CN107311222B - CsPb2Br5纳米片的制备方法 - Google Patents

CsPb2Br5纳米片的制备方法 Download PDF

Info

Publication number
CN107311222B
CN107311222B CN201710561952.4A CN201710561952A CN107311222B CN 107311222 B CN107311222 B CN 107311222B CN 201710561952 A CN201710561952 A CN 201710561952A CN 107311222 B CN107311222 B CN 107311222B
Authority
CN
China
Prior art keywords
cspb
nanometer sheet
oleic acid
preparation
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710561952.4A
Other languages
English (en)
Other versions
CN107311222A (zh
Inventor
臧志刚
韩层
李存龙
唐孝生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Jingtong Guangneng Technology Co ltd
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201710561952.4A priority Critical patent/CN107311222B/zh
Publication of CN107311222A publication Critical patent/CN107311222A/zh
Application granted granted Critical
Publication of CN107311222B publication Critical patent/CN107311222B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/006Compounds containing, besides lead, two or more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Electromagnetism (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及一种可调发光CsPb2Br5纳米片的制备方法及其产品和应用,其制备方法为在氮气保护下,将硬脂酸铯、十八稀和油酸混合,制备油酸铯溶液;另将溴化铅、十八稀、辛胺和油酸混合,加热搅拌,得到PbBr2前驱体溶液;再将油酸铯溶液加入到PbBr2前驱体溶液,混合搅拌后得到CsPb2Br5纳米片。通过调控制备PbBr2前躯体溶液的反应温度在100~140℃,得到不同尺寸的CsPb2Br5纳米片,且光致发光由蓝光逐渐变成绿光。所得CsPb2Br5纳米片可以制备发光二极管、太阳能电池或光电探测器,由本发明制备CsPb2Br5纳米片构造的高单色性绿光LEDs发光效率达到了34.49lm/W。

