CN107338476A - 一种在mpcvd制备碳化钼晶体时利用在直流电弧引入钼源的方法 - Google Patents

一种在mpcvd制备碳化钼晶体时利用在直流电弧引入钼源的方法 Download PDF

Info

Publication number
CN107338476A
CN107338476A CN201710639970.XA CN201710639970A CN107338476A CN 107338476 A CN107338476 A CN 107338476A CN 201710639970 A CN201710639970 A CN 201710639970A CN 107338476 A CN107338476 A CN 107338476A
Authority
CN
China
Prior art keywords
molybdenum
source
direct
mpcvd
pure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710639970.XA
Other languages
English (en)
Inventor
马志斌
任昱霖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Technology
Original Assignee
Wuhan Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Technology filed Critical Wuhan Institute of Technology
Priority to CN201710639970.XA priority Critical patent/CN107338476A/zh
Publication of CN107338476A publication Critical patent/CN107338476A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4485Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation without using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/64Flat crystals, e.g. plates, strips or discs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Plasma Technology (AREA)

Abstract

本发明公开了一种在MPCVD制备碳化钼晶体时利用在直流电弧引入钼源的方法,包含如下步骤:将两根清洗后的纯钼杆插入反应腔内上法兰的绝缘孔中,并将两根纯钼杆上端分别与直流电源的正电极端以及负电极端相连接;将硅衬底放入反应腔内的基片台上,对腔体抽真空;向反应腔腔体通入氢气,并调节微波功率和气压直至等离子体稳定,通入反应气体甲烷;打开直流电源,调节电压值,使得两根纯钼杆电极之间产生弧光放电,向微波等离子体中引入钼;待反应结束后,关机,取出样品。本发明通过直流电弧放电产生的高温使金属钼从固态转变为气态,带入下方的微波等离子体中参与反应,解决了碳化钼制备过程中钼的引入问题,极大的提高了碳化钼的制备效率。

