CN107353015A - 一种碳化硅‑氮化硅多孔复合陶瓷制备方法 - Google Patents
一种碳化硅‑氮化硅多孔复合陶瓷制备方法 Download PDFInfo
- Publication number
- CN107353015A CN107353015A CN201710671197.5A CN201710671197A CN107353015A CN 107353015 A CN107353015 A CN 107353015A CN 201710671197 A CN201710671197 A CN 201710671197A CN 107353015 A CN107353015 A CN 107353015A
- Authority
- CN
- China
- Prior art keywords
- silicon
- silicon nitride
- carbide
- composite ceramics
- porous composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/584—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
- C04B35/571—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/02—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6023—Gel casting
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/606—Drying
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
本发明公开了一种碳化硅‑氮化硅多孔复合陶瓷制备方法,该方法包括以下步骤1)将聚碳硅烷粉体置于真空或保护气氛下进行热处理;2)将凝胶单体、交联剂及分散剂溶解分散至水中得到预混液,所述预混液与烧结助剂粉体、氮化硅粉体及热处理过的聚碳硅烷粉体混合,得到浆料;3)所述浆料经过球磨后,采用注模法制备坯体;4)所述坯体经过干燥、烧结,即得。该方法可以实现碳化硅‑氮化硅复合陶瓷的碳化硅含量和气孔率同时在较大范围内任意调控,制备出孔隙均匀的多孔陶瓷。
Description
技术领域
本发明涉及一种碳化硅-氮化硅多孔复合陶瓷的制备方法,特别涉及一种利用热处理聚碳硅烷来调控碳化硅-氮化硅多孔复合陶瓷气孔率和碳化硅含量的方法;属于多孔复合陶瓷材料领域。
背景技术
多孔陶瓷不仅具有多孔材料密度小,比表面积大等基本特性,还具有耐高温、耐腐蚀等性能优势,使其在耐高温多孔材料中占有极其重要的地位。近年来,多孔陶瓷的开发和应用备受关注,已被广泛应用于电子、环保、能源、化工等领域。
碳化硅和氮化硅具有低密度、高强度、高模量、抗氧化、耐腐蚀、耐烧蚀等优异性能,是十分理想的耐高温多孔陶瓷材料,在1000℃以上的使用环境中具有广阔的应用前景。目前研究的碳化硅-氮化硅复合陶瓷主要应用于结构材料,即复合陶瓷较为致密,对碳化硅-氮化硅多孔复合陶瓷的研制较少。
中国专利(CN200410073163.9)公开了一种氮化硅-碳化硅多孔陶瓷的制备方法,具体公开了以酚醛树脂作为材料的造孔剂和碳热还原剂,实验通过混粉、湿磨、干燥、冷压和烧结(氮气)工艺制备出了一种碳化硅-氮化硅多孔陶瓷,气孔率为45~70%,抗弯强度为68~170MPa。在酚醛树脂的作用下,材料的碳化硅含量与气孔率直接相关,因此该工艺难以根据实际需求制备碳化硅含量和气孔可分别调控的碳化硅-氮化硅多孔陶瓷。
中国专利(CN201410563152.2)公开了一种氮化硅结合碳化硅泡沫陶瓷的制备方法,具体公开将SiC、硅微粉、酚醛树脂外加羟丙基甲基纤维素溶液均匀混合制成陶瓷浆料,然后将陶瓷浆料浸渍在聚氨酯泡沫上,干燥后在氮气气氛中烧制成氮化硅结合碳化硅泡沫陶瓷。该方法制备的氮化硅结合碳化硅泡沫陶瓷显微结构均匀,强度高,孔大小均匀,避免炭和游离硅的残留,使其强度、耐高温、抗热冲击性能得到大幅度提高,但其复合陶瓷的气孔率无法调控。
