CN107376959A - 一种磁性生物炭负载磷酸银复合光催化剂的制备及其应用 - Google Patents

一种磁性生物炭负载磷酸银复合光催化剂的制备及其应用 Download PDF

Info

Publication number
CN107376959A
CN107376959A CN201710544696.8A CN201710544696A CN107376959A CN 107376959 A CN107376959 A CN 107376959A CN 201710544696 A CN201710544696 A CN 201710544696A CN 107376959 A CN107376959 A CN 107376959A
Authority
CN
China
Prior art keywords
znfe
magnetic bio
biochar
bio charcoal
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710544696.8A
Other languages
English (en)
Inventor
戴友芝
周璐露
郭婧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN201710544696.8A priority Critical patent/CN107376959A/zh
Publication of CN107376959A publication Critical patent/CN107376959A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Catalysts (AREA)

Abstract

提供了一种磁性生物炭负载磷酸银复合光催化剂的制备及其应用。首先以锌盐、铁盐和生物质为原料,通过“一锅法”制备吸附性能好且易于回收的磁性生物炭(Biochar‑ZnFe2O4),再采用原位沉淀法将Ag3PO4负载于磁性生物炭表面,制得负载磷酸银的新型磁性生物炭,即本发明所提出的复合光催化剂(Biochar‑ZnFe2O4/Ag3PO4)。本发明所制备的磁性生物炭是以ZnFe2O4为磁介质的生物炭,一方面利用生物炭(Biochar)的吸附和导电性,另一方面借助ZnFe2O4与Ag3PO4形成的异质结,协同增加Ag3PO4的光吸收范围和强度并抑制Ag3PO4的光腐蚀,有效提高复合材料的光催化活性。将该复合光催化剂应用于处理双酚A(BPA)难生物降解有机废水,60分钟对BPA(20 mg/L)的去除率高达98.28%,矿化率可达86.08%。