Description

CsPb2Br5纳米片的制备方法
技术领域
本发明属于纳米材料领域,涉及CsPb2Br5纳米片的制备方法,更涉及这种制备方法得到的产品和应用。
背景技术
无机钙钛矿纳米材料(CsPb2X5,X=Cl,Br,I)是一种新型的功能材料,在发光二极管、太阳能电池、光电探测器等方面均具有特殊性能,广泛应用于光电器件领域。近几年,CsPb2X5 纳米材料吸引了大量研究人员的关注,特别是对其形貌及应用的研究。例如德国化学会的《应用化学国际版》(Angew.Chem.Int.Ed,2016,55,8328)报道了一种快速离子交换法,成功制备了大量高效发光的CsPb2Br5纳米片;美国化学会的《先进光学材料》(Adv.Opt.Mater,2017, 5,1600788)报道了一种高结晶和强稳定性的CsPb2Br5微米片。然而以上的报道都不涉及到对 CsPb2Br5纳米片形貌进行调控从而实现对其发光性质的调控,以及将其应用于绿光LEDs和光电探测。
发明内容
有鉴于此,本发明通过调控温度来实现对CsPb2Br5纳米片的形貌调控,并进一步利用其构造了高单色性绿光LEDs和稳定的光电探测器。本发明的目的之一在于提供一种可调发光的CsPb2Br5纳米片制备方法,目的之二是提供一种可调发光的CsPb2Br5纳米片,目的之三是提供一种利用这种CsPb2Br5纳米片制备的高单色性绿光LEDs和稳定的光电探测器。
为达到上述目的,本发明提供如下技术方案:
1.可调发光CsPb2Br5纳米片的制备方法,其制备方法步骤如下:
(1)氮气保护下,将硬脂酸铯、十八稀和油酸混合,加热并搅拌,得到油酸铯溶液;
(2)将溴化铅、十八稀、辛胺和油酸混合,加热并搅拌,得到PbBr2前驱体溶液;所述加热为加热至温度100~140℃;
(3)采用热注入法将油酸铯溶液加入到PbBr2前驱体溶液,两者混合搅拌3h,再提纯得到CsPb2Br5纳米片。
进一步,步骤(1)中所述硬脂酸铯物质的量的终浓度为1.5mol/L,十八稀和油酸体积比为20:1~2。
进一步,步骤(1)或步骤(2)中所述搅拌的时间为0.5h,步骤(1)中所述加热温度为140℃。
进一步,步骤(2)中所述溴化铅物质的量的终浓度为0.032mol/L,十八稀、辛胺和油酸体积比为15:1~2:1~2。
进一步,步骤(3)中油酸铯溶液和PbBr2前驱体溶液体积比为1:22~25。
进一步,所述提纯的方法是加入与粗产物等量的甲苯,8000r转速下离心5min,反复4~5 次。
2.由以上任一项所述的制备方法制备的CsPb2Br5纳米片,通过调控制备PbBr2前躯体溶液的反应温度在100~140℃,得到不同尺寸的CsPb2Br5纳米片,且光致发光由蓝光逐渐变成绿光。
进一步,100℃温度条件下制备的CsPb2Br5纳米片光致发光呈蓝光,120℃温度条件下制备的CsPb2Br5纳米片光致发光呈蓝绿光,140℃温度条件下制备的CsPb2Br5纳米片光致发光呈蓝光。
3.制备的CsPb2Br5纳米片在制备发光二极管、太阳能电池或光电探测器中的应用。
进一步,用CsPb2Br5纳米片制备高单色性绿光LEDs。
进一步,用CsPb2Br5纳米片制备光电探测器。
本发明的有益效果在于:1.本发明通过简单的调控温度实现对纳米片形貌的调控,从而使其具有可调的发光性质,在光电器件方面具有广泛的应用前景;2.利用本发明制备的 CsPb2Br5纳米片构造的高单色性绿光LEDs发光效率达到了34.49lm/W.3.利用本发明制备的 CsPb2Br5纳米片构造的光电探测器具有稳定的光响应。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为不同温度下合成纳米片的扫描电镜和原子力显微镜图;
图2为CsPb2Br5纳米片Mapping图;
图3为实施例1-3所制备的CsPb2Br5纳米片的光学性质图,其中a是各纳米片的XRD图, b是CsPb2Br5纳米片和CsPbBr3量子点的晶体结构图,c是各纳米片的吸收和荧光图,d是各纳米片的寿命图;
图4为绿光LEDs测试结果;
图5为光电探测结果;
图6为光电探测器的电流-时间曲线;
图7为实施例1-3所制备的CsPb2Br5纳米片荧光颜色图。
具体实施方式
下面将结合附图,对本发明的优选实施例进行详细的描述。实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。
实施例1 CsPb2Br5的制备
采用热注入方法制备CsPb2Br5纳米片,制备步骤为:
(1)通入氮气且保持机械磁力搅拌的环境下,将625mg硬脂酸铯、10ml十八稀和0.5ml 油酸混合,加热至140℃混合搅拌0.5h,得到油酸铯溶液;
(2)将100mg溴化铅、7.5ml十八稀、0.5ml辛胺和0.5ml油酸混合,加热到100℃并混合搅拌0.5h,得到PbBr2前驱体溶液;
(3)采用热注入法将0.375ml的油酸铯溶液加入到PbBr2前驱体溶液,两者混合搅拌3h,得到粗产物,因粗产物表面存在配体,不能直接使用,要将其进行提纯。提纯方法是加入与粗产物等量的甲苯,8000r转速下离心5min,反复进行4至5次,提纯得到CsPb2Br5纳米片。
实施例2 CsPb2Br5的制备
采用热注入方法制备CsPb2Br5纳米片,制备步骤为:
(1)通入氮气且保持机械磁力搅拌的环境下,将625mg硬脂酸铯、10ml十八稀和0.5ml 油酸混合,加热至140℃混合搅拌0.5h,得到油酸铯溶液;
(2)将100mg溴化铅、7.5ml十八稀、0.5ml辛胺和0.5ml油酸混合,加热到120℃并混合搅拌0.5h,得到PbBr2前驱体溶液;
(3)采用热注入法将0.375ml的油酸铯溶液加入到PbBr2前驱体溶液,两者混合搅拌3h,将粗产物提纯得到CsPb2Br5纳米片。
实施例3 CsPb2Br5的制备
采用热注入方法制备CsPb2Br5纳米片,制备步骤为:
(1)通入氮气且保持机械磁力搅拌的环境下,将625mg硬脂酸铯、10ml十八稀和0.5ml 油酸混合,加热至140℃混合搅拌0.5h,得到油酸铯溶液;
(2)将100mg溴化铅、7.5ml十八稀、0.5ml辛胺和0.5ml油酸混合,加热到140℃并混合搅拌1h,得到PbBr2前驱体溶液;
(3)采用热注入法将0.375ml的油酸铯溶液加入到PbBr2前驱体溶液,两者混合搅拌3h,将粗产物提纯得到CsPb2Br5纳米片。
将实施例1-3制备的CsPb2Br5纳米片分散于甲苯中保存。
图1为实施例1-3不同温度下制备的CsPb2Br5纳米片的扫描电镜和原子力显微镜图;由图1可知,纳米片尺寸在300nm至1um之间,多层纳米片的厚度在10nm至20nm之间;
图2为CsPb2Br5纳米片Mapping图;图3为不同温度下制备的CsPb2Br5纳米片的光学性质图,其中a是各纳米片的XRD图,b是各纳米片的晶格结构图,c是各纳米片的吸收和荧光图,d是各纳米片的寿命图;由图3可知XRD图表明合成的纳米片高度结晶,晶格结构表明在两层Br和Pb离子内有一层Cs离子。吸收和荧光图表面随着温度的升高,纳米片的吸收和荧光发生红移。寿命结果表明温度升高,寿命增加,140℃下合成的纳米片的平均寿命为9.25ns。
图7为实施例1-3不同温度下制备的CsPb2Br5纳米片的荧光照片图,由图7可知,通过调控制备PbBr2前躯体溶液的反应温度在100~140℃,不仅能得到不同尺寸的CsPb2Br5纳米片,且各纳米片的光致发光由蓝光逐渐变成绿光。随着温度的升高,纳米片尺寸逐渐减小,由1μm逐渐减小到300nm,PL发射峰发生红移,从蓝光(467nm)移至绿光(518nm)。100℃温度条件下制备的CsPb2Br5纳米片光致发光呈蓝光,120℃温度条件下制备的CsPb2Br5纳米片光致发光呈蓝光偏绿光,140℃温度条件下制备的CsPb2Br5纳米片光致发光呈绿光。
实施例4 构造高单色性绿光LEDs
在140℃下合成的CsPb2Br5纳米片能够发射窄带绿光,利用其构造高单色性绿光LEDs。采用的方法是用移液枪吸取5μL CsPb2Br5纳米片溶液滴在蓝光InGaN芯片上,并利用光谱仪 PR670测试其发光性质。通过多次涂覆CsPb2Br5纳米片,最终获得半高宽发射光谱峰值为538 nm,半高宽(FWHM)为18nm,色坐标是(0.250,0.690)的高单色性绿光,如图4所示,高单色性绿光LEDs发光效率达到了34.49lm/W.。
实施例5 构造光电探测器
制备的纳米片具有300nm至1μm的尺寸,利用其构造光电探测器,构造方法如下:
吸取20uL的100℃、120℃和140℃温度下制备的CsPb2Br5纳米片溶液分别滴在金叉指电极上,并利用Keithley 4200测试分别其性能,不同温度下制备的CsPb2Br5纳米片所构造的光电探测器都具有稳定的光响应,通过对比,100℃合成的CsPb2Br5纳米片构造的光电探测器上升、下降时间分别为0.426和0.422s,电流变化百分比达到了364%,优于其他温度下合成的纳米片构造的光电探测器,具有较好的性能,结果如图5,图6所示。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (9)

