CN102214515B - 一种超级电容器活性炭/碳纳米管复合电极的制备方法 - Google Patents

一种超级电容器活性炭/碳纳米管复合电极的制备方法 Download PDF

Info

Publication number
CN102214515B
CN102214515B CN2011100687034A CN201110068703A CN102214515B CN 102214515 B CN102214515 B CN 102214515B CN 2011100687034 A CN2011100687034 A CN 2011100687034A CN 201110068703 A CN201110068703 A CN 201110068703A CN 102214515 B CN102214515 B CN 102214515B
Authority
CN
China
Prior art keywords
carbon
starch
active carbon
carbon nano
nanotube composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2011100687034A
Other languages
English (en)
Other versions
CN102214515A (zh
Inventor
李倩倩
刘芙
张孝彬
张巳晗
马超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN2011100687034A priority Critical patent/CN102214515B/zh
Publication of CN102214515A publication Critical patent/CN102214515A/zh
Application granted granted Critical
Publication of CN102214515B publication Critical patent/CN102214515B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开的超级电容器活性炭/碳纳米管复合电极的制备方法,步骤包括:将禾谷类淀粉烘干放入碳化炉,在氮气保护下,恒温热处理得淀粉基碳;将制得的淀粉基碳和ZnCl2以及FeCl3混合均匀、烘干,在惰性气氛中活化,通入乙炔气体,制得淀粉基活性炭/碳纳米管复合材料;将制得的淀粉基活性炭/碳纳米管复合材料与PVDF混合,加入N-甲基吡咯烷酮搅拌成浆料状,均匀涂覆在泡沫镍上,烘干,压片得到超级电容器活性炭/碳纳米管复合电极片。本发明所用原料价格低廉、来源广泛,生产工艺简单,省时,省力,易实现大规模生产。

Description

一种超级电容器活性炭/碳纳米管复合电极的制备方法
技术领域
本发明涉及一种淀粉基高比表面积活性炭/碳纳米管复合材料的制备,属于超级电容器电极材料的制备技术。
背景技术
能源危机和环境保护已成为人类社会可持续发展战略的核心,是影响当前世界各国能源决策和科技导向的关键因素,同时,也是促进能源科技发展的巨大推动动力。由于微电子技术的迅猛发展,作为后备电源的陶瓷或铝电解物理电容已难以满足日益增长的储能要求。而且在许多应用领域对储能装置的功率密度要求越来越高,已超出了当前电池的承受能力。在此背景下,一种介于传统物理电容器和二次电池之间兼顾两者功率密度和能量密度优点的新型储能器件超级电容器得到快速发展。发达国家一直致力于超级电容器的研究开发,有些产品已相继实现商品化。我国在本世纪初也有少数超级电容器企业成立,目前超级电容器的研发尤其是在动力工具方面的应用研究已经纳入国家863计划。
超级电容器可分为两类:第一类是双电层超级电容器,主要电极材料为活性炭、石墨、碳纤维和碳纳米管等;第二类是法拉第准电容超级电容器,主要电极材料为NiO、RuO2和MnO2等。非晶态的RuO2是一种较好的电极材料,但价格昂贵,且贵金属对环境有污染。使用成本较低、环保的碳材料来提高超级电容器的性能是研究的重点。活性炭(AC)的生产历史悠久、原材料丰富、价格低廉、电化学稳定性高。Weng等以煤焦油沥青经过热处理制得的中间相沥青为原料,KOH为活化剂制得了比表面积大2860m2/g的活性炭,但由于其比表面积主要由孔径小于2nm的微孔贡献,在1mol/LH2SO4溶液中其比电容仅有130F/g。Mitani等以KOH为活化剂,以不同的焦炭和沥青制备的碳材料为原料,前躯体和KOH的质量比为1:4,在800℃下活化5h制得的BET表面积在1900~3200m2/g的微孔炭,其在1mol/LH2SO4溶液中的比电容在200~320F/g。
目前AC是应用最广泛的超级电容器电极材料,但它的电子导电性不高,以纯AC为活性材料时电容损失很大。碳纳米管(CNTs)是20世纪90年代初发现的一种纳米尺寸管状结构碳材料,它是由单层或多层石墨烯片卷曲而成的无缝中空管,具有奇异的物理化学性能,在复合材料增强、纳米器件、场发射、催化剂等领域具有潜在的应用价值。由于它独特的中空结构,良好的导电性,大的比表面积,适合电解质离子迁移的孔隙(孔径一般>2nm),以及交互缠绕可形成纳米尺度的网络结构,因而被认为是超级电容器尤其是高功率的超级电容器理想的电极材料,今年来引起了广泛的关注,成为研究的热点之一。CNTs用作超级电容器电极材料的研究最早见诸于Niu等的报道。他们将烃类催化热解法制得的相互缠绕的多壁碳纳米管(MWNTs)制成薄膜电极,测试了在质量分数为38%的H2SO4电解液中的电容性能。所制得的CNTs管径均一,约8nm左右,用HNO3处理后比表面积为430m2/g。组装成单一电容器,在0.001Hz~100Hz的不同频率下,比电容量达到49F/g~113F/g。虽然CNTs具有高的表面利用率和良好的导电性,但其比表面积一般仅100m2/g~400m2/g,远远低于活性炭(1000m2/g~3000m2/g),因此其比容量较低。
发明内容
本发明的目的在于提供一种原料来源广泛、价格低廉、生产成本低的超级电容器活性炭/碳纳米管复合电极的制备方法。
本发明是通过以下技术方案实现的,超级电容器活性炭/碳纳米管复合电极的制备方法,包括以下步骤:
1)将禾谷类淀粉在60-120℃下烘干5-30h,然后放入碳化炉,在氮气的保护下,于150-600℃恒温热处理0.5h-10h,冷却至室温,得淀粉基碳;     
2)将制得的淀粉基碳和ZnCl2按质量比1:1-1:10用适量的水混合均匀后再加入FeCl3,淀粉基碳与FeCl3的质量比为1:1-10:1,然后烘干水分,将所得的混合物在惰性气氛中于500-1000℃活化0.5-10h,通入乙炔气体15min,乙炔气体的流量为30sccm,在惰性气氛下冷却至室温,用盐酸溶液洗涤,再用去离子水水洗至中性,抽滤,干燥,得淀粉基活性炭/碳纳米管复合材料; 
3)将步骤2)制得的淀粉基活性炭/碳纳米管复合材料与粘结剂PVDF按质量比7:3-9:1混合,然后加入混合物总量8-15倍的N-甲基吡咯烷酮(NMP),搅拌成浆料状,均匀的涂覆在集流体泡沫镍上,在60-120℃下烘干,用粉末压片机在6MPa-20Mpa下保压30s,得到超级电容器活性炭/碳纳米管复合电极片。
本发明中,所说的禾谷类淀粉是薯类淀粉、豆类淀粉以及香蕉和芭蕉的果实类淀粉。通常,禾谷类淀粉的粒径为2-120微米。薯类淀粉可以是马铃薯或木薯淀粉。
    本发明中,所说的惰性气氛可以是氮气或氩气。
本发明具有如下优点:
1)所用的原料为禾谷类淀粉,具有价格低廉、来源广泛的优点,而且是均为可再生资源。目前用于淀粉生产的农作物主要由玉米、木薯、马铃薯、小麦等。所以淀粉资源非常丰富、且价格低廉;
2)生产工艺简单,省时,省力,易实现大规模生产。
附图说明
图1为电极材料的扫面电镜图(SEM);
图2为电极材料的充放电曲线。
具体实施方式
实施例1
1)将粒径为100微米马铃薯淀粉在120℃下烘干24h,然后放入碳化炉,在氮气的保护下,于350℃恒温热处理4h,冷却至室温,得淀粉基碳;     
2)将制得的淀粉基碳和ZnCl2按质量比1:1用适量的水混合均匀后再加入FeCl3,淀粉基碳与FeCl3的质量比为1:1,然后在120℃的烘箱中烘干水分,将所得的混合物在氮气气氛中于600℃活化3h,通入乙炔气体15min,乙炔气体的流量为30sccm,在氮气气氛下冷却至室温,用1mol/L的盐酸溶液洗涤,再用去离子水水洗至中性,抽滤,干燥,得淀粉基活性炭/碳纳米管复合材料; 
3)将步骤2)制得的淀粉基活性炭/碳纳米管复合材料与粘结剂PVDF按质量比7:3混合,然后加入混合物总量9倍的NMP,在磁力搅拌器下搅拌均匀,得到粘稠的浆料。将浆料均匀的涂覆在集流体泡沫镍上,在120℃下干燥12h,用粉末压片机在9Mpa下保压30s,得到超级电容器活性炭/碳纳米管复合电极片。图1为电极材料的扫面电镜图(SEM)。
将电极片与隔膜浸泡在6M的KOH中24h,与有机玻璃片组装成超级电容器,对电容器进行电化学性能测试,图2为电极材料的充放电曲线,由图可见,电极材料的充放电性能良好,连续对称的三角形表明电容器的循环性能很好。
实施例2:
1)将粒径为100微米马铃薯淀粉在120℃下烘干24h,然后放入碳化炉,在氮气的保护下,于450℃恒温热处理4h,冷却至室温,得淀粉基碳;     
2)将制得的淀粉基碳和ZnCl2按质量比1:5用适量的水混合均匀后再加入FeCl3,淀粉基碳与FeCl3的质量比为5:1,然后在120℃的烘箱中烘干水分,将所得的混合物在氮气气氛中于700℃活化3h,通入乙炔气体15min,乙炔气体的流量为30sccm,在氮气气氛下冷却至室温,用1mol/L的盐酸溶液洗涤,再用去离子水水洗至中性,抽滤,干燥,得淀粉基活性炭/碳纳米管复合材料; 
3)将步骤2)制得的淀粉基活性炭/碳纳米管复合材料与粘结剂PVDF按质量比8:2混合,然后加入混合物总量12倍的NMP,在磁力搅拌器下搅拌均匀,得到粘稠的浆料。将浆料均匀的涂覆在集流体泡沫镍上,在120℃下干燥12h,用粉末压片机在15Mpa下保压30s,得到超级电容器活性炭/碳纳米管复合电极片。
实施例3:
1)将粒径为100微米马铃薯淀粉在120℃下烘干24h,然后放入碳化炉,在氮气的保护下,于550℃恒温热处理4h,冷却至室温,得淀粉基碳;     
2)将制得的淀粉基碳和ZnCl2按质量比1:10用适量的水混合均匀后再加入FeCl3,淀粉基碳与FeCl3的质量比为10:1,然后在120℃的烘箱中烘干水分,将所得的混合物在氮气气氛中于800℃活化3h,通入乙炔气体15min,乙炔气体的流量为30sccm,在氮气气氛下冷却至室温,用1mol/L的盐酸溶液洗涤,再用去离子水水洗至中性,抽滤,干燥,得淀粉基活性炭/碳纳米管复合材料; 
3)将步骤2)制得的淀粉基活性炭/碳纳米管复合材料与粘结剂PVDF按质量比9:1混合,然后加入混合物总量15倍的NMP,在磁力搅拌器下搅拌均匀,得到粘稠的浆料。将浆料均匀的涂覆在集流体泡沫镍上,在120℃下干燥12h,用粉末压片机在20Mpa下保压30s,得到超级电容器活性炭/碳纳米管复合电极片。

Claims (3)

1.一种超级电容器活性炭/碳纳米管复合电极的制备方法,其特征在于包括以下步骤:
1)将禾谷类淀粉在60-120℃下烘干5-30h,然后放入碳化炉,在氮气的保护下,于150-600℃恒温热处理0.5h-10h,冷却至室温,得淀粉基碳,所说的禾谷类淀粉的粒径为2-120微米;
2)将制得的淀粉基碳和ZnCl2按质量比1∶1-1∶10用适量的水混合均匀后再加入FeCl3,淀粉基碳与FeCl3的质量比为1∶1-10∶1,然后烘干水分,将所得的混合物在惰性气氛中于500-1000℃活化0.5-10h,通入乙炔气体15min,乙炔气体的流量为30sccm,在惰性气氛下冷却至室温,用盐酸溶液洗涤,再用去离子水水洗至中性,抽滤,干燥,得淀粉基活性炭/碳纳米管复合材料;
3)将步骤2)制得的淀粉基活性炭/碳纳米管复合材料与粘结剂PVDF按质量比7∶3-9∶1混合,然后加入混合物总量8-15倍的N-甲基吡咯烷酮,搅拌成浆料状,均匀的涂覆在集流体泡沫镍上,在60-120℃下烘干,用粉末压片机在6MPa-20Mpa下保压30s,得到超级电容器活性炭/碳纳米管复合电极片。
2.根据权利要求1所述的超级电容器活性炭/碳纳米管复合电极的制备方法,其特征在于所说的禾谷类淀粉是薯类淀粉、豆类淀粉、香蕉或芭蕉的果实类淀粉。
3.根据权利要求1所述的超级电容器活性炭/碳纳米管复合电极的制备方法,其特征在于惰性气氛为氮气或氩气。
CN2011100687034A 2011-03-22 2011-03-22 一种超级电容器活性炭/碳纳米管复合电极的制备方法 Expired - Fee Related CN102214515B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011100687034A CN102214515B (zh) 2011-03-22 2011-03-22 一种超级电容器活性炭/碳纳米管复合电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011100687034A CN102214515B (zh) 2011-03-22 2011-03-22 一种超级电容器活性炭/碳纳米管复合电极的制备方法

Publications (2)

Publication Number Publication Date
CN102214515A CN102214515A (zh) 2011-10-12
CN102214515B true CN102214515B (zh) 2012-07-11

Family

ID=44745785

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011100687034A Expired - Fee Related CN102214515B (zh) 2011-03-22 2011-03-22 一种超级电容器活性炭/碳纳米管复合电极的制备方法

Country Status (1)

Country Link
CN (1) CN102214515B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105551823A (zh) * 2016-02-02 2016-05-04 深圳市贝特瑞新能源材料股份有限公司 一种碳-碳复合电极材料、制备方法及用途
CN106914265B (zh) * 2017-03-06 2019-12-13 南京师范大学 一种以生物质为碳源凝胶法制备氮掺杂多孔纳米碳材料的方法
CN109422260B (zh) * 2017-08-30 2020-09-04 北京大学 基于活性炭复合物制备超洁净石墨烯的方法
CN111785532B (zh) * 2020-07-09 2022-04-12 重庆中科超容科技有限公司 一种碳纳米管/活性炭的超电容水性浆料及其制备方法
CN113582302A (zh) * 2021-08-17 2021-11-02 扬州大学 基于爆米花基多孔炭材料电极的制备方法及其用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1407569A (zh) * 2001-09-11 2003-04-02 中国科学院成都有机化学研究所 一种活化碳纳米管的用途

Also Published As

Publication number Publication date
CN102214515A (zh) 2011-10-12

Similar Documents

Publication Publication Date Title
Wang et al. Metal/metal oxide nanoparticles-composited porous carbon for high-performance supercapacitors
Shi et al. A porous biomass-based sandwich-structured Co3O4@ Carbon Fiber@ Co3O4 composite for high-performance supercapacitors
Liu et al. Graphene-like porous carbon nanosheets derived from salvia splendens for high-rate performance supercapacitors
Zhang et al. Nanocellulose-enabled, all-nanofiber, high-performance supercapacitor
Lu et al. Nitrogen-and oxygen-doped carbon with abundant micropores derived from biomass waste for all-solid-state flexible supercapacitors
Cheng et al. Synthesis of porous carbon materials derived from laminaria japonica via simple carbonization and activation for supercapacitors
Ye et al. Nitrogen and oxygen-codoped carbon nanospheres for excellent specific capacitance and cyclic stability supercapacitor electrodes
Qu et al. Asymmetric supercapacitor based on porous N-doped carbon derived from pomelo peel and NiO arrays
Wang et al. From trash to treasure: direct transformation of onion husks into three-dimensional interconnected porous carbon frameworks for high-performance supercapacitors in organic electrolyte
Ji et al. Ultrathin Co3O4 nanosheets anchored on multi-heteroatom doped porous carbon derived from biowaste for high performance solid-state supercapacitors
Sun et al. Facile and green synthesis of 3D honeycomb-like N/S-codoped hierarchically porous carbon materials from bio-protic salt for flexible, temperature-resistant supercapacitors
Zhang et al. Nature-inspired design of NiS/carbon microspheres for high-performance hybrid supercapacitors
Chu et al. N-doped carbon derived from the monomer of chitin for high-performance supercapacitor
Zhou et al. Lignin-derived hierarchical mesoporous carbon and NiO hybrid nanospheres with exceptional Li-ion battery and pseudocapacitive properties
Zhai et al. Green and facile fabrication of Cu-doped carbon aerogels from sodium alginate for supercapacitors
Huang et al. Controlled growth of ultrathin NiMoO4 nanosheets on carbon nanofiber membrane as advanced electrodes for asymmetric supercapacitors
Yu et al. Promising high-performance supercapacitor electrode materials from MnO2 nanosheets@ bamboo leaf carbon
Gunasekaran et al. High-performance solid-state supercapacitor based on sustainable synthesis of meso-macro porous carbon derived from hemp fibres via CO2 activation
Chen et al. Self-assembly of biomass microfibers into 3D layer-stacking hierarchical porous carbon for high performance supercapacitors
Liu et al. Cellulose-derived carbon-based electrodes with high capacitance for advanced asymmetric supercapacitors
Zhang et al. Recent progress of transition metal-based biomass-derived carbon composites for supercapacitor
Zhang et al. Synthesis of porous graphitic carbon from biomass by one-step method And its role in the electrode for supercapacitor
Husain et al. Nano-sized mesoporous biochar derived from biomass pyrolysis as electrochemical energy storage supercapacitor
Xiong et al. N/S co-doped carbon derived from cotton as high performance anode materials for lithium ion batteries
Song et al. Metal-organic frameworks-derived carbon modified wood carbon monoliths as three-dimensional self-supported electrodes with boosted electrochemical energy storage performance

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120711

Termination date: 20130322