CN107359313A - 一种聚苯胺基中空多腔炭纳米球的制备方法及其储能应用 - Google Patents

一种聚苯胺基中空多腔炭纳米球的制备方法及其储能应用 Download PDF

Info

Publication number
CN107359313A
CN107359313A CN201610304118.2A CN201610304118A CN107359313A CN 107359313 A CN107359313 A CN 107359313A CN 201610304118 A CN201610304118 A CN 201610304118A CN 107359313 A CN107359313 A CN 107359313A
Authority
CN
China
Prior art keywords
polyaniline
cavity
hollow
hollow multi
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610304118.2A
Other languages
English (en)
Inventor
宋怀河
周春丽
陈晓红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201610304118.2A priority Critical patent/CN107359313A/zh
Publication of CN107359313A publication Critical patent/CN107359313A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明提供了一种聚苯胺基中空多腔炭纳米球的制备方法及其电化学储能应用。首先利用二价铜催化制备中空多腔的聚苯胺前驱体,在氮气氛围下,600℃~1000℃温度下进行炭化处理制得聚苯胺基炭纳米球。炭球的直径在300‑600 nm之间,空心大小在40‑250nm之间。具有高的氮含量(6‑10%)和氧含量(7‑10%)。该电极材料应用于超级电容器和锂离子二次电池时表现出优异的电化学储能性能。