1.可调发光CsPb2Br5纳米片的制备方法,其特征在于,制备方法步骤如下:
(1)氮气保护下,将硬脂酸铯、十八稀和油酸混合,加热并搅拌,得到油酸铯溶液;所述硬脂酸铯物质的量的终浓度为1.5mol/L,十八稀和油酸体积比为20:1~2;
(2)将溴化铅、十八稀、辛胺和油酸混合,加热并搅拌,得到PbBr2前驱体溶液;所述加热为加热至温度100~140℃;
(3)采用热注入法将油酸铯溶液加入步骤(2)的PbBr2前驱体溶液 ,两者混合搅拌3h,再提纯得到CsPb2Br5纳米片。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)或步骤(2)中所述搅拌的时间为0.5h-1h,步骤(1)中所述加热温度为140℃。
3.根据权利要求1所述的制备方法,其特征在于,步骤(2)中所述溴化铅物质的量的终浓度为0.032mol/L,十八稀、辛胺和油酸体积比为15:1~2:1~2,辛胺和油酸体积比1:1。
4.根据权利要求1所述的制备方法,其特征在于,步骤(3)中油酸铯溶液和PbBr2前驱体溶液体积比为1:22~25。
5.由权利要求1~4任一项所述的制备方法制备的CsPb2Br5纳米片,其特征在于,通过调控制备PbBr2前躯体溶液的反应温度在100~140℃,得到不同尺寸的CsPb2Br5纳米片,且光致发光由蓝光逐渐变成绿光。
6.根据权利要求5所述的CsPb2Br5纳米片,其特征在于,100℃温度条件下制备的CsPb2Br5纳米片光致发光呈蓝光,120℃温度条件下制备的CsPb2Br5纳米片光致发光呈蓝绿光,140℃温度条件下制备的CsPb2Br5纳米片光致发光呈绿光。
7.利用权利要求5所述的CsPb2Br5纳米片在制备发光二极管、太阳能电池或光电探测器中的应用。
8.权利要求7所述的应用,其特征在于,用CsPb2Br5纳米片制备高单色性绿光LEDs。
9.权利要求7所述的应用,其特征在于,用CsPb2Br5纳米片制备光电探测器。
CN201710561952.4A 2017-07-11 2017-07-11 CsPb2Br5纳米片的制备方法 Active CN107311222B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710561952.4A CN107311222B (zh) 2017-07-11 2017-07-11 CsPb2Br5纳米片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710561952.4A CN107311222B (zh) 2017-07-11 2017-07-11 CsPb2Br5纳米片的制备方法

