CN111285396A - 一种Cu-In-Zn-S纳米球的制备方法及其在光响应探测器中的应用 - Google Patents

一种Cu-In-Zn-S纳米球的制备方法及其在光响应探测器中的应用 Download PDF

Info

Publication number
CN111285396A
CN111285396A CN202010179370.1A CN202010179370A CN111285396A CN 111285396 A CN111285396 A CN 111285396A CN 202010179370 A CN202010179370 A CN 202010179370A CN 111285396 A CN111285396 A CN 111285396A
Authority
CN
China
Prior art keywords
nanospheres
nanosphere
detector
preparing
photoresponse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010179370.1A
Other languages
English (en)
Inventor
盛扬
朱启亮
孙一新
张嵘
薛亚波
陈斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU CHENGUANG PAINT CO Ltd
Changzhou University
Original Assignee
JIANGSU CHENGUANG PAINT CO Ltd
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGSU CHENGUANG PAINT CO Ltd, Changzhou University filed Critical JIANGSU CHENGUANG PAINT CO Ltd
Priority to CN202010179370.1A priority Critical patent/CN111285396A/zh
Publication of CN111285396A publication Critical patent/CN111285396A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/006Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/4446Type of detector

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及一种Cu‑In‑Zn‑S纳米球的制备方法及其在光响应探测器中的应用。该纳米球由水热法一步反应制备,具有结晶性高,尺寸均匀,分散性好,带隙窄的优点,在可见光光谱范围具有良好的响应能力。将该纳米球分散于乙醇溶液中,通过喷涂或旋涂制备的光响应器件具有较高光电响应开关比,较快响应速度等优点。该纳米球在光响应器件中有着广阔的应用前景。

