CN 201710598278A CN 107383134 A CN107383134 A CN 107383134A
- Authority
- CN
- China
- Prior art keywords
- fullerenes
- glucosinolate
- formulas
- fullerene
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 0 *CC(C(C1O)O)OC(*)C1O Chemical compound *CC(C(C1O)O)OC(*)C1O 0.000 description 2
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
- C07H19/02—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
- C07H19/04—Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H1/00—Processes for the preparation of sugar derivatives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electrochemistry (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明涉及一种C60富勒烯葡萄糖硫苷衍生物及其作为锂电池正极材料的应用,所述C60富勒烯葡萄糖硫苷衍生物具有式I所示的结构:
Description
技术领域
本发明属于光电材料领域,具体涉及一种C60富勒烯葡萄糖硫苷衍生物及其作为锂电池正极材料的应用。
背景技术
在新型的电化学储能体系中,金属锂的比容量在现有的负极材料中最高(比容量可达3861m Ah/g),电位最负(为-3.045V),因此以金属锂为负极材料的储能体系是最有发展前途的高比能量体系。但是限制二次锂电池比能量提高的关键仍然是正极材料的比容量过低。因此开发一种比容量高的正极材料成为研究的热点。
富勒烯分子由于强烈的接受电子的能力以及分子中碳原子结构的弯曲特点,使得富勒烯及其衍生物在充放电方面具有较大的容量,因此,富勒烯及其衍生物被看作是比较有前景的制备锂电池阳极的材料。
发明内容
本发明提供一种C60富勒烯葡萄糖硫苷衍生物,其具有式I所示的结构:
本发明的另一实施方案提供上述式I结构的C60富勒烯葡萄糖硫苷衍生物的制备方法,其特征在于包括如下步骤:
式II所示的叠氮基葡萄糖苯硫苷与C60富勒烯于有机溶剂中,加热至80℃反应6-10小时后,继续加热至回流温度反应8-12小时后,冷却至室温,减压浓缩后,经硅胶柱层析得所述式I结构的C60富勒烯葡萄糖硫苷衍生物。
上述制备方法中,有机溶剂优选:甲苯、氯苯、DMF等;式II与C60富勒烯的摩尔比优选1:1-1:2;所述硅胶柱层析中,优选采用200-300目的硅胶,洗脱剂优选甲苯/丙酮=10:2-10:5(体积比)。
本发明的另一实施方案提供上述式I结构的C60富勒烯葡萄糖硫苷衍生物在制备锂电池正极材料中的应用。
与现有技术相比:本发明首次使用式I结构的C60富勒烯葡萄糖硫苷衍生物作为活性物质制备锂电池的正极材料,而且该正极材料首次放电容量达746mAh/g。
附图说明
图1本发明式I结构的C60富勒烯葡萄糖硫苷衍生物的高分辨质谱图
图2本发明式I结构的C60富勒烯葡萄糖硫苷衍生物的IR谱图
图3本发明式I结构的C60富勒烯葡萄糖硫苷衍生物的TG-DSC曲线
图4本发明制备的式I作为活性物质制备的正极材料的充放电性能
具体实施方式
为了便于对本发明的进一步理解,下面提供的实施例对其做了更详细的说明。但是这些实施例仅供更好的理解发明而并非用来限定本发明的范围或实施原则,本发明的实施方式不限于以下内容。
实施例1
称取C60富勒烯(1mmol)、式II化合物(1mmol,CAS登记号:236115-72-3)溶于氯苯(12mL)中,加热至80℃反应6小时后,继续加热至回流温度反应12小时后,减压浓缩后,经硅胶柱层析(固定相:200-300目的硅胶,流动相:甲苯/丙酮=10:2-10:5)得淡棕色固体(523mg,收率约为53%),即为式I化合物,经质谱(maXis超高分辨飞行时间质谱仪,图1)、红外(图2)、TG-DSC综合热分析(图3)等参数表征。
实施例2
称取C60富勒烯(2mmol)、式II化合物(1mmol,CAS登记号:236115-72-3)溶于DMF(15mL)中,加热至80℃反应10小时后,继续加热至回流温度反应8小时后,减压浓缩后,经硅胶柱层析(固定相:200-300目的硅胶,流动相:甲苯/丙酮=10:2-10:5)得淡棕色固体(542mg,收率约为55%),即为式I化合物,结构表征数据与实施例1一致。
实施例3
以本发明式I化合物为正极活性物质与金属锂组装成模拟电池,进行了电化学性能测试。