Description

一种磁性生物炭负载磷酸银复合光催化剂的制备及其应用
技术领域
本发明涉及一种磁性生物炭负载磷酸银复合光催化剂的制备及其应用,具体涉及以铁酸锌为磁性介质的磁性生物炭(Biochar-ZnFe2O4)的 “一锅法”制备和磁性生物炭/磷酸银复合光催化剂(Biochar-ZnFe2O4/Ag3PO4)的制备方法及其应用,属于纳米复合材料及环境治理光催化技术领域。
背景技术
在过去十年中,环境内分泌干扰物质(EDCs)带来的污染日益严重,其中应用广泛的双酚A(BPA)在低浓度就能对人类或动物的内分泌功能造成干扰,对人类健康和生态系统安全构成潜在的威胁,如何更安全有效的去除环境中己经存在的BPA成为我们亟待解决的问题。近年来,降解处理双酚A的方法主要有生物法、物理吸附法、化学氧化法等,但皆属探索阶段,其中,光化学氧化法在BPA的去除方面展现出巨大的潜力与良好的应用前景。
半导体光催化氧化技术具有彻底降解污染物并矿化而不产生二次污染等优势,因此,利用半导体光催化技术处理环境中的难降解有机污染物被视为是具有广阔应用前景的环保高新技术。如何高效利用太阳能,开发可行、高效的半导体光催化材料是广大研究者的研究重点。
Ag3PO4是叶金花课题组于2010年发现的具有高效光催化氧化能力的新型可见光响应型半导体催化剂,其量子产率远高于其他半导体,光生空穴也表现出较强的光催化氧化能力。但Ag3PO4易于光腐蚀的缺陷和难于固液分离回收的问题是限制其进一步应用的两个技术瓶颈,同时,比表面积较小、制备成本较高,这都限制了它的大规模工业应用。因此,目前大多数研究工作都集中在开发Ag3PO4基新型复合光催化材料,以提高Ag3PO4的稳定性,从而增加其光催化活性,同时解决回收问题。
为解决Ag3PO4易光腐蚀的问题,不少研究者选择将Ag3PO4与碳材料复合(包括碳微球(CMSs)、氧化石墨稀(GO)、碳纳米管(CNTs)等),研究表明不同碳材料与磷酸银复合均能提高其光催化活性和稳定性。与同类碳材料相比,生物炭具有制备原料来源丰富,制备工艺相对简单,成本低廉等优势,既有利于未来实际投产使用,又将有助于进一步提升自然生物质资源的科学利用价值。更重要的是,生物炭(Biochar)表面官能团丰富,这将有利于光催化降解有机物过程产生更多的反应活性物种;同时,生物炭具有优良的光学和导电性能,能促进复合光催化剂光生电子-空穴对的有效分离,有效增加其光响应范围和强度。
对光催化剂负磁是解决纳米材料分离回收困难问题的有效手段,FeOx常被用作磁性介质,然而Fe3O4与Ag3PO4复合后,复合材料光腐蚀现象依然存在,而且光催化活性提高不明显。同样具有磁分离特性的窄带隙半导体(1.9eV)铁酸锌(ZnFe2O4)具有较强的化学稳定性、热稳定性、可见光响应性,更重要的是已有研究证实ZnFe2O4与Ag3PO4复合能形成异质结,可降低复合材料的电子-空穴复合率,增强材料的光催化活性。
利用碳材料和铁酸锌的优势,我们曾提出碳材料、ZnFe2O4、Ag3PO4三元(如RGO/ZnFe2O4/Ag3PO4、CMSs@ZnFe2O4@Ag3PO4)复合光催化剂的制备方法,其中磁性碳材料载体(碳材料与ZnFe2O4复合)的制备过程须分两步进行,即先单独制备出碳材料GO(RGO),再采用水热法将碳材料与锌盐、铁盐合成磁性碳材料载体(RGO/ZnFe2O4);或先以溶剂热法单独制备出ZnFe2O4,再采用水热法将ZnFe2O4与碳源合成磁性碳材料载体(CMSs@ZnFe2O4);上述两种途径制备ZnFe2O4的过程均须以结晶乙酸钠作为沉淀剂。因此,该磁性碳材料载体的制备方法相对较复杂,制备成本较高,而且所制得的磁性碳材料载体缺乏多尺度分级结构和复杂形貌。
目前还没有将ZnFe2O4为磁性介质的生物炭(Biochar-ZnFe2O4)应用于光催化领域的报道,也没有将磁性生物炭与Ag3PO4复合制备光催化材料的报道。
发明内容
本发明的目的是为了解决Ag3PO4光催化剂易于光腐蚀及难以分离回收的问题,增强Ag3PO4的光催化活性,提高其对有机物光催化降解的矿化率。为此,本发明提供了一种光催化活性高,且易于分离回收的磁性生物炭(Biochar-ZnFe2O4)负载Ag3PO4复合光催化剂(Biochar-ZnFe2O4/Ag3PO4)的制备方法及其应用,同时提供一种简单可行的“一锅法”制备载体磁性生物炭(Biochar-ZnFe2O4)的方法。
实现本发明所采用的技术解决方案为:提供一种磁性生物炭负载磷酸银复合光催化剂的制备方法,按以下步骤进行:
(A)“一锅法”制备磁性生物炭(Biochar-ZnFe2O4
(A1)取具有多维分级结构的生物质材料,加入一定量的铁盐溶液并搅拌10~40 min,再加入一定量的锌盐溶液,并置于聚四氟乙烯反应釜在150~250°C下反应5~10 h,制得磁性生物炭前驱体;
(A2)将磁性生物炭前驱体经洗涤于60~100°C(优选70~80°C)干燥后,在氮气保护下,程序升温至300~800°C煅烧1~4 h,待自然冷却后取出;