Publications (2)

Publication Number Publication Date
CN107311222A CN107311222A (zh) 2017-11-03
CN107311222B true CN107311222B (zh) 2019-04-02

Family

ID=60178817

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710561952.4A Active CN107311222B (zh) 2017-07-11 2017-07-11 CsPb2Br5纳米片的制备方法

Country Status (1)

Country Link
CN (1) CN107311222B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108511706A (zh) * 2018-03-13 2018-09-07 合肥国轩高科动力能源有限公司 一种锂电池用二维无机钙钛矿负极材料的制备方法
CN108531172B (zh) * 2018-05-21 2020-09-04 北京理工大学 一种杂化钙钛矿微晶发光材料的制备方法及其应用
CN110156071A (zh) * 2019-04-26 2019-08-23 复旦大学 一种高度有序的全无机钙钛矿纳米团簇组装体的制备方法
CN110437827A (zh) * 2019-06-28 2019-11-12 湖北大学 一种蓝光全无机CsPbBrxCl3-x钙钛矿纳米片的形貌调控方法
CN110357148A (zh) * 2019-07-09 2019-10-22 济南大学 一种超稳定CsPbBr3纳米片的制备方法及其在X射线成像的闪烁屏方面的应用
CN111285396A (zh) * 2020-03-16 2020-06-16 常州大学 一种Cu-In-Zn-S纳米球的制备方法及其在光响应探测器中的应用
CN111883567B (zh) * 2020-07-15 2023-05-05 固安翌光科技有限公司 一种电致发光屏体装置
CN112195516B (zh) * 2020-10-10 2021-12-21 东南大学 一种Mn掺杂CsPb2Br5块状晶体的制备方法
CN113620339B (zh) * 2021-08-16 2022-06-07 浙江大学 一种大尺寸超薄全无机铅卤钙钛矿纳米片及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106064830B (zh) * 2016-05-30 2017-10-17 重庆大学 一种CsPb2Br5纳米片及其制备方法
CN106590644A (zh) * 2016-11-09 2017-04-26 佛山科学技术学院 一种铯铅溴量子点的制备方法