文献“Yang J F,Zhang G J,Kondo N,et al.Synthesis and properties ofporous Si3N4/SiC nanocomposites by carbothermal reaction between Si3N4andcarbon[J].Acta Materialia,2002,50(19):4831-4840.”以纳米碳粉为碳源,利用碳粉的碳化还原反应造孔,实验通过混粉、湿磨、干燥、冷压和烧结(氩气/氮气)工艺制备出了一种碳化硅-氮化硅多孔陶瓷,气孔率为50~80%,抗弯强度为20~100MPa。由于纳米碳粉的含量同时影响材料中碳化硅含量和气孔率,因此仍存在碳化硅含量和气孔率不可分别调控的问题。
发明内容:
针对现有技术中碳化硅-氮化硅多孔陶瓷材料的存在问题,本发明的目的旨在提供一种可以实现碳化硅含量和气孔率同时可在较大范围内任意调控的碳化硅-氮化硅多孔复合陶瓷的制备方法。
为了实现上述技术目的,本发明提供了一种碳化硅-氮化硅多孔复合陶瓷制备方法,该方法包括以下步骤:
1)将聚碳硅烷粉体置于真空或保护气氛下,在400~1400℃温度下进行热处理;
2)将凝胶单体、交联剂及分散剂溶解分散至水中得到预混液,所述预混液与烧结助剂粉体、氮化硅粉体及热处理过的聚碳硅烷粉体混合,得到浆料;
3)所述浆料经过球磨后,采用注模法制备坯体;
4)所述坯体经过干燥、烧结,即得。
本发明的技术方案首次利用热处理过的聚碳硅烷粉作为碳化硅-氮化硅多孔复合陶瓷的造孔剂和碳化硅的碳源,同时实现了陶瓷气孔率和碳化硅含量的有效调控,且获得孔隙均匀的碳化硅-氮化硅多孔复合陶瓷材料。
聚碳硅烷是一种常用的作为碳化硅前驱体的聚合物材料,在其裂解中,随着裂解温度的升高,聚碳硅烷会不断的排除一些气体小分子或基团,从而在基体内形成气孔。发明人发现,聚碳硅烷在其裂解过程中,当温度升高至400~1400℃温度范围内时,聚碳硅烷的热重曲线呈现有规律的变化,可以利用其变化规律设计出符合的需求的碳化硅-氮化硅多孔复合陶瓷材料。特别是通过大量实验表明,在其他条件相同时,聚碳硅烷的热处理温度越高,用热处理后的聚碳硅烷制备的多孔陶瓷材料气孔率越低。当热处理温度为400~780℃范围内,聚碳硅烷的热衷曲线呈现出良好的近似线性关系,在此范围聚碳硅烷的质量减少了30%,说明聚此时聚碳硅烷能够稳定释放出大量的氢气、碳氢化合物及甲基硅烷等气体,可用于制备气孔率较高的多孔材料,并且能够形成较为均匀的孔。当热处理温度为780℃时,聚碳硅烷发生无机化转变,质量发生骤减。当热处理温度为780~1400℃范围内,聚碳硅烷仍有4%的失重,此时聚碳硅烷仍能够稳定释放出少量氢气、CO、SiO等气体,可用于制备气孔率较低的多孔材料,也能形成较为均匀的孔。
本发明申请技术方案巧妙地将聚碳硅烷在400~1400℃温度范围内进行热处理,使聚碳硅烷通过裂解先释放部分气体小分子和基团,热处理后的聚碳硅烷不仅能作为碳化硅源,而且在后续的烧结过程中能继续稳定的释放气体,从而获得孔隙均匀的多孔陶瓷材料。通过控制聚碳硅烷进行热处理的裂解温度和聚碳硅烷的添加量,可以同时调控碳化硅-氮化硅复合陶瓷的气孔率及其碳化硅的含量。
优选的方案,热处理过程中升温速率为1~20℃/min,在400~1400℃温度下保温的时间为0.5~5小时。
优选的方案,步骤2)中,各组分以质量份计量:凝胶单体10~20份、交联剂1~2份、分散剂2~6份、水70~90份,烧结助剂粉体10~20份、氮化硅粉体和热处理过的聚碳硅烷粉体80~90份。
较优选的方案,所述凝胶单体为丙烯酰胺。
较优选的方案,所述交联剂为N,N’-亚甲基双丙烯酰胺。
较优选的方案,所述分散剂为四甲基氢氧化铵。
较优选的方案,所述烧结助剂为氧化铝和氧化钇按质量比1~2:1~5组合。
较优选的方案,所述氮化硅和所述热处理过的聚碳硅烷的质量比为1:0.01~4。
优选的方案,球磨过程中球磨机转速为100~300r/min,球磨时间为1~7小时。