(A3)将上述取出的材料于6mol/L的氢氧化钠溶液搅拌2~8h(优选4~6 h),再经超纯水洗涤后,磁分离并干燥,研磨过80目筛,制得所述磁性生物炭;
(B)制备磁性生物炭/磷酸银复合光催化剂(Biochar-ZnFe2O4/Ag3PO4
(B1)取磁性生物炭分散在散在醇溶液中并经超声处理(超声时间优选10~30min),而后加入AgNO3溶液并机械搅拌 (优选6~18 h,更优选8~12 h);
(B2)将碱金属磷酸盐溶液缓慢滴加至上述分散液中,滴完后并继续反应0.5~1 h,反应所得沉淀物经超纯水反复洗涤后,将其磁分离、干燥、研磨过筛,即得所述磁性生物炭/磷酸银复合光催化剂(Biochar-ZnFe2O4/Ag3PO4)。
优选的是:步骤(A1)中的铁盐为氯化铁、硝酸铁或高铁酸钾中的一种或多种组成的混合物;锌盐为氯化锌、硝酸锌或乙酸锌中的一种或多种组成的混合物;优选高铁酸钾(K2FeO4)、硝酸铁(Fe (NO3)2·9H2O)和乙酸锌(Zn(CH3COO)2)、硝酸锌(Zn(NO3)2·6H2O);更优选的是两种盐溶液的浓度均为0.1mol/L。
优选的是:步骤(A1)中的生物质为生物纤维素、花粉、植物叶片、等;更优选的是,加入的高铁酸钾(K2FeO4)、乙酸锌(Zn(CH3COO)2·2H2O)与生物质的质量之比优选1:1:0.1~0.6,加入的硝酸铁(Fe (NO3)2·9H2O)、硝酸锌(Zn(NO3)2·6H2O)与生物质的质量之比优选1:0.75:0.0625~0.375;。
优选的是:步骤(A1)中水热釜应置于160~180°C温度下发生反应。
优选的是:步骤(A2)中,煅烧温度优选为400~700°C。
优选的是:步骤(B1)中醇溶液为乙醇溶液,更优选的是,该乙醇溶液是用超纯水和无水乙醇按体积比为1:1~10配制的,进一步优选1:4。
优选的是:步骤(B1)中加入AgNO3的质量与磁性生物炭(Biochar-ZnFe2O4)的质量之比为1:0.05~0.5。
优选的是:步骤(B2)中碱金属磷酸盐溶液为磷酸氢二钠,且加入的 Na2HPO4·12H2O摩尔量与AgNO3的摩尔量之比为1:1~3.5,优选1:2~3。
此外,本发明还提供一种磁性生物炭负载磷酸银复合光催化剂的应用,具体为:将磁性生物炭负载磷酸银复合光催化剂应用于处理双酚A(BPA)难降解有机废水。
另外,本发明还提供一种磁性生物炭负载磷酸银复合光催化剂的应用方法,即:向BPA水溶液中加入磁性生物炭/磷酸银复合光催化剂(Biochar-ZnFe2O4/Ag3PO4),先进行暗吸附反应,待达到吸附平衡后进行可见光光照降解污染物的实验,并按一定时间间隔取样测定BPA浓度以及溶液中的TOC浓度,实验结束后通过外加磁场实现复合光催化剂的快速分离回收。
作为优选,废水中所含的双酚A与复合光催化剂的质量之比为1:5~100,优选1:10~50,进一步优选1:12.5~25。
本发明的有益技术效果在于:
1、本发明所提供的磁性生物炭负载磷酸银复合光催化剂(Biochar-ZnFe2O4/ Ag3PO4)的制备方法简单、无需投加任何其他添加剂、可操作性强,且无二次污染,并创新性的提出了以ZnFe2O4为磁性介质的磁性生物炭(Biochar-ZnFe2O4) “一锅法”的制备方法。
2、本发明将磁性生物炭引入光催化领域,利用来源广、价格低的生物质(包括农业废弃物等)作为原料,既降低了催化剂的制备成本,也实现了废弃生物质的资源化利用;而且通过外加磁场可实现对催化剂的便捷回收和重复利用,有利于实现复合光催化剂的工业化应用。
3、本发明创新性的以ZnFe2O4为磁性介质颗粒制备磁性生物炭,并将其作为载体与Ag3PO4复合,利用生物炭、ZnFe2O4与Ag3PO4三者间的协同作用,有效促进了光生电子-空穴对的分离,大幅提升了复合材料的可见光吸收范围和强度,同时磁性生物炭可为光催化反应提供更多活性位点,在很大程度上提高了复合光催化剂对污染物的催化降解效率。
4、本发明所制备的磁性生物炭负载磷酸银复合光催化剂(Biochar-ZnFe2O4/Ag3PO4)在短时间内对双酚A(BPA)的降解效率和矿化率相较纯Ag3PO4具有显著提高,同时磁性生物炭载体也在一定程度上解决了Ag3PO4易光腐蚀的问题。
附图说明
图1为本发明实施例1的复合光催化剂的SEM图。
图2为本发明实施例1的复合光催化剂的XRD图。
图3为本发明实施例1的复合光催化剂的UV-Vis图。
图4为本发明实施例1的复合光催化剂在可见光下对BPA光催化性能图。
图5为本发明实施例1的复合光催化剂重复利用性能示意图。
具体实施方式
为了进一步了解本发明,以下结合实施例对本发明作进一步的详细阐述,但,并非对本发明做任何形式上的限制。这些描述只是为了进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。凡依照本发明公开内容所作的任何本领域的等同替换,均属于本发明的保护范围。
实施例1:
(1)复合光催化剂的制备:首先用“一锅法”制备磁性生物炭(Biochar-ZnFe2O4)。取0.6g洗涤干燥过的破壁松花粉,加入120 mL的0.1 mol/L的高铁酸钾(K2FeO4)并搅拌30min,再加入60 ml的0.1 mol/L乙酸锌(Zn(CH3COO)2),转移入聚四氟乙烯内衬的高压反应釜,于180°C温度下反应10h;前驱体在洗涤干燥后,于氮气保护下,在400~700°C恒温煅烧2h,待自然冷却后取出;再取上述材料于6 mol/L的氢氧化钠溶液搅拌6h,经超纯水洗涤后,磁分离并干燥,研磨,制得所述磁性生物炭(Biochar-ZnFe2O4)。不加入松花粉,以相同方法可制备出纯磷酸银(ZnFe2O4)。
再采用原位沉淀法制备磁性生物炭/磷酸银复合光催化剂(Biochar-ZnFe2O4/Ag3PO4)。将0.225 g磁性生物炭分散在散在200 mL乙醇溶液(V乙醇:V水=4:1)中,并经超声处理30 min,而后加入50 mLAgNO3溶液(0.129 mol/L)并机械搅拌12 h;再将60 mLNa2HPO4·12H2O溶液(0.043 mol/L)缓慢滴加至上述分散液中,滴完后并继续反应1 h,反应所得沉淀物经超纯水反复洗涤后,将其磁分离、干燥、研磨过80目筛,即得所述磁性生物炭与磷酸银复合质量比为1:4的磁性复合催化剂。不投入磁性生物炭,以相同方法可制备出纯磷酸银(Ag3PO4)。
磁性生物炭与磷酸银复合光催化剂(Biochar-ZnFe2O4/Ag3PO4)的SEM、XRD、UV-Vis表征结果分别见图1至图3。由SEM可看到复合催化剂的形貌和结构,图1中(a)、(b)分别为为磁性生物炭(Biochar-ZnFe2O4)和三元复合光催化剂(Biochar-ZnFe2O4/Ag3PO4)。由图1明显地观察到三种物质间相互接触,纳米级的磷酸银颗粒和铁酸锌紧密负载于生物炭的网状结构上。经XRD分析证明了复合材料的成分包括铁酸锌和磷酸银;而且没有其它物质的衍射峰,这说明复合光催化剂中组成成分之间只是通过物理作用相互复合,并没有发生化学反应。经UV-Vis图谱则可以看到,复合材料Biochar-ZnFe2O4/Ag3PO4相较纯Ag3PO4,不仅光响应范围变宽了,而且在可见光范围的吸光强度有明显提高。
(2)复合光催化剂应用于去除水中BPA的性能测试:在20 mg/L 的BPA溶液中,投加0.5 g/L上述复合光催化剂,先进行暗吸附反应30 min达到吸附平衡后,再在300 W氙灯照射条件下光催化反应60 min,实验结束后通过外加磁场实现Biochar-ZnFe2O4/Ag3PO4的分离回收。在不同反应时间点测定上清液中BPA残余浓度和TOC值,可得该复合光催化剂及磷酸银在可见光照射下对有机污染物BPA的光催化降解效率曲线和矿化率图,分别见图4、图5。由测试结果可知,光照60 min,复合材料对BPA的去除效率和矿化率分别达到98.28%和86.08%,远远高于纯磷酸银对BPA的去除效率(36.39%)及矿化率(28.09%),更远高于纯铁酸锌对BPA的去除效率(7.7%)和矿化率。
实施例2:
(1)复合光催化剂的制备:首先用“一锅法”制备磁性生物炭(Biochar-ZnFe2O4)。取0.6g洗涤干燥过的破壁松花粉,加入120 mL的0.1 mol/L的硝酸铁(Fe (NO3)2·9H2O)并搅拌30 min,再加入60ml的0.1 mol/L硝酸锌(Zn(NO3)2·6H2O),转移入聚四氟乙烯内衬的高压反应釜,于180°C温度下反应10h;前驱体在洗涤干燥后,于氮气保护下,在400~700°C恒温煅烧2 h,待自然冷却后取出;再取上述材料于6 mol/L的氢氧化钠溶液搅拌6h,经超纯水洗涤后,磁分离并干燥,研磨,制得所述磁性生物炭(Biochar-ZnFe2O4)。
再采用原位沉淀法制备磁性生物炭/磷酸银复合光催化剂(Biochar-ZnFe2O4/Ag3PO4)。将0.225 g磁性生物炭分散在散在200 mL乙醇溶液(V乙醇:V水=4:1)中,并经超声处理30 min,而后加入50 mLAgNO3溶液(0.129 mol/L)并机械搅拌12 h;再将60 mLNa2HPO4·12H2O溶液(0.043 mol/L)缓慢滴加至上述分散液中,滴完后并继续反应1 h,反应所得沉淀物经超纯水反复洗涤后,将其磁分离、干燥、研磨过80目筛,即得所述磁性生物炭与磷酸银复合质量比为1:4的磁性复合催化剂。
(2)复合光催化剂应用于去除水中BPA的性能测试:在20 mg/L 的BPA溶液中,投加0.5 g/L上述复合光催化剂,先进行暗吸附反应30 min达到吸附平衡后,再在300 W氙灯照射条件下光催化反应60 min,实验结束后通过外加磁场实现Biochar-ZnFe2O4/Ag3PO4的分离回收,并测定不同反应时间上清液中BPA残余浓度和TOC值。由测试结果可知,光照60min,复合材料对BPA的去除效率和矿化率分别达到91.42%和78.31%。
实施例3:
(1)复合光催化剂的制备:首先用“一锅法”制备磁性生物炭(Biochar-ZnFe2O4)。取0.3g洗涤干燥过的破壁松花粉,加入120 mL的0.1 mol/L的高铁酸钾(K2FeO4)并搅拌30min,再加入60 ml的0.1 mol/L乙酸锌(Zn(CH3COO)2),转移入聚四氟乙烯内衬的高压反应釜,于180°C温度下反应10h;前驱体在洗涤干燥后,于氮气保护下,在400~700°C恒温煅烧2h,待自然冷却后取出;再取上述材料于6 mol/L的氢氧化钠溶液搅拌6h,经超纯水洗涤后,磁分离并干燥,研磨,制得所述磁性生物炭(Biochar-ZnFe2O4)。
再采用原位沉淀法制备磁性生物炭/磷酸银复合光催化剂(Biochar-ZnFe2O4/Ag3PO4)。将0.225 g磁性生物炭分散在散在200 mL乙醇溶液(V乙醇:V水=4:1)中,并经超声处理30 min,而后加入50 mLAgNO3溶液(0.129 mol/L)并机械搅拌12 h;再将60 mLNa2HPO4·12H2O溶液(0.043 mol/L)缓慢滴加至上述分散液中,滴完后并继续反应1 h,反应所得沉淀物经超纯水反复洗涤后,将其磁分离、干燥、研磨过80目筛,即得与实例1所述磁性生物炭不同成分比例的磁性生物炭与磷酸银复合质量比为1:4的磁性复合催化剂。
(2)复合光催化剂应用于去除水中BPA的性能测试:在20 mg/L 的BPA溶液中,投加0.5 g/L上述复合光催化剂,先进行暗吸附反应30 min达到吸附平衡后,再在300 W氙灯照射条件下光催化反应60 min,实验结束后通过外加磁场实现Biochar-ZnFe2O4/Ag3PO4的分离回收,并测定不同反应时间上清液中BPA残余浓度和TOC值。由测试结果可知,光照60min,复合材料对BPA的去除效率和矿化率分别达到86.71%和71.79%。
实施例4:
(1)复合光催化剂的制备:磁性生物炭(Biochar-ZnFe2O4)的制备与实施例1中的过程相同。
再将0.1 g磁性生物炭分散在散在200 mL乙醇溶液(V乙醇:V水=4:1)中,并经超声处理30 min,而后加入50 mLAgNO3溶液(0.129 mol/L)并机械搅拌12h;再将60 mLNa2HPO4·12H2O溶液(0.043 mol/L)缓慢滴加至上述分散液中,滴完后并继续反应1 h,反应所得沉淀物经超纯水反复洗涤后,将其磁分离、干燥、研磨过80目筛,即得所述磁性生物炭与磷酸银复合质量比为1:9的磁性复合催化剂。
(2)复合光催化剂应用于去除水中BPA的性能测试:在20 mg/L 的BPA溶液中,投加0.5 g/L上述复合光催化剂,先进行暗吸附反应30 min达到吸附平衡后,再在300 W氙灯照射条件下光催化反应60 min,实验结束后通过外加磁场实现Biochar-ZnFe2O4/Ag3PO4的分离回收,并测定不同反应时间上清液中BPA残余浓度和TOC值。由测试结果可知,光照60min,复合材料对BPA的去除效率和矿化率分别达到85.36%和74.05%。
实施例5:
(1)复合光催化剂的制备:磁性生物炭(Biochar-ZnFe2O4)的制备与实施例1中的过程相同。
再将0.45 g磁性生物炭分散在散在200 mL乙醇溶液(V乙醇:V水=4:1)中,并经超声处理30 min,而后加入50 mLAgNO3溶液(0.129 mol/L)并机械搅拌12h;再将60 mLNa2HPO4·12H2O溶液(0.043 mol/L)缓慢滴加至上述分散液中,滴完后并继续反应1 h,反应所得沉淀物经超纯水反复洗涤后,将其磁分离、干燥、研磨过80目筛,即得所述磁性生物炭与磷酸银复合质量比为1:2的磁性复合催化剂。
(2)复合光催化剂应用于去除水中BPA的性能测试:在20 mg/L 的BPA溶液中,投加0.5 g/L上述复合光催化剂,先进行暗吸附反应30 min达到吸附平衡后,再在300 W氙灯照射条件下光催化反应60 min,实验结束后通过外加磁场实现Biochar-ZnFe2O4/Ag3PO4的分离回收,并测定不同反应时间上清液中BPA残余浓度和TOC值。由测试结果可知,光照60min,复合材料对BPA的去除效率和矿化率分别达到96.60%和68.57%。
实施例6:
(1)复合光催化剂的制备:复合光催化剂的制备过程与实施例1相同。
(2)复合光催化剂重复应用于去除水中BPA的性能测试:在20 mg/L的BPA溶液中,投加0.5g/L上述复合光催化剂,先进行暗吸附反应30 min达到吸附平衡后,再在300 W氙灯照射条件下光催化反应60 min,实验结束后通过外加磁场实现Biochar-ZnFe2O4/Ag3PO4的分离回收,并测定不同反应时间上清液中BPA残余浓度和TOC值。回收的复合光催化剂经超纯水洗涤数次、在60 ℃真空干燥箱中干燥后,研磨,过80目筛,再次应用于BPA废水处理,处理过程同上,测定反应后上清液中BPA残余浓度和TOC值,得到图5。复合光催化剂重复利用第三次时,其对BPA的降解效率仍可达87.91%,矿化率可达76.61%。