Description

一种在MPCVD制备碳化钼晶体时利用在直流电弧引入钼源的 方法
技术领域
本发明涉及一种在MPCVD制备碳化钼晶体时利用在直流电弧引入钼源的方法。
背景技术
目前,利用等离子体化学气相沉积技术制备二维晶体是一个具有很大前景的技术领域,但是在制备过度族金属碳化物(TMCs)如碳化钼,碳化钨等晶体时金属反应物的引入一直存在问题,在利用化学气相沉积过程中金属反应物的引入主要通过两种方法:第一类通过引入含金属元素的液态蒸发源作为反应气源,该方法无法保证液态源的利用率,液态源在蒸发、运输过程中容易凝结,损耗,且液态源易带入其他元素,影响晶体的纯净度,第二类通过等离子体对金属靶材进行轰击或高温溶解的方式将其引入等离子体中,但这对等离子体的能量密度有较高要求且对等离子体的状态有所影响。因此,需要提供一种金属的引入方法,使得金属反应物变为气态直接参与等离子体化学气象沉积的反应过程中,来实现金属反应物与的结合,从而制备高质量的二维晶体。
发明内容
基于以上现有技术的不足,本发明所解决的技术问题在于提供一种在MPCVD制备碳化钼晶体时利用在直流电弧引入钼源的方法,该方法显著解决了微波等离子体中钼源的引入问题,并且能够较好的控制钼源的引入量,获得较纯的产物。
为了解决上述技术问题,本发明提供一种在MPCVD制备碳化钼晶体时利用在直流电弧引入钼源的方法,其特征在于,包含如下步骤:
步骤一、将两根纯钼杆与硅衬底进行超声波清洗并干燥,将清洗后的纯钼杆插入反应腔内上法兰的绝缘孔中,并将两根纯钼杆上端分别与直流电源的正电极端以及负电极端相连接;
步骤二,将硅衬底放入反应腔内的基片台上,对腔体抽真空;
步骤三,向反应腔腔体通入氢气,并调节微波功率和气压直至等离子体稳定,通入反应气体甲烷;
步骤四,打开直流电源,调节电压值,使得两根纯钼杆电极之间产生弧光放电,向微波等离子体中引入钼;
步骤五,待反应结束后,关闭直流电源和微波电源,待腔体内腔室冷却后,取出样品。
作为上述技术方案的优选,本发明提供的在MPCVD制备碳化钼晶体时利用在直流电弧引入钼源的方法进一步包括下列技术特征的部分或全部:
作为上述技术方案的改进,所述步骤一中,纯钼杆的直径为3-5mm,两根纯钼杆的间距为20-45mm。
作为上述技术方案的改进,所述步骤二中,腔体真空度为0.1-10pa。
作为上述技术方案的改进,所述步骤三中,氢气流量为100-400sccm,甲烷流量为0.5-10sccm,微波功率为500-1200w,反应气压为10-15kPa。
作为上述技术方案的改进,所述步骤四中,正负电极之间的电压为200-500V,电弧的温度为1500-2700℃,电弧放电距离微波等离子体边缘5-20mm。
作为上述技术方案的改进,所述步骤五中,腔体的冷却时间为15-20min。
与现有技术相比,本发明的技术方案具有如下有益效果:本发明利用两根纯钼杆之间产生的高能直流电弧使纯钼杆气化,通过反应气体将单质钼带入微波等离子体中参与反应,这种方法解决了碳化钼等二维晶体制备过程中钼源的引入问题,在不影响化学气相沉积的过程下稳定高效的提供了高纯度的钼源,为MPCVD法制备高质量的碳化钼晶体提供了稳定的钼源。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下结合优选实施例,详细说明如下。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍。
图1是利用直流电弧向微波等离子体中引入钼源的装置结构示意图;
图2是实施例1制得样品的XRD结果图。
图中:1-直流电源;2-纯钼杆;3-绝缘孔;4-直流电弧;5-进气口;6-基片台;7-石英管;8-微波等离子体;9-抽气口。
具体实施方式
下面详细说明本发明的具体实施方式,其作为本说明书的一部分,通过实施例来说明本发明的原理,本发明的其他方面、特征及其优点通过该详细说明将会变得一目了然。
实施例1:
硅衬底为直径9mm,厚度0.05mm的P型(1 0 0)单晶硅,两根纯钼杆直径为3mm,长度为40mm。
第一步,用乙醇和丙酮混合液将纯钼杆2与硅衬底进行超声波清洗并干燥,将清洗后的纯钼杆2插入上法兰的绝缘孔3中,并将纯钼杆2上端与直流电源1的正负电极端相连接;
第二步,将硅衬底放入微波等离子体反应腔内的基片台6上,对腔体抽真空,直至腔体真空度下降到1pa;
第三步,向腔体通入200sccm的氢气,加大微波功率,激发产生微波等离子体8,并调节微波功率和气压直至等离子体稳定,通入2sccm的甲烷,其中微波功率为800w,工作气压为11kPa;
第四步,打开直流电源,调节电压值到300V,使得两根纯钼杆2之间产生直流电弧4,降低钼杆使直流电弧靠近下方的微波等离子体,向微波等离子体8中引入钼,反应时间为2h;
第五步,反应结束后,关闭直流电源1和微波电源,待腔体内腔室冷却20min,取出样品。
如图2所示,是本实施例制得样品的XRD结果图,结果显示此方法可以制备得到纯度较高的碳化钼晶体。
实施例2:
硅衬底为直径10mm,厚度0.05mm的P型(1 0 0)单晶硅,两根纯钼杆直径为3mm,长度为40mm。
第一步,用乙醇和丙酮混合液将纯钼杆2与硅衬底进行超声波清洗并干燥,将清洗后的纯钼杆2插入上法兰的绝缘孔3中,并将纯钼杆2上端与直流电源1的正负电极端相连接;
第二步,将硅衬底放入微波等离子体反应腔内的基片台6中央,对腔体抽真空,直至腔体真空度下降到1pa;
第三步,向腔体通入300sccm的氢气,加大微波功率,激发产生微波等离子体8,并调节微波功率和气压直至等离子体稳定,通入3sccm的甲烷,其中微波功率为1000w,工作气压为12kPa;
第四步,打开直流电源,调节电压值到400V,使得两根纯钼杆2之间产生直流电弧4,降低钼杆使直流电弧靠近下方的微波等离子体,向微波等离子体8中引入钼,反应时间为2h;
第五步,反应结束后,关闭直流电源1和微波电源,待腔体内腔室冷却20min,取出样品。
实施例3:
硅衬底为直径12mm,厚度0.05mm的P型(1 0 0)单晶硅,两根纯钼杆直径为3mm,长度为40mm。
第一步,用乙醇和丙酮混合液将纯钼杆2与硅衬底进行超声波清洗并干燥,将清洗后的纯钼杆2插入上法兰的绝缘孔3中,并将纯钼杆2上端与直流电源1的正负电极端相连接;
第二步,将硅衬底放入微波等离子体反应腔内的基片台6中央,对腔体抽真空,直至腔体真空度下降到1pa;
第三步,向腔体通入250sccm的氢气,加大微波功率,激发产生微波等离子体8,并调节微波功率和气压直至等离子体稳定,通入2sccm的甲烷,其中微波功率为1200w,工作气压为13kPa;
第四步,打开直流电源,调节电压值到300V,使得两根纯钼杆2之间产生直流电弧4,降低钼杆使直流电弧靠近下方的微波等离子体,向微波等离子体4中引入钼,反应时间为2h;
第五步,反应结束后,关闭直流电源1和微波电源,待腔体内腔室冷却20min,取出样品。
本发明所列举的各原料,以及本发明各原料的上下限、区间取值,以及工艺参数(如温度、时间等)的上下限、区间取值都能实现本发明,在此不一一列举实施例。
以上所述是本发明的优选实施方式而已,当然不能以此来限定本发明之权利范围,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和变动,这些改进和变动也视为本发明的保护范围。