优选的方案,注模过程中在浆料中加入催化剂和引发剂,搅拌均匀后,倒入模具中,反应10~100min,固化成型,脱模,得到坯体。
较优选的方案,所述注模过程在氮气下进行。
较优选的方案,所述催化剂为四甲基乙二胺。催化剂的相对用量为0.1~10质量份。
较优选的方案,所述引发剂为过硫酸铵。
优选的方案,干燥过程中干燥温度为30~150℃、相对湿度为50~90%,干燥气氛为空气,干燥至质量恒重。在该条件下干燥,能防止坯体收缩开裂。
优选的方案,烧结过程中干燥坯体置于氮气气氛中,以0.5~10℃/min的升温速率升温至1550~1750℃,保温0.5~5小时。
优选的方案,所述碳化硅-氮化硅多孔复合陶瓷的碳化硅含量在1~70%内任意调控,气孔率在0.5~60%任意调控,密度为1.0~3.4g/cm3,抗弯强度为50~600MPa。
本发明的技术方案中保护气氛为氮气和/或氩气。
相对现有技术,本发明的技术方案带来的有益技术效果:
本发明的技术方案首次利用经过热处理后的聚碳硅烷作为碳化硅-氮化硅多孔复合陶瓷制备过程中的碳化硅源和造孔剂,经过适当热处理后的聚碳硅烷能够稳定释放气体小分子和基团,从而可以通过控制聚碳硅烷热处理的裂解温度以及热处理后的聚碳硅烷用量,实现调控碳化硅-氮化硅多孔复合陶瓷气孔率和碳化硅的含量;制备出气孔尺寸均一、分布均匀的碳化硅-氮化硅多孔复合陶瓷。
本发明的技术方案不改变现有的凝胶注模法制备多孔陶瓷的工艺,工艺成熟,同时可以制备出大尺寸多孔陶瓷复杂件。
本发明的技术方案制备的碳化硅-氮化硅多孔复合陶瓷碳化硅含量在1~70%内任意调控,气孔率在0.5~60%任意调控,密度为1.0~3.4g/cm3,抗弯强度为50~600MPa,可以根据不同使用要求设计陶瓷材料的性能。
附图说明:
图1是按实施例1所制备的碳化硅-氮化硅多孔复合陶瓷的XRD。
图2是按实施例1所制备的碳化硅-氮化硅多孔复合陶瓷断面的微观形貌。
图3是按对比例1所制备的碳化硅-氮化硅多孔复合陶瓷断面的微观形貌。
图4为聚碳硅烷粉体的热失重曲线。
具体实施方式:
下面结合发明实例和附图对本发明进行进一步的描述,而不是限制本发明权利要求的保护范围。
以下实施例及对比实施中凝胶单体为丙烯酰胺;交联剂为N,N’-亚甲基双丙烯酰胺;分散剂为四甲基氢氧化铵;催化剂为四甲基乙二胺;引发剂为过硫酸铵。
实施例1:
1)碳化硅前驱体热处理:将聚碳硅烷在真空中以5℃/min升温速率升温至900℃,保温0.5小时;
2)浆料制备:将15重量份凝胶单体、1重量份交联剂、3重量份分散剂、与81重量份水混合形成预混液,在预混液中加入10重量份氧化钇、5重量份氧化铝和59.5重量份氮化硅和25.5重量份的预烧结后的聚碳硅烷粉体形成浆料;
3)球磨:将浆料球磨6小时;
4)凝胶注模:在氮气中,将球磨后的浆料加入0.9重量份单体催化剂和引发剂,均匀搅拌后倒入模具中,反应30min后浆料固化成坯体,脱模取出;
5)干燥:将坯体放入温度为40℃、相对湿度为80%的空气中干燥,待质量不再变化后取出;
6)烧结:将干燥完全的坯体放入烧结炉中,在氮气中以0.5~5℃/min的升温速率升温至1600℃,保温时间为3小时。所制备碳化硅-氮化硅多孔复合陶瓷中碳化硅的含量约为30%,用阿基米德排水法测的开孔率为19.3±0.5%,抗弯性能为128.9±8.6MPa。
图1为碳化硅-氮化硅多孔复合陶瓷的XRD谱图,从图1可以看出,利用发明成功制备出了碳化硅-氮化硅复合陶瓷。图2为碳化硅-氮化硅多孔复合陶瓷断面的微观形貌,图2中的碳化硅-氮化硅多孔复合陶瓷气孔较多,且气孔尺寸较为均一,分布均匀。
实施例2:
1)碳化硅前驱体热处理:将聚碳硅烷在真空中以5℃/min升温速率升温至900℃,保温0.5小时;
2)浆料制备:将15重量份单体、1重量份交联剂、3重量份分散剂、与81重量份水混合形成预混液,在预混液中加入10重量份氧化钇、5重量份氧化铝和68重量份氮化硅和17重量份的预烧结后的聚碳硅烷粉体形成浆料;
3)球磨:将浆料球磨6小时;
4)凝胶注模:在氮气中,将球磨后的浆料加入0.9重量份单体催化剂和引发剂,均匀搅拌后倒入模具中,反应30min后浆料固化成坯体,脱模取出;