Claims (12)

1.一种磁性生物炭负载磷酸银复合光催化剂的制备及其应用,其特征在于:以“一锅法”制备磁性生物炭(Biochar-ZnFe2O4),再通过原位沉淀法将Ag3PO4负载于该磁性生物炭表面,使两者紧密结合,形成一种新型的可见光催化效率高且易于磁分离的复合材料,即磁性生物炭/磷酸银复合光催化剂(Biochar-ZnFe2O4/Ag3PO4),并将其应用于双酚A(BPA)废水的处理。
2.根据权利要求1所述的磁性生物炭/磷酸银复合光催化剂,其特征在于其中磁性生物炭(Biochar-ZnFe2O4)的质量百分比为10%~50%。
3.根据权利要求1或2所述一种可见光响应型的磁性生物炭负载磷酸银复合光催化剂的制备方法,其特征在于所述方法包括以下步骤:
(A)“一锅法”制备磁性生物炭(Biochar-ZnFe2O4
(A1)取具有多维分级结构的生物质材料,加入一定量的铁盐溶液并搅拌10~40 min后,再加入一定量的锌盐溶液,并放入聚四氟乙烯反应釜,于150~250°C下反应5~10 h,制得磁性生物炭前驱体;
(A2)将磁性生物炭前驱体经洗涤于60~100°C(优选70~80°C)干燥后,在氮气保护下,程序升温至300~800°C煅烧1~4 h,待自然冷却后取出;
(A3)将上述取出的材料置于6mol/L的氢氧化钠溶液中搅拌2~8h(优选4~6 h),再经超纯水洗涤后,磁分离并干燥,研磨过80目筛,制得磁性生物炭;
(B)制备磁性生物炭/磷酸银复合光催化剂(Biochar-ZnFe2O4/Ag3PO4
(B1)取磁性生物炭分散在醇溶液中并经超声处理(超声时间优选10~30min),而后加入AgNO3溶液并机械搅拌6~18 h (优选8~12 h)得分散液;
(B2)将磷酸盐溶液缓慢滴加至上述分散液中,滴完后并继续反应0.5~1 h,反应所得沉淀物经超纯水反复洗涤后,将其磁分离、干燥、研磨过筛,即得所述磁性生物炭/磷酸银复合光催化剂(Biochar-ZnFe2O4/Ag3PO4)。
4.根据权利要求3所述的制备方法,其特征在于:步骤(A1)中的铁盐为氯化铁、硝酸铁或高铁酸钾中的一种或多种组成的混合物;锌盐为氯化锌、硝酸锌或乙酸锌中的一种或多种组成的混合物;优选高铁酸钾(K2FeO4)、硝酸铁(Fe (NO3)2·9H2O)和乙酸锌(Zn(CH3COO)2·2H2O)、硝酸锌(Zn(NO3)2·6H2O)。
5.根据权利要求3所述的制备方法,其特征在于:步骤(A1)中的生物质为生物纤维素、花粉、植物叶片等;加入的高铁酸钾(K2FeO4)、乙酸锌(Zn(CH3COO)2·2H2O)与生物质的质量之比优选1:1:0.1~0.6,加入的硝酸铁(Fe (NO3)2·9H2O)、硝酸锌(Zn(NO3)2·6H2O)与生物质的质量之比优选1:0.75:0.0625~0.375;。
6.根据权利要求3所述的制备方法,其特征在于:步骤(A1)中水热釜应置于160~180°C温度下发生反应。
7.根据权利要求3所述的制备方法,其特征在于:步骤(A2)中,煅烧温度优选为400~700°C。
8.根据权利要求3中任一项所述的制备方法,其特征在于:步骤(B1)中醇溶液为乙醇溶液;优选的是,该乙醇溶液是用超纯水和无水乙醇按体积比为1:1~10配制的,优选1:4。
9.根据权利要求3-8中任一项所述的制备方法,其特征在于:步骤(B1)中加入AgNO3 的质量与磁性生物炭(Biochar-ZnFe2O4)的质量之比为1:0.05~0.5。
和/或
步骤(B2)中碱金属磷酸盐溶液为磷酸氢二钠,且加入的Na2HPO4·12H2O与AgNO3的摩尔量之比为1:1~3.5,优选为1:2~3。
10.根据权利要求1所述的一种磁性生物炭负载磷酸银复合光催化剂的应用,其特征在于:将磁性生物炭负载磷酸银复合光催化剂应用于处理含有双酚A的废水。
11.根据权利要求10所述的应用,其特征在于:向含有双酚A的废水中加入磁性生物炭负载磷酸银复合光催化剂,即Biochar-ZnFe2O4/Ag3PO4,先进行暗吸附反应,待达到平衡后进行可见光光照。
12.根据权利要求11所述的应用,其特征在于:Biochar-ZnFe2O4/Ag3PO4的用量是:废水中所含的双酚A与Biochar-ZnFe2O4/Ag3PO4的质量之比为1:5~100,优选为1:10~50,进一步优选为1:12.5~25。
CN201710544696.8A 2017-07-06 2017-07-06 一种磁性生物炭负载磷酸银复合光催化剂的制备及其应用 Pending CN107376959A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710544696.8A CN107376959A (zh) 2017-07-06 2017-07-06 一种磁性生物炭负载磷酸银复合光催化剂的制备及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710544696.8A CN107376959A (zh) 2017-07-06 2017-07-06 一种磁性生物炭负载磷酸银复合光催化剂的制备及其应用