Claims (7)

1.一种在MPCVD制备碳化钼晶体时利用在直流电弧引入钼源的方法,其特征在于,包含如下步骤:
步骤一、将两根纯钼杆与硅衬底进行超声波清洗并干燥,将清洗后的纯钼杆插入反应腔内上法兰的绝缘孔中,并将两根纯钼杆上端分别与直流电源的正电极端以及负电极端相连接;
步骤二,将硅衬底放入反应腔内的基片台上,对腔体抽真空;
步骤三,向反应腔腔体通入氢气,并调节微波功率和气压直至等离子体稳定,通入反应气体甲烷;
步骤四,打开直流电源,调节电压值,使得两根作为正负电极的纯钼杆之间产生电弧放电,向微波等离子体中引入钼;
步骤五,待反应结束后,关闭直流电源和微波电源,待腔体内腔室冷却后,取出样品。
2.如权利要求1所述的在MPCVD制备碳化钼晶体时利用在直流电弧引入钼源的方法,其特征在于:所述步骤一中,超声波清洗使用的清洗液为丙酮。
3.如权利要求1所述的在MPCVD制备碳化钼晶体时利用在直流电弧引入钼源的方法,其特征在于:所述步骤一中,纯钼杆的直径为3-5mm,两根纯钼杆的间距为20-45mm。
4.如权利要求1所述的在MPCVD制备碳化钼晶体时利用在直流电弧引入钼源的方法,其特征在于:所述步骤二中,腔体真空度为0.1-10pa。
5.如权利要求1所述的在MPCVD制备碳化钼晶体时利用在直流电弧引入钼源的方法,其特征在于:所述步骤三中,氢气流量为100-400sccm,甲烷流量为0.5-10sccm,微波功率为500-1200w,反应气压为10-15kPa。
6.如权利要求1所述的在MPCVD制备碳化钼晶体时利用在直流电弧引入钼源的方法,其特征在于:所述步骤四中,正负电极之间的电压为200-500V,电弧的温度为1500-2700℃,电弧放电距离微波等离子体边缘5-20mm。
7.如权利要求1所述的在MPCVD制备碳化钼晶体时利用在直流电弧引入钼源的方法,其特征在于:所述步骤五中,腔体的冷却时间为15-20min。
CN201710639970.XA 2017-07-31 2017-07-31 一种在mpcvd制备碳化钼晶体时利用在直流电弧引入钼源的方法 Pending CN107338476A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710639970.XA CN107338476A (zh) 2017-07-31 2017-07-31 一种在mpcvd制备碳化钼晶体时利用在直流电弧引入钼源的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710639970.XA CN107338476A (zh) 2017-07-31 2017-07-31 一种在mpcvd制备碳化钼晶体时利用在直流电弧引入钼源的方法