Also Published As

Publication number Publication date
CN107311222A (zh) 2017-11-03

Similar Documents

Publication Publication Date Title
CN107311222B (zh) CsPb2Br5纳米片的制备方法
Xuan et al. Inkjet-printed quantum dot color conversion films for high-resolution and full-color micro light-emitting diode displays
Liu et al. Self-assembly driven aggregation-induced emission of copper nanoclusters: a novel technology for lighting
Xuan et al. Microwave-assisted synthesis of CdS/ZnS: Cu quantum dots for white light-emitting diodes with high color rendition
Tang et al. Enhancement of luminous efficiency and uniformity of CCT for quantum dot-converted LEDs by incorporating with ZnO nanoparticles
JP5313173B2 (ja) pcLEDのためのドープしたガーネット製の発光団
US20130206211A1 (en) Phosphors-Based Solar Wavelength-Converters
KR20110069151A (ko) Pc led 용 적색 편이를 갖는 도핑된 가넷 형광 물질
KR20120112838A (ko) 발광성 물질
DE102007016229A1 (de) Verfahren zur Herstellung von Leuchtstoffen basierend auf Orthosilikaten für pcLEDs
Li et al. White light emitting device based on single-phase CdS quantum dots
Dai et al. White light emission from CdTe quantum dots decorated n-ZnO nanorods/p-GaN light-emitting diodes
Chen et al. Hydrothermal synthesis of highly fluorescent Ag–In–S/ZnS core/shell quantum dots for white light-emitting diodes
Mao et al. Construction of highly luminescent CdTe/CdS@ ZnS–SiO2 quantum dots as conversion materials toward excellent color-rendering white-light-emitting diodes
Lupan et al. Controlled mixed violet–blue–red electroluminescence from Eu: nano-phosphors/ZnO-nanowires/p-gan light-emitting diodes
CN107903901A (zh) 核壳量子点、其制备方法及含其的发光器件
Chen et al. Warm white light-emitting diodes using organic–inorganic halide perovskite materials coated YAG: Ce3+ phosphors
Wang et al. All-solution-processed, highly efficient and stable green light-emitting devices based on Zn-doped CsPbBr 3/ZnS heterojunction quantum dots
CN106098905A (zh) 核-壳量子点掺杂的聚合物垫的连续流合成的方法和校正发光装置的发射光谱的方法
Liang et al. Silica encapsulated ZnO quantum dot-phosphor nanocomposites: Sol-gel preparation and white light-emitting device application
JP5912121B2 (ja) Mn賦活蛍光物質
Si et al. Lead-free perovskite variant Rb2SnCl6: Te based phosphor-sapphire composite for high-power laser-driven lighting
Liu et al. Luminescence, stability, and applications of CsPbBr3 quantum dot/polymethyl methacrylate composites prepared by a solvent-and ligand-free ball milling method
Guo et al. The role of deep-red emission CuInS2/ZnS QDs in white light emitting diodes
Zhang et al. Ultrastable CsPbBr3@ CsPb2Br5@ TiO2 Composites for Photocatalytic and White Light-Emitting Diodes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221230

Address after: No. 1434, Enterprise Development Service Center, Xiji Town, Tongzhou District, Beijing 101100

Patentee after: Beijing Jingtong Guangneng Technology Co.,Ltd.

Address before: 400044 No. 174 Shapingba street, Shapingba District, Chongqing

Patentee before: Chongqing University