Description

一种聚苯胺基中空多腔炭纳米球的制备方法及其储能应用
技术领域
本发明涉及电化学储能电极材料领域,特别涉及一种聚苯胺基中空多腔炭纳米球的制备方法和电化学储能应用。
背景技术
随着传统能源储量的不断消耗,寻找环境友好的能量存储设备和技术已经成为一个研究热点问题。因此对新型储能设备如超级电容器和锂离子二次电池提出了更高的要求,而对于储能设备而言,其性能主要取决于其电极材料,因此探索性能优异的新型电极材料成为研究热点。在所有的电极材料中,炭材料由于具有高的导电性、高比表面积、化学性能稳定和来源广泛等优势而被广泛的应用,如炭材料已被广泛地应用于超级电容器的电极材料[Long H, Xianglong L, Linjie Z. Carbonaceous electrode materials forsupercapacitors.[J]. Advanced Materials, 2013, 25(28):3899-3904.],其储能机理为双电层电容,但是其所获得的比容量已经不足以满足现代社会的需要。赝电容由于在充放电的过程中会发生可逆的氧化还原反应而使其容量远高于双电层的电容,因此在炭材料中引入赝电容被认为是一种有效的方法,这样所获得的材料就兼具双电层和赝电容的优点。近年来,含氮碳材料在超级电容器的电极材料方面的应用成为了一个研究热点。
导电聚合物如聚苯胺由于制备简单,且具有较高的氮炭比值,因此常被用来制备氮掺杂的炭材料。通过控制聚苯胺的合成条件,可以制备出具有纳米棒、纳米管、纳米线、纳米球等不同形貌的产物,并且通过预氧化和炭化其形貌得以保持。如Jun Yan 等[Yan J. Ahigh-performance carbon derived from polyaniline for supercapacitors[J].Electrochemistry Communications, 2010, 12(10):1279-1282.]制备出纳米棒状聚苯胺,通过高温炭化和活化得到纳米棒状炭材料,将其作为超级电容器的电极材料。
众所周知,中空炭纳米球首先具有球形结构的优势,即堆积密度大,可以提高电极材料的能量密度,并且球形结构有利于离子从各个方向进入,减小扩散电阻;另一方面中空结构在电化学储能方面拥有更大的优势,其独特的结构可以提供更大的比表面积和更短的传输路径。此外聚苯胺基中空炭纳米球由于含有氮原子,而能够进一步提高电极材料的比容量。但是,目前制备聚苯胺中空球的主要方法是硬模板法和界面软模板法,Jinpeng Han等[Han J, Xu G, Ding B, et al. Porous nitrogen-doped hollow carbon spheresderived from polyaniline for high performance supercapacitors[J].J.mater.chem.a, 2014, 2(15):5352-5357]用聚苯乙烯做硬模板法制备了聚苯胺基中空碳球,并以其作为超级电容器的电极材料,在0.5A/g的电流密度下比容量达到了213F/g,并且表现出了优异的循环稳定性。硬模板法虽然制备的产物形貌均一,但是在去除模板的过程中很容易对球形结构产生破坏,软模板法由于需要价格较为昂贵的表面活性剂或功能化有机分子等物质而遭到限制。另外,目前制备的中空球基本为一个腔的结构,而对于多腔中空球的研究则很少。
发明内容
针对现有技术的上述问题,本发明的目的是提供一种聚苯胺基中空多腔炭纳米球的制备方法,按下列方法制得:
步骤一:苯胺单体加入到去离子水中,室温搅拌30min分散均匀,然后将过硫酸铵和一定量的二价铜盐溶于去离子水中,单体和过硫酸铵的比例为1:1,两溶液混合,0-10℃下反应12h,之后抽滤,用去离子水和乙醇清洗至滤液无色,真空60℃烘干,得到中空多腔纳米球形聚苯胺;
步骤二:取步骤一所得球形聚苯胺,在空气气氛下200℃预氧化2h,得到预氧化产物;
步骤三:取步骤二所得预氧化产物,在惰性气氛下加热至600-1000℃,保温1-2h。
本发明进一步的优选方案是:所述二价铜盐选自硝酸铜、氯化铜、溴化铜或硫酸铜中的一种。
本发明进一步的优选方案是:所述苯胺聚合的时间选自6h、12h、24h、48h中的一种。
另外本发明还提供一种聚苯胺基中空多腔炭纳米球制备的超级电容器和锂离子二次电池的电极材料。由下述组分按质量百分比组成:导电聚合物基含氮碳材料80%,乙炔黑10%,PVDF10%。
本发明利用高温对聚苯胺前躯体进行炭化处理制备炭材料。炭化处理可以得到以碳元素为主的骨架结构,同时还可以使得苯环上的氮原子掺杂到苯环内部,这种掺杂态的氮原子具有很高的活性,应用于超级电容器电极材料不仅有利于电解液浸润从而提高碳材料的双电层电容,而且会产生比较高的赝电容。使用中空多腔炭纳米球电极材料的超级电容器放电比容量在84~174F·g-1之间,当炭化温度大于600℃时,电流密度从0.1A/g逐渐增大到1A/g时,比容量保持率在86%左右,表现了良好的功率性能和循环性能。将其应用于锂离子二次电池的电极材料,在100 mA g-1的电流密度下循环100次容量为470mAh g-1
附图说明
附图1为聚苯胺中空多腔纳米球的透射电镜图。
附图2为炭化温度分别为600、700和800℃下所得聚苯胺基碳球的放电比容量与电流密度的关系曲线图。
附图3为炭化温度为700℃下所得聚苯胺基碳球应用于锂离子二次电池在100mAg-1电流密度下的循环曲线。
具体实施方式
下面结合附图和实施例对本发明进行详细说明:
实施例1
1.5 mL苯胺单体加入到去离子水中,室温搅拌30 min分散均匀,然后将3.75 g过硫酸铵和一定量的硝酸铜,溶于去离子水中,两溶液混合,5 ℃下反应6 h,之后抽滤,用去离子水和乙醇清洗至滤液无色,真空60 ℃烘干,得到中空多腔球形聚苯胺;
将球形聚苯胺作为炭前驱体装入氧化铝坩埚,在200 °C的空气中预氧化2个小时,然后放入卧式炭化炉中,在氮气气氛下加热,升温速率为1 ℃·min-1,从室温升温至600 ℃,保温2小时,得聚苯胺基中空多腔碳球。此时的聚苯胺基中空多腔炭纳米球的直径在410-600nm之间,其空心直径约为120-250nm。
如附图1 透射电镜(TEM)所示聚苯胺前躯体呈中空多腔球状。
如附图2 电化学性能测试结果表明,该炭材料应用于超级电容器的电极材料在0.1 A·g-1电流密度下的放电比容量可以达到141 F·g-1;在1 A·g-1电流密度下放电比容量能保持84F·g-1
实施例2
中空多腔球形聚苯胺的制备方法同实施例1,不同的是用氯化铜作催化剂,反应时间为12h。
将球形聚苯胺作为炭前驱体装入氧化铝坩埚,200 °C的空气中预氧化2个小时,然后放入卧式炭化炉中,在氮气气氛下加热,升温速率为1 ℃·min-1,从室温升温至700 ℃,保温1小时,得聚苯胺基中空多腔碳球。此时的聚苯胺基中空炭纳米球的直径在380-520nm之间,其空心直径约为100-200nm。
如附图2 电化学性能测试结果表明,该电极材料在0.1 A·g-1电流密度下的放电比容量可以达到174 F·g-1;在1 A·g-1电流密度下放电比容量能保持149 F·g-1
如附图3 电化学性能测试结果表明,该电极材料应用于锂离子二次电池时,在100mA/g的电流密度下循环100次后容量仍保持在470 mAh/g。
实施例3
中空多腔球形聚苯胺的制备方法同实施例1,不同的是用溴化铜作催化剂,反应时间为24h。
将球形聚苯胺作为炭前驱体装入氧化铝坩埚,200 °C的空气中预氧化2个小时,然后放入卧式炭化炉中,在氮气气氛下加热,升温速率为1 ℃·min-1,从室温升温至800 ℃,保温2小时,得聚苯胺基中空多腔碳球。此时的聚苯胺基中空炭纳米球的直径在320-470nm之间,其空心直径约为70-120nm。
如附图2 电化学性能测试结果表明,该电极材料在0.1 A·g-1电流密度下的放电比容量可以达到150 F·g-1;在1 A·g-1电流密度下循环100次后,放电比容量能保持129F·g-1
实施例4
中空多腔球形聚苯胺的制备方法同实施例1,不同的是用硫酸铜作催化剂,反应时间为48h。
将球形聚苯胺作为炭前驱体装入氧化铝坩埚,200 °C的空气中预氧化2个小时,然后放入卧式炭化炉中,在氮气气氛下加热,升温速率为1 ℃·min-1,从室温升温至900 ℃,保温2小时,得聚苯胺基中空多腔碳球。此时的聚苯胺基中空炭纳米球的直径在300-420nm之间,其空心直径约为40-100nm。
电化学性能测试结果表明,该电极材料在0.1 A·g-1电流密度下的放电比容量可以达到140 F·g-1;在1 A·g-1电流密度下循环100次后,放电比容量能保持120 F·g-1
以上已对本发明的较佳实施例进行了具体说明,但本发明并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出种种的等同的变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。