本发明采用涂覆法制备复合极片,将式I化合物、导电剂乙炔黑、粘接剂PEO按照60%、30%、10%的质量比混合,研磨均匀后,用水和正丙醇的混合溶剂(体积比1:4)调成膏状,均匀涂布在集流体上,室温下干燥24小时,剪裁成1×1cm2的极片,在60℃下真空干燥8小时备用。
模拟电池采用两电极体系,以上述方法制备的复合极片为正极,锂箔为负极,1MLi CF3SO3的二氧戊环+二甘醇二甲醚+乙二醇二甲醚+邻二甲苯溶液为电解液(体积比50%:35%:10%:5%),Cellgard2000为隔膜,在德国M.Braun公司Unilab氩气氛手套箱中组装模拟电池。
采用蓝电公司的充放电测试仪进行充放电性能测试,限制电压为1.5-3.0V。循环伏安测试采用Solarton-1280Z型电化学工作站,电压扫描范围1.5-3.0V,扫描速率为0.1或0.3m V/s。首次放电性能测试电流密度选取0.05mA/cm2,循环性能测试电流密度选取0.25mA/cm2。
实验结果表明,以本发明制备的式I作为活性物质制备的正极材料,首次放电容量达746mAh/g(图4)。
Claims (6)
1.一种C60富勒烯葡萄糖硫苷衍生物,其具有式I所示的结构:
2.权利要求1所述的式I结构的C60富勒烯葡萄糖硫苷衍生物的制备方法,其特征在于包括如下步骤:
式II所示的叠氮基葡萄糖苯硫苷与C60富勒烯于有机溶剂中,加热至80℃反应6-10小时后,继续加热至回流温度反应8-12小时后,冷却至室温,减压浓缩后,经硅胶柱层析得所述式I结构的C60富勒烯葡萄糖硫苷衍生物。
3.权利要求2所述的制备方法,其特征在于所述有机溶剂优选甲苯、氯苯或DMF。
4.权利要求2-3任一项所述的制备方法,其特征在于式II与C60富勒烯的摩尔比为1:1-1:2。
5.权利要求2-4任一项所述的制备方法,其特征在于所述硅胶柱层析采用200-300目的硅胶,洗脱剂为甲苯/丙酮,二者体积比为10:2-10:5。
6.权利要求1所述的式I结构的C60富勒烯葡萄糖硫苷衍生物在制备锂电池正极材料中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710598278.7A CN107383134A (zh) | 2017-07-20 | 2017-07-20 | 一种c60富勒烯葡萄糖硫苷衍生物及其作为锂电池正极材料的应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710598278.7A CN107383134A (zh) | 2017-07-20 | 2017-07-20 | 一种c60富勒烯葡萄糖硫苷衍生物及其作为锂电池正极材料的应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107383134A true CN107383134A (zh) | 2017-11-24 |
Family
ID=60336469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710598278.7A Pending CN107383134A (zh) | 2017-07-20 | 2017-07-20 | 一种c60富勒烯葡萄糖硫苷衍生物及其作为锂电池正极材料的应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107383134A (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1732581A (zh) * | 2002-10-31 | 2006-02-08 | 三菱化学株式会社 | 锂二次电池的正极材料的添加剂、锂二次电池的正极材料以及采用它的正极和锂二次电池 |
CN102304162A (zh) * | 2011-06-22 | 2012-01-04 | 蚌埠丰原涂山制药有限公司 | 富勒烯半乳糖类衍生物及其制备方法和应用 |
-
2017
- 2017-07-20 CN CN201710598278.7A patent/CN107383134A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1732581A (zh) * | 2002-10-31 | 2006-02-08 | 三菱化学株式会社 | 锂二次电池的正极材料的添加剂、锂二次电池的正极材料以及采用它的正极和锂二次电池 |
CN102304162A (zh) * | 2011-06-22 | 2012-01-04 | 蚌埠丰原涂山制药有限公司 | 富勒烯半乳糖类衍生物及其制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106518871B (zh) | 一种羰基共轭杂环化合物及制备与应用 | |
CN106654215B (zh) | 生物小分子与石墨烯复合材料功能膜及其制备方法 | |
CN107369825A (zh) | 一种氮掺杂碳包覆氧化锰锂离子电池复合负极材料及其制备方法与应用 | |
CN110165124B (zh) | 一种应用于锂-二硫化硒电池的双涂层隔膜及其制备方法和应用 | |