5)干燥:将坯体放入温度为40℃、相对湿度为80%的空气中干燥,待质量不再变化后取出;
6)烧结:将干燥完全的坯体放入烧结炉中,在氮气中以0.5~5℃/min的升温速率升温至1600℃,保温时间为3小时。所制备碳化硅-氮化硅多孔复合陶瓷中碳化硅的含量约为20%,用阿基米德排水法测的开孔率为13.6±0.8%,抗弯性能为214.2±35.4MPa。
实施例3:
1)碳化硅前驱体热处理:将聚碳硅烷在真空中以5℃/min升温速率升温至900℃,保温0.5小时;
2)浆料制备:将15重量份单体、1重量份交联剂、3重量份分散剂、与81重量份水混合形成预混液,在预混液中加入10重量份氧化钇、5重量份氧化铝和80.75重量份氮化硅和4.25重量份的预烧结后的聚碳硅烷粉体形成浆料;
3)球磨:将浆料球磨6小时;
4)凝胶注模:在氮气中,将球磨后的浆料加入0.9重量份单体催化剂和引发剂,均匀搅拌后倒入模具中,反应30min后浆料固化成坯体,脱模取出;
5)干燥:将坯体放入温度为40℃、相对湿度为80%的空气中干燥,待质量不再变化后取出;
6)烧结:将干燥完全的坯体放入烧结炉中,在氮气中以0.5-5℃/min的升温速率升温至1600℃,保温时间为3小时。所制备碳化硅-氮化硅多孔复合陶瓷中碳化硅的含量约为20%,用阿基米德排水法测的开孔率为0.8±0.4%,抗弯性能为547.5±96.1MPa。
实施例4:
1)碳化硅前驱体热处理:将聚碳硅烷在真空中以5℃/min升温速率升温至600℃,保温0.5小时;
2)浆料制备:将15重量份单体、1重量份交联剂、3重量份分散剂、与81重量份水混合形成预混液,在预混液中加入10重量份氧化钇、5重量份氧化铝和76.5重量份氮化硅和8.5重量份的预烧结后的聚碳硅烷粉体形成浆料;
3)球磨:将浆料球磨6小时;
4)凝胶注模:在氮气中,将球磨后的浆料加入0.9重量份单体催化剂和引发剂,均匀搅拌后倒入模具中,反应30min后浆料固化成坯体,脱模取出;
5)干燥:将坯体放入温度为40℃、相对湿度为80%的空气中干燥,待质量不再变化后取出;
6)烧结:将干燥完全的坯体放入烧结炉中,在氮气中以0.5-5℃/min的升温速率升温至1600℃,保温时间为3小时。所制备碳化硅-氮化硅多孔复合陶瓷中碳化硅的含量约为20%,用阿基米德排水法测的开孔率为25.6±1.0%,抗弯性能为206.3±18.6MPa。
对比例1:
1)浆料制备:将15重量份单体、1重量份交联剂、3重量份分散剂、与81重量份水混合形成预混液,在预混液中加入10重量份氧化钇、5重量份氧化铝和59.5重量份氮化硅和25.5重量份的碳化硅微粉形成浆料;
2)球磨:将浆料球磨6小时;
3)凝胶注模:在氮气中,将球磨后的浆料加入0.9重量份单体催化剂和引发剂,均匀搅拌后倒入模具中,反应30min后浆料固化成坯体,脱模取出;
4)干燥:将坯体放入温度为40℃、相对湿度为80%的空气中干燥,待质量不再变化后取出;
5)烧结:将干燥完全的坯体放入烧结炉中,在氮气中以0.5-5℃/min的升温速率升温至1600℃,保温时间为3小时。所制备碳化硅-氮化硅多孔复合陶瓷中碳化硅的含量约为30%,用阿基米德排水法测的开孔率为7.0±1.7%,抗弯性能为274.5±30.1MPa。
图3为加入碳化硅微粉所制备的碳化硅-氮化硅多孔复合陶瓷断面的微观形貌,可以看出,碳化硅-氮化硅多孔复合陶瓷的气孔较少,且气孔尺寸及分布不如实施例1均匀。
对比例2:
1)碳化硅前驱体热处理:将聚碳硅烷在真空中以5℃/min升温速率升温至1600℃,保温0.5小时;
2)浆料制备:将15重量份单体、1重量份交联剂、3重量份分散剂、与81重量份水混合形成预混液,在预混液中加入10重量份氧化钇、5重量份氧化铝和59.5重量份氮化硅和25.5重量份的预烧结后的聚碳硅烷粉体形成浆料;
3)球磨:将浆料球磨6小时;
4)凝胶注模:在氮气中,将球磨后的浆料加入0.9重量份单体催化剂和引发剂,均匀搅拌后倒入模具中,反应30min后浆料固化成坯体,脱模取出;