Publications (1)

Publication Number Publication Date
CN107376959A true CN107376959A (zh) 2017-11-24

Family

ID=60335519

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710544696.8A Pending CN107376959A (zh) 2017-07-06 2017-07-06 一种磁性生物炭负载磷酸银复合光催化剂的制备及其应用

Country Status (1)

Country Link
CN (1) CN107376959A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108115152A (zh) * 2018-01-16 2018-06-05 广东省微生物研究所(广东省微生物分析检测中心) 一种银-四氧化三铁-生物炭纳米复合材料及其制备方法
CN108355717A (zh) * 2018-01-16 2018-08-03 齐鲁工业大学 一种纤维素/BiOBr复合光催化材料的制备方法
CN109985647A (zh) * 2019-04-08 2019-07-09 湘潭大学 一种高效降解四环素的磷酸银/金属氧化物复合光催化剂的制备方法
CN112387249A (zh) * 2020-11-11 2021-02-23 内蒙古科技大学 一种多孔生物炭/铁酸锌复合材料及其制备方法和应用
CN114289044A (zh) * 2021-12-16 2022-04-08 扬州大学 生物炭介导的Ag3PO4/α-Fe2O3异质结可见光催化复合材料及制备方法
CN114588872A (zh) * 2022-03-08 2022-06-07 桂林理工大学 一种高吸附能力的铁银共掺杂生物炭及其制备方法
CN115518640A (zh) * 2022-10-10 2022-12-27 上海纳米技术及应用国家工程研究中心有限公司 一种锌铁负载改性碳复合材料的制备方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104028214A (zh) * 2014-04-02 2014-09-10 安徽农业大学 一种农业生物质碳基磁性吸附材料的制备方法
CN104437574A (zh) * 2014-11-17 2015-03-25 湘潭大学 可见光响应型核壳结构磁性复合光催化剂及其制备方法和应用
CN105944744A (zh) * 2016-06-08 2016-09-21 湘潭大学 一种对双酚a具有高矿化率的可见光响应型复合光催化剂

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104028214A (zh) * 2014-04-02 2014-09-10 安徽农业大学 一种农业生物质碳基磁性吸附材料的制备方法
CN104437574A (zh) * 2014-11-17 2015-03-25 湘潭大学 可见光响应型核壳结构磁性复合光催化剂及其制备方法和应用
CN105944744A (zh) * 2016-06-08 2016-09-21 湘潭大学 一种对双酚a具有高矿化率的可见光响应型复合光催化剂