Yu et al. | Novel low-cost, high-energy-density (> 700 Wh kg− 1) Li-rich organic cathodes for Li-ion batteries | |
CN105070892A (zh) | 一种硒碳复合物的制备方法及应用 | |
Chen et al. | Carboxyl-conjugated phthalocyanines used as novel electrode materials with high specific capacity for lithium-ion batteries | |
Chen et al. | Zirconia-supported solid-state electrolytes for high-safety lithium secondary batteries in a wide temperature range | |
Karuppasamy et al. | An efficient way to achieve high ionic conductivity and electrochemical stability of safer nonaflate anion-based ionic liquid gel polymer electrolytes (ILGPEs) for rechargeable lithium ion batteries | |
CN105161692A (zh) | 一种C/MoS2复合材料的制备方法及其产品和电化学应用 | |
Chen et al. | OH-substituted 2, 3-dichloro-5, 6-dicyano-1, 4-benzoquinone as highly stable organic electrode for lithium ion battery | |
CN106025183A (zh) | 一种锂离子电池碳基柔性薄膜电极的制备方法 | |
CN114883559A (zh) | 一种萘醌-喹喔啉有机电极材料及其在水系锌离子电池中的应用 | |
CN110212162A (zh) | 一种锂硫电池用柔性凝胶硫正极及制备方法 | |
Zheng et al. | Bis-imidazole ring-containing bipolar organic small molecule cathodes for high-voltage and ultrastable lithium-ion batteries | |
CN115498264B (zh) | 锂金属电池电解液、锂金属电池 | |
Chung et al. | Formation of an SEI on a LiMn 2 O 4 cathode during room temperature charge–discharge cycling studied by soft X-ray absorption spectroscopy at the Fluorine K-edge | |
Wang et al. | Tetra-β-nitro-substituted phthalocyanines: a new organic electrode material for lithium batteries | |
CN109400852A (zh) | 一种基于蒽醌的有机聚合物及制备方法和作为锂离子电池正极材料的应用 | |
CN105047914A (zh) | 一种锂离子电池负极材料二硫化钼/碳及其制备方法 | |
CN108864104A (zh) | 一种5,7,12,14-四氮-6,13-并五苯醌电极材料及其制备方法和应用 | |
Liu et al. | Point defect engineering enabled the high ionic conductivity of BaSnF4 for solid-state fluoride-ion batteries at room temperature | |
Hirata et al. | Effects of lithium bis (fluorosulfonyl) imide concentration on performances of lithium-ion batteries containing sulfolane-based electrolytes | |
Tao et al. | Two phenanthrenequinone-based compound cathode materials for lithium ion batteries | |
CN113258052A (zh) | 均匀改性的硅基锂离子电池负极材料及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20171124 |
|
RJ01 | Rejection of invention patent application after publication |