Publications (1)

Publication Number Publication Date
CN107338476A true CN107338476A (zh) 2017-11-10

Family

ID=60216694

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710639970.XA Pending CN107338476A (zh) 2017-07-31 2017-07-31 一种在mpcvd制备碳化钼晶体时利用在直流电弧引入钼源的方法

Country Status (1)

Country Link
CN (1) CN107338476A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346303B1 (en) * 1999-01-11 2002-02-12 Han-Chang Shih Process for synthesizing one-dimensional nanosubstances by electron cyclotron resonance chemical vapor deposition
CN102531342A (zh) * 2010-12-02 2012-07-04 日本超精石英株式会社 氧化硅玻璃坩埚制造装置
CN105862131A (zh) * 2016-06-03 2016-08-17 武汉工程大学 一种利用mpcvd制备碳化钼晶体时钼的引入方法
CN106011784A (zh) * 2016-06-03 2016-10-12 武汉工程大学 一种利用微波等离子体化学气相沉积制备α相碳化钼晶体的方法
CN106495158A (zh) * 2016-11-28 2017-03-15 中国科学院重庆绿色智能技术研究院 一种超薄碳化钼材料的制备方法及其产品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346303B1 (en) * 1999-01-11 2002-02-12 Han-Chang Shih Process for synthesizing one-dimensional nanosubstances by electron cyclotron resonance chemical vapor deposition
CN102531342A (zh) * 2010-12-02 2012-07-04 日本超精石英株式会社 氧化硅玻璃坩埚制造装置
CN105862131A (zh) * 2016-06-03 2016-08-17 武汉工程大学 一种利用mpcvd制备碳化钼晶体时钼的引入方法
CN106011784A (zh) * 2016-06-03 2016-10-12 武汉工程大学 一种利用微波等离子体化学气相沉积制备α相碳化钼晶体的方法
CN106495158A (zh) * 2016-11-28 2017-03-15 中国科学院重庆绿色智能技术研究院 一种超薄碳化钼材料的制备方法及其产品

Similar Documents

Publication Publication Date Title
EP3802418B1 (en) Methods for forming carbon nanostructured materials
CN102933490B (zh) 洋葱状碳的制作方法
KR101353348B1 (ko) 나노 입자 합성 장치 및 나노 입자 합성 방법
CN105390300B (zh) 一种在泡沫镍上快速生长石墨烯花簇阵列的方法
CN112250061A (zh) 一种单壁碳纳米管的连续制备系统及制备方法
EP3567130B1 (en) Reactor for fabrication of graphene
CN102320606B (zh) 一种生长纳米晶硅粉体的方法
CN108315816A (zh) 单晶金刚石生长方法和装置
CN107937980B (zh) 利用双基片台mpcvd装置将人体头发作为碳源生长单晶金刚石的方法
CN110182787A (zh) 一种连续生长碳纳米管的装置及其方法
CN100515935C (zh) 碳纳米管生长装置及方法
KR20110138898A (ko) 탄소 나노튜브의 저온 대량합성 방법
KR100468845B1 (ko) 탄소나노튜브 제조방법
CN105862131B (zh) 一种利用mpcvd制备碳化钼晶体时钼的引入方法
CN107338476A (zh) 一种在mpcvd制备碳化钼晶体时利用在直流电弧引入钼源的方法
CN106555175A (zh) 一种高密度等离子体增强化学气相沉积设备
CN113388885B (zh) 一种基于微波等离子体反应器合成金刚石的方法
CN213624376U (zh) 一种化学气相沉积装置
JPH08337497A (ja) ダイヤモンド薄膜の気相合成法
CN103086406A (zh) 一种氧化镁纳米带-碳纳米管复合材料的制备方法
CN102719804B (zh) 气体内循环型热丝cvd金刚石膜生长装置
KR101543495B1 (ko) 플라즈마 발생부를 포함하는 폴리실리콘 제조 장치 및 이를 이용한 폴리실리콘 제조 방법
CN108117063A (zh) 石墨烯薄膜的制备方法
TWI412624B (zh) 薄膜沉積裝置及其用以製備薄膜之方法
CN102363528B (zh) 冷离子太阳能级多晶硅料的提纯方法及其设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171110

RJ01 Rejection of invention patent application after publication