5)干燥:将坯体放入温度为40℃、相对湿度为80%的空气中干燥,待质量不再变化后取出;
6)烧结:将干燥完全的坯体放入烧结炉中,在氮气中以0.5-5℃/min的升温速率升温至1600℃,保温时间为3小时。所制备碳化硅-氮化硅多孔复合陶瓷中碳化硅的含量约为20%,用阿基米德排水法测的开孔率为8.6±1.2%,抗弯性能为253.5±27.5MPa。
与实施例1和对比例1进行对比可以看出,当聚碳硅烷的热处理温度为1600时,聚碳硅烷裂解的碳化硅几乎已经失去了造孔功能,产生的气孔率明显下降,与直接添加碳化硅粉的气孔率并没有明显的差别,因此不在本专利的保护范围内。
Claims (10)
1.一种碳化硅-氮化硅多孔复合陶瓷制备方法,其特征在于:包括以下步骤:
1)将聚碳硅烷粉体置于真空或保护气氛下,在400~1400℃温度下进行热处理;
2)将凝胶单体、交联剂及分散剂溶解分散至水中得到预混液,所述预混液与烧结助剂粉体、氮化硅粉体及热处理过的聚碳硅烷粉体混合,得到浆料;
3)所述浆料经过球磨后,采用注模法制备坯体;
4)所述坯体经过干燥、烧结,即得。
2.根据权利要求1所述的碳化硅-氮化硅多孔复合陶瓷制备方法,其特征在于:热处理过程中升温速率为1~20℃/min,在400~1400℃温度下保温的时间为0.5~5小时。
3.根据权利要求1或2所述的碳化硅-氮化硅多孔复合陶瓷制备方法,其特征在于:步骤2)中,各组分以质量份计量:凝胶单体10~20份、交联剂1~2份、分散剂2~6份、水70~90份,烧结助剂粉体10~20份、氮化硅粉体和热处理过的聚碳硅烷粉体80~90份。
4.根据权利要求3所述的碳化硅-氮化硅多孔复合陶瓷制备方法,其特征在于:
所述凝胶单体为丙烯酰胺;
所述交联剂为N,N’-亚甲基双丙烯酰胺;
所述分散剂为四甲基氢氧化铵;
所述烧结助剂为氧化铝和氧化钇按质量比1~2:1~5组合;
所述氮化硅和所述热处理过的聚碳硅烷的质量比为1:0.01~4。
5.根据权利要求1、2或4所述的碳化硅-氮化硅多孔复合陶瓷制备方法,其特征在于:球磨过程中球磨机转速为100~300r/min,球磨时间为1~7小时。
6.根据权利要求1、2或4所述的碳化硅-氮化硅多孔复合陶瓷制备方法,其特征在于:注模过程中在浆料中加入催化剂和引发剂,搅拌均匀后,倒入模具中,反应10~100min,固化成型,脱模,得到坯体。
7.根据权利要求6所述的碳化硅-氮化硅多孔复合陶瓷制备方法,其特征在于:所述注模过程在氮气气氛下进行;
所述催化剂为四甲基乙二胺;
所述引发剂为过硫酸铵。
8.根据权利要求1、2或4所述的碳化硅-氮化硅多孔复合陶瓷制备方法,其特征在于:干燥过程中干燥温度为30~150℃、相对湿度为50~90%,干燥气氛为空气,干燥至质量恒重。
9.根据权利要求1、2、4或7所述的碳化硅-氮化硅多孔复合陶瓷制备方法,其特征在于:烧结过程中干燥坯体置于氮气气氛中,以0.5~10℃/min的升温速率升温至1550~1750℃,保温0.5~5小时。
10.根据权利要求1、2、4或7所述的碳化硅-氮化硅多孔复合陶瓷制备方法,其特征在于:所述碳化硅-氮化硅多孔复合陶瓷的碳化硅含量在1~70%内任意调控,气孔率在0.5~60%任意调控,密度为1.0~3.4g/cm3,抗弯强度为50~600MPa。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710671197.5A CN107353015B (zh) | 2017-08-08 | 2017-08-08 | 一种碳化硅-氮化硅多孔复合陶瓷制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710671197.5A CN107353015B (zh) | 2017-08-08 | 2017-08-08 | 一种碳化硅-氮化硅多孔复合陶瓷制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107353015A true CN107353015A (zh) | 2017-11-17 |