Description

一种Cu-In-Zn-S纳米球的制备方法及其在光响应探测器中的 应用
技术领域
本发明涉及一种Cu-In-Zn-S纳米球的制备方法及其光响应探测器中的应用,属于纳米材料技术领域。
背景技术
光探测器是一种能够将光信号转变为电信号的光电器件,在通信、医疗、热成像、环境监测和国防科技领域都具有广泛的应用。其中高性能光探测器需要高灵敏和快速响应等性能。目前工业中使用的光响应器件主要是基于硅、氮化镓、铟镓砷等材料。其存在工作电压高、制备工艺复杂、成本高或毒性大等不足。
Cu-In-Zn-S(铜铟锌硫)是一种直接带隙半导体材料,具有带隙窄,毒性低,光吸收系数高等优点。尤其是将其制成纳米材料,具有优异的光学性能,在发光二极管、光催化、太阳能电池等方面具有广阔的应用前景。虽然在这些领域中可以说明Cu-In-Zn-S具有光电性质,但并非具有光电性质的材料均能作为探测材料应用于光响应器件中,不同的应用领域,对性能指标的要求也是不同的。在光响应器件中需要满足较好的灵敏度、响应速率、还有开关比等要求。目前尚未见到Cu-In-Zn-S四元合金纳米材料用于光响应探测器领域的公开报道。
铜、锌、硫元素在地壳中含量丰富。而随着回收提纯技术的不断提高,铟的供应业相对稳定。因此基于铜、铟、锌、硫的四元半导体纳米材料成本较低,具有潜在实用价值。因此,开发基于Cu-In-Zn-S纳米球的半导体光电器件对于低成本、高效率的光探测器具有重要意义。
发明内容
为了解决背景技术中的技术问题,本发明的目的在于:(1)提供一种Cu-In-Zn-S纳米球的制备方法;(2)提供一种Cu-In-Zn-S纳米球在构造光响应器件中的应用。该光响应器件具有易制备、低成本、响应迅速等优点。
为达到上述发明目的,本发明提供如下技术方案:
a、Cu-In-Zn-S纳米球的反应溶液的配制:将氯化亚铜、氯化铟、二水乙酸锌、硫代乙酰胺充分溶解于去离子水中,得混合水溶液。
进一步的,步骤a中氯化亚铜与氯化铟的摩尔比为9:1至1:9。
优选为氯化亚铜与氯化铟的摩尔比为1:9。
进一步的,硫代乙酰胺在水溶液中的浓度为0.17mol/L,二水乙酸锌在水溶液中的浓度为0.07mol/L。
b、Cu-In-Zn-S纳米球的制备:将步骤a中配置好的溶液转移至反应釜中密封,加热反应后固液分离得到固相。将固相经清洗、干燥后制得Cu-In-Zn-S纳米球粉体。
进一步的,步骤b中,所述加热反应温度可以为150-200℃。
进一步的,步骤b中,所述加热反应时间可以为10-20小时。
进一步的,步骤b中,所述固液分离为以6000转/分钟离心5分钟后收集下层固体。
进一步的,步骤b中,所述清洗为使用功率为180瓦的超声清洗机清洗3遍,每遍10分钟。
进一步的,步骤b中,所述干燥为60℃下干燥10h。
上述方法制得的Cu-In-Zn-S纳米球平均直径为150-200纳米,是由许多纳米晶聚集生长成球得到多晶纳米球,Cu-In-Zn-S的晶相为立方相。且相比于已有文献报道的在常温下制备的Cu-In-Zn-S纳米球(对比例3),本发明制得的Cu-In-Zn-S纳米球,结晶峰相较窄,信号较强,结晶性得到明显改善,将其用于光响应器件中,能取得优异的光响应效果。
2、由所述的方法制备Cu-In-Zn-S纳米球应用于光响应探测器。
光响应探测器的制备方法为:
a、制备的Cu-In-Zn-S纳米球分散于乙醇溶液形成悬浊液;
b.以叉指电极为基底,将步骤a中制备的悬浊液均匀喷涂在叉指电极表面,然后在80℃进行干燥,从而在叉指电极表面形成一层Cu-In-Zn-S纳米球薄膜,即构造出Cu-In-Zn-S光响应探测器。
进一步的,步骤a中,所述悬浊液浓度可以为5~10mg/mL;
进一步的,步骤b中,喷涂时间可以为60~120秒;
进一步的,为可见光范围响应的光响应探测器。
本发明的有益效果在于:本发明提供一种Cu-In-Zn-S纳米球的制备方法,该方法制得Cu-In-Zn-S能作为光探测材料用于光响应探测器中。不仅原料来源丰富,而工艺简单易行,适用于工业化生产。通过控制反应前驱物比例,制备了不同成分的Cu-In-Zn-S纳米球。将该纳米球应用于光响应器件,光源照射条件下Cu-In-Zn-S纳米球受到光子激发,内部会产生电子-空穴对,从而产生光生载流子。当对器件施加偏置电压则产生光电流,导致电流增加。当移除光源后,不在产生光生载流子,光电流消失,回路中的电流值迅速下降。且由成分为Cu0.03In0.17Zn0.81S的纳米球构造的光响应器件具有良好的响应特性(响应时间约为0.04秒),光电流与暗电流之比(开关比)达到3.2,具有广阔的应用前景,为设计新型光响应器件提供了新的思路。
附图说明
图1是实施例1中制备的Cu-In-Zn-S纳米球的扫描电镜照片。
图2是实施例1和对比例1-2中制备的三种Cu-In-Zn-S(组分分别为Cu0.07In0.01Zn0.61S,Cu0.08In0.07Zn0.72S和Cu0.03In0.17Zn0.81S)纳米球的X射线衍射图。
图3是实施例1和对比例1-2中制备的三种Cu-In-Zn-S纳米球的吸收光谱和分散于水溶液中的照片。