Claims (4)

1.一种聚苯胺基中空多腔炭纳米球及其制备方法,其特征在于,直径300-600 nm,空心度40-250nm,是按下列方法制得:
步骤一:苯胺单体加入到去离子水中,室温搅拌30min分散均匀,然后将过硫酸铵和一定量的二价铜盐溶于去离子水中,单体和过硫酸铵的比例为1:1,两溶液混合,0-10℃下反应12h,之后抽滤,用去离子水和乙醇清洗至滤液无色,真空60℃烘干,得到中空多腔球形聚苯胺;
步骤二:取步骤一所得球形聚苯胺,在空气气氛下200℃预氧化2h,得到预氧化产物;
步骤三:取步骤二所得预氧化产物,在惰性气氛下加热至600-1000℃,保温1-2h。
2.如权利要求1所述聚苯胺基中空多腔炭球的制备方法,其特征在于:所述二价铜盐选自硝酸铜、氯化铜、溴化铜或硫酸铜中的一种。
3.如权利要求1所述聚苯胺基中空多腔炭球的制备方法,其特征在于:所述苯胺聚合的时间选自6h、12h、24h、48h中的一种。
4.一种由权利要求1至3所述方法所得聚苯胺基中空多腔炭球制备的超级电容器和锂离子二次电池的电极材料。
CN201610304118.2A 2016-05-10 2016-05-10 一种聚苯胺基中空多腔炭纳米球的制备方法及其储能应用 Pending CN107359313A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610304118.2A CN107359313A (zh) 2016-05-10 2016-05-10 一种聚苯胺基中空多腔炭纳米球的制备方法及其储能应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610304118.2A CN107359313A (zh) 2016-05-10 2016-05-10 一种聚苯胺基中空多腔炭纳米球的制备方法及其储能应用

Publications (1)

Publication Number Publication Date
CN107359313A true CN107359313A (zh) 2017-11-17

Family

ID=60271249

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610304118.2A Pending CN107359313A (zh) 2016-05-10 2016-05-10 一种聚苯胺基中空多腔炭纳米球的制备方法及其储能应用

Country Status (1)

Country Link
CN (1) CN107359313A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110330015A (zh) * 2019-07-17 2019-10-15 西北工业大学 一种聚合物基炭材料及其微孔结构的调控方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103316706A (zh) * 2013-06-15 2013-09-25 湖南科技大学 一种掺杂金属的聚苯胺与聚吡咯复合物碳化电催化剂及其制备方法
CN104810161A (zh) * 2015-03-26 2015-07-29 北京化工大学常州先进材料研究院 一种氮氧掺杂空心纳米炭球制备方法及其电化学储能应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103316706A (zh) * 2013-06-15 2013-09-25 湖南科技大学 一种掺杂金属的聚苯胺与聚吡咯复合物碳化电催化剂及其制备方法
CN104810161A (zh) * 2015-03-26 2015-07-29 北京化工大学常州先进材料研究院 一种氮氧掺杂空心纳米炭球制备方法及其电化学储能应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIAO GUO ET AL.: "Synthesis of polyaniline micro/nanospheres by a copper(II)-catalyzed self-assembly method with superior adsorption capacity of organic dye from", 《J. MATER. CHEM.》 *
刘海燕: "聚苯胺基炭材料的制备及其电化学性能研究", 《中国博士学位论文全文数据库》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110330015A (zh) * 2019-07-17 2019-10-15 西北工业大学 一种聚合物基炭材料及其微孔结构的调控方法
CN110330015B (zh) * 2019-07-17 2022-05-17 西北工业大学 一种聚合物基炭材料及其微孔结构的调控方法

Similar Documents

Publication Publication Date Title
Bi et al. One-pot microwave synthesis of NiO/MnO2 composite as a high-performance electrode material for supercapacitors
CN105253871B (zh) 超级电容器用含氮碳材料及其制备方法、超级电容器电极材料
CN104973596B (zh) 一种杂原子掺杂空心球石墨烯复合材料及制备方法与应用
CN106548877B (zh) 碳纳米管阵列/聚苯胺/二氧化铈复合材料电极及其制备方法和应用
CN108962632B (zh) 一种石墨烯/氮掺杂碳/镍/氧化镍复合材料制备方法
CN108922790A (zh) 一种钠离子嵌入的二氧化锰/氮掺杂多孔碳复合材料的制备方法和应用
KR102139318B1 (ko) 나트륨 이온 전지 전극 재료 및 그의 제작방법
CN106910638A (zh) 一种基于Zr‑MOFs复合材料为模板的碳材料及其制备方法和应用
CN106935855A (zh) 一种多孔碳纳米管状材料及其制备方法和应用
CN105118966B (zh) 一种用于锂电池负极的高氮含量锡碳复合材料及制备方法
CN110993362A (zh) 一种新型三维电极材料及其制备方法和在超级电容器中的应用
CN104299793B (zh) 一种氧化镍/多壁碳纳米管电极材料的制备方法
CN112357900A (zh) 一种高密度氮氧氯共掺杂碳颗粒材料、以及制备方法与应用
CN106409520A (zh) 一种锂离子混合电容器电极材料的制备方法及应用
CN102214515B (zh) 一种超级电容器活性炭/碳纳米管复合电极的制备方法
CN112320792B (zh) 一种锂离子电池用的负极材料的制备方法及其产品
CN111223685B (zh) 吡啶酚醛树脂基氮掺杂碳电极材料的制备方法
CN106058254B (zh) 一种钠离子电池负极材料用生物碳/碳纳米管的制备方法
KR20130047885A (ko) 산화수산화니켈-탄소나노튜브 나노복합체 전극의 제조 방법
CN105529194B (zh) 一种MnO2@石墨烯胶囊@MnO2复合材料的制备方法
CN106710891A (zh) 一种NiCo2O4/活性炭复合材料的制备方法
CN109087820B (zh) 超声化学法原位制备石墨烯复合电极材料
CN107359313A (zh) 一种聚苯胺基中空多腔炭纳米球的制备方法及其储能应用
CN112885614B (zh) 一种镍基金属有机框架衍生氮磷氧共掺杂镍/碳的复合材料及其制备方法和应用
CN111710532B (zh) 一种三氧化二锑-碳纳米管复合材料及其制备和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171117

RJ01 Rejection of invention patent application after publication