CN107353015B CN107353015B (zh) | 2020-03-10 |
Family
ID=60288182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710671197.5A Active CN107353015B (zh) | 2017-08-08 | 2017-08-08 | 一种碳化硅-氮化硅多孔复合陶瓷制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107353015B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108033801A (zh) * | 2017-11-23 | 2018-05-15 | 中国人民解放军国防科技大学 | 氮化硅纳米线增强多孔氮化硅复合材料及其制备方法 |
CN108298992A (zh) * | 2018-03-06 | 2018-07-20 | 济南大学 | 一种环保型凝胶注模成型制备氮化硅陶瓷素坯的方法 |
CN112552062A (zh) * | 2020-12-24 | 2021-03-26 | 南京海通电子材料科技有限公司 | 一种复合材料的制造方法 |
CN112679212A (zh) * | 2021-02-02 | 2021-04-20 | 中钢集团洛阳耐火材料研究院有限公司 | 一种渣浆泵用氮化物结合碳化硅耐磨陶瓷件的制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103664190A (zh) * | 2013-11-26 | 2014-03-26 | 河海大学 | 一种多孔氮化硅陶瓷的制备方法 |
CN103833370A (zh) * | 2014-01-08 | 2014-06-04 | 西北工业大学 | 一种复相陶瓷Si3N4-SiC的近尺寸制备方法 |
CN103922748A (zh) * | 2014-03-14 | 2014-07-16 | 河海大学 | 一种多孔氮化硅陶瓷的制备方法 |
CN105523773A (zh) * | 2015-11-11 | 2016-04-27 | 陕西盛迈石油有限公司 | 一种凝胶注模成型制备微多孔氮化硅陶瓷的方法 |
-
2017
- 2017-08-08 CN CN201710671197.5A patent/CN107353015B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103664190A (zh) * | 2013-11-26 | 2014-03-26 | 河海大学 | 一种多孔氮化硅陶瓷的制备方法 |
CN103833370A (zh) * | 2014-01-08 | 2014-06-04 | 西北工业大学 | 一种复相陶瓷Si3N4-SiC的近尺寸制备方法 |
CN103922748A (zh) * | 2014-03-14 | 2014-07-16 | 河海大学 | 一种多孔氮化硅陶瓷的制备方法 |
CN105523773A (zh) * | 2015-11-11 | 2016-04-27 | 陕西盛迈石油有限公司 | 一种凝胶注模成型制备微多孔氮化硅陶瓷的方法 |
Non-Patent Citations (1)
Title |
---|
曹柳絮等: "聚碳硅烷的高温陶瓷化机理", 《中南大学学报自然科学版》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108033801A (zh) * | 2017-11-23 | 2018-05-15 | 中国人民解放军国防科技大学 | 氮化硅纳米线增强多孔氮化硅复合材料及其制备方法 |
CN108033801B (zh) * | 2017-11-23 | 2020-02-18 | 中国人民解放军国防科技大学 | 氮化硅纳米线增强多孔氮化硅复合材料及其制备方法 |