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108115152A (zh) * 2018-01-16 2018-06-05 广东省微生物研究所(广东省微生物分析检测中心) 一种银-四氧化三铁-生物炭纳米复合材料及其制备方法
CN108355717A (zh) * 2018-01-16 2018-08-03 齐鲁工业大学 一种纤维素/BiOBr复合光催化材料的制备方法
CN108115152B (zh) * 2018-01-16 2020-07-07 广东省微生物研究所(广东省微生物分析检测中心) 一种银-四氧化三铁-生物炭纳米复合材料及其制备方法
CN109985647A (zh) * 2019-04-08 2019-07-09 湘潭大学 一种高效降解四环素的磷酸银/金属氧化物复合光催化剂的制备方法
CN112387249A (zh) * 2020-11-11 2021-02-23 内蒙古科技大学 一种多孔生物炭/铁酸锌复合材料及其制备方法和应用
CN114289044A (zh) * 2021-12-16 2022-04-08 扬州大学 生物炭介导的Ag3PO4/α-Fe2O3异质结可见光催化复合材料及制备方法
CN114289044B (zh) * 2021-12-16 2023-09-19 扬州大学 生物炭介导的Ag3PO4/α-Fe2O3异质结可见光催化复合材料及制备方法
CN114588872A (zh) * 2022-03-08 2022-06-07 桂林理工大学 一种高吸附能力的铁银共掺杂生物炭及其制备方法
CN114588872B (zh) * 2022-03-08 2023-06-02 桂林理工大学 一种高吸附能力的铁银共掺杂生物炭及其制备方法
CN115518640A (zh) * 2022-10-10 2022-12-27 上海纳米技术及应用国家工程研究中心有限公司 一种锌铁负载改性碳复合材料的制备方法及应用
CN115518640B (zh) * 2022-10-10 2024-02-13 上海纳米技术及应用国家工程研究中心有限公司 一种锌铁负载改性碳复合材料的制备方法及应用

Similar Documents

Publication Publication Date Title
CN107376959A (zh) 一种磁性生物炭负载磷酸银复合光催化剂的制备及其应用
Liu et al. Enhanced visible light photo-Fenton-like degradation of tetracyclines by expanded perlite supported FeMo3Ox/g-C3N4 floating Z-scheme catalyst
Saeed et al. Photocatalysis: An effective tool for photodegradation of dyes—A review
Zhu et al. Fabrication of 3D Bi5O7I/BiOIO3 heterojunction material with enhanced photocatalytic activity towards tetracycline antibiotics
Dou et al. The simultaneous promotion of Cr (VI) photoreduction and tetracycline removal over 3D/2D Cu2O/BiOBr S-scheme nanostructures
CN108160093B (zh) 磷酸银/氮掺杂碳量子点/钒酸铋z型光催化剂及其制备方法和应用
Gusain et al. Factors influencing the photocatalytic activity of photocatalysts in wastewater treatment
Zhang et al. Iron phthalocyanine nanodots decorated ultra-thin porous carbon nitride: a combination of photocatalysis and Fenton reaction to achieve two-channel efficient tetracycline degradation
Welter et al. Preparation of a new green composite based on chitin biochar and ZnFe2O4 for photo-Fenton degradation of Rhodamine B
Lv et al. A novel cobalt doped MOF-based photocatalyst with great applicability as an efficient mediator of peroxydisulfate activation for enhanced degradation of organic pollutants
CN103480400A (zh) 一种磷酸银/氧化锌复合光催化材料及其制备方法
Shoghi et al. Facile fabrication of novel Z-scheme g-C3N4 nanosheets/Bi7O9I3 photocatalysts with highly rapid photodegradation of RhB under visible light irradiation
Chen et al. In-situ synthesis of biochar modified PbMoO4: An efficient visible light-driven photocatalyst for tetracycline removal
Ouyang et al. Synthesis of novel ternary Ag/BiVO4/GO photocatalyst for degradation of oxytetracycline hydrochloride under visible light
Sibhatu et al. Synthesis and process parametric effects on the photocatalyst efficiency of CuO nanostructures for decontamination of toxic heavy metal ions
Jia et al. Degradation of tetracycline by visible light over ZnO nanophotocatalyst
CN110756163A (zh) 一种纳米CoFe2O4/碳纤维毡复合材料及其制备方法和应用
Rani et al. Efficient visible light photocatalytic organic colorants elimination performance induced by biosynthesized titanium dioxide coupled cadmium sulfide nanostructures
Zhu et al. Construction of hierarchical core-shell Z-scheme heterojunction FeVO4@ ZnIn2S4 for boosted photocatalytic degradation of tetracycline
Zhu et al. Heterogeneous activation of persulfate by Bi2MoO6–CuS composite for efficient degradation of orange II under visible light
CN108568302B (zh) 一种正对称双Z型体系声催化剂SnO2–CdSe–Bi2O3及其制备方法和应用
Li et al. Insight into the enhanced visible-light photoreduction of aqueous Cr (VI) by assembled Fe3O4/LDO/BiOBr composites
Liu et al. Photocatalytic self-Fenton degradation of ciprofloxacin over S-scheme CuFe2O4/ZnIn2S4 heterojunction: Mechanism insight, degradation pathways and DFT calculations
Zhang et al. In-situ fabrication of a phase continuous transition Bismuth iodide/Bismuth niobate heterojunction: Interface regulation and the enhanced photodegradation mechanism
Salima et al. Sunlight-assisted photocatalytic degradation of tartrazine in the presence of Mg doped ZnS nanocatalysts

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171124