图4是实施例1中制备的基于Cu0.03In0.17Zn0.81S纳米球的光响应器件的时间-电流曲线图。偏转电压分别为1-5V。激发波长分别为405nm和600nm,激发功率为20mW。
图5是实施例1中制备的基于Cu0.03In0.17Zn0.81S纳米球的器件在周期性光照信号下时间-电流曲线中的一个周期的放大图。
图6是对比例1中制备的基于Cu0.08In0.07Zn0.72S纳米球的器件在周期性光照信号下时间-电流曲线中的一个周期的放大图。
图7是对比例2中制备的基于Cu0.07In0.01Zn0.61S纳米球的器件在周期性光照信号下时间-电流曲线中的一个周期的放大图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,现在结合具体实施例对本发明作进一步说明,以下实施例旨在说明本发明而不是对本发明的进一步限定。
实施例1
制备Cu0.03In0.17Zn0.81S纳米球
a.称取131.7mg四水合三氯化铟,4.8mg氯化亚铜,438mg二水乙酸锌,400mg硫代乙酰胺,加入去离子水30mL充分溶解。
b.将步骤a中的溶液转移至50mL聚四氟乙烯反应釜中密封,在180℃下反应15小时后,自然冷却至室温。
c.将步骤b中得到的溶液以5000转/分钟的速度离心5分钟,取下层固体。将固体在功率为180瓦的超声波清洗机中用去离子水清洗3遍。最后在60℃烘箱中干燥10小时得到Cu0.03In0.17Zn0.81S纳米球粉体。
对比例1
对比例1与实施例1相比,区别在于:原料加入量不同,分别称取73.3mg四水合三氯化铟,24.7mg氯化亚铜,438mg二水乙酸锌,400mg硫代乙酰胺,去离子水30mL充分溶解。其余制备方法相同,得到Cu0.08In0.07Zn0.72S纳米球粉体。
对比例2
对比例2与实施例1相比,区别在于:原料加入量不同,分别称取14.6mg四水合三氯化铟,44.6mg氯化亚铜,438mg二水乙酸锌,400mg硫代乙酰胺,去离子水30mL充分溶解。其余制备方法相同,得到Cu0.07In0.01Zn0.61S纳米球粉体。
对比例3
对比例3与实施例1相比于,原料加入量相同,区别在于:将步骤b中在180℃下反应替换成在室温下反应,其余操作与实施例1相同,得到Cu-In-Zn-S纳米球粉体。
在室温下搅拌反应得到CuInZnS纳米球粉体,结晶峰很宽,信号强度低,结晶性较差,会对光响应效果产生不利影响,无法达到实施例1的响应效果。
利用扫描电镜、X射线衍射仪、紫外-可见分光光度计对实施例与对比例中制备的粉体进行表征。结果如图1至图3所示。由图1可知,所制备的Cu-In-Zn-S纳米球直径约为200纳米,形貌尺寸均一。由图2可知,当Cu/In摩尔比为9:1时,对比例2所得产物为六方CuS相(JCPDS#65-3588)与立方ZnS相(JCPDS#65-0309)的混合物,当In含量增加,对比例1中主要为立方ZnS相,但也存在少量六方CuS相。而Cu/In摩尔比为1:9时,实施例1中制得的产物为较纯的ZnS闪锌矿结构。由SEM照片的表面粗糙度及XRD衍射峰较宽的半峰宽可知,实施例与对比例中的Cu-In-Zn-S纳米球是由许多纳米晶粒组成。由图3可知,不同组分制备的Cu-In-Zn-S纳米球在可见光光谱范围均有吸收能力,但吸收强度有所不同,其乙醇溶液呈现不同的颜色。
实施例2
Cu-In-Zn-S纳米球在构造光响应器件中的应用
a.将实施例与对比例中制备的Cu-In-Zn-S纳米球分别分散于乙醇溶液形成悬浊液,浓度为5mg/mL。
b.以叉指电极为基底,将步骤a中制备的悬浊液均匀喷涂在叉指电极表面,喷涂60秒,然后在80℃进行干燥,从而在叉指电极表面形成一层Cu-In-Zn-S纳米球薄膜(对厚度无要求),即构造出完整的Cu-In-Zn-S光响应器件。
c.使用Keithley 4200,在激光器照射下(波长分别为405和600纳米,功率为20mW)测试光响应器件性能,测试结果如图4-7所示。
图4是基于Cu0.03In0.17Zn0.81S的光响应器件的时间-电流曲线图。偏转电压分别为1-5V,激发光波长分别为405nm和600nm。由图4可知,在5V偏压条件下,器件的开关比(光电流与暗电流之比)为3.2,显示出较好光电响应特性。图5是上述器件在周期性光照信号下时间-电流曲线中的一个周期的放大图。由图可知,器件的光响应速度迅速,上升时间与下降时间均为0.04s(λ=405nm)和0.07s/0.09s(λ=600nm)。图6是基于Cu0.08In0.07Zn0.72S的光响应器件的光照条件下时间-电流曲线中的一个周期,响应时间为2.24s/4.62s(λ=405nm)。图7是基于Cu0.07In0.01Zn0.61S的光响应器件的光照条件下时间-电流曲线中的一个周期,响应时间为3.02s/6.83s(λ=405nm)。
通过实施例1与对比例1-2在结构与性能中的对比可知,较高的Cu/In比例下产物为两相共存,由于晶格匹配度较低,易产生较多缺陷,影