CN108298992A (zh) * | 2018-03-06 | 2018-07-20 | 济南大学 | 一种环保型凝胶注模成型制备氮化硅陶瓷素坯的方法 |
CN112552062A (zh) * | 2020-12-24 | 2021-03-26 | 南京海通电子材料科技有限公司 | 一种复合材料的制造方法 |
CN112679212A (zh) * | 2021-02-02 | 2021-04-20 | 中钢集团洛阳耐火材料研究院有限公司 | 一种渣浆泵用氮化物结合碳化硅耐磨陶瓷件的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107353015B (zh) | 2020-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yuan et al. | Preparation and properties of mullite-bonded porous fibrous mullite ceramics by an epoxy resin gel-casting process | |
CN102010222B (zh) | 一种碳化硅多孔陶瓷及其制备方法 | |
CN108033801B (zh) | 氮化硅纳米线增强多孔氮化硅复合材料及其制备方法 | |
CN107353015A (zh) | 一种碳化硅‑氮化硅多孔复合陶瓷制备方法 | |
CN101323524B (zh) | 一种定向排列孔碳化硅多孔陶瓷的制备方法 | |
CN105418071B (zh) | 高纯超细ZrC‑SiC复合粉体的合成方法 | |
Lu et al. | Complex shaped boron carbides from negative additive manufacturing | |
CN106699227A (zh) | 一种纳米线自增强多孔氮化硅陶瓷及其制备方法 | |
CN106478107A (zh) | 一种氮化硅晶须结合碳化硅多孔陶瓷及其制备方法 | |
ShuQin et al. | Mechanical and dielectric properties of porous Si2N2O–Si3N4 in situ composites | |
CN105645967A (zh) | 一种高度定向通孔多孔氮化硅陶瓷材料的制备方法 | |
CN113135742A (zh) | 一种通过陶瓷前驱体骨架成型的精细陶瓷材料及其制备方法和应用 | |
CN118164764A (zh) | 一种无压烧结碳化硅凝胶注成型的制备方法 | |
CN108752038A (zh) | 一种以可热固化聚碳硅烷制备的碳化硅泡沫陶瓷 | |
CN103613402B (zh) | 凝胶注模制备O-Sialon多孔材料及制备方法 | |
CN108727059A (zh) | 一种以可热固化聚碳硅烷制备碳化硅泡沫陶瓷的制备方法 | |
CN112341207B (zh) | 一种氮化硅-氧氮化硅柱孔复相陶瓷材料及其制备方法 | |
CN108794053A (zh) | 一种材质为碳化硅泡沫陶瓷的多孔介质燃烧器 | |
CN108558409A (zh) | 一种碳化硅泡沫陶瓷及使用其为材质的液态金属过滤器 | |
CN117534495A (zh) | 前驱体浸渍裂解结合反应熔渗制备陶瓷基复合材料的方法 | |
JPH10500655A (ja) | アンモニアを用いる熱分解によるセラミック前駆体からの細孔型セラミックの合成 | |
CN111908847B (zh) | 一种抗冻抗开裂混凝土及其制备方法 | |
CN104086183A (zh) | 一种气孔率可控多孔Si3N4的制备方法 | |
CN109133931B (zh) | 以可热固化聚碳硅烷和聚氨酯制备碳化硅泡沫陶瓷的方法 | |
CN109721381A (zh) | 氮化硅壳体强化氮化硅泡沫陶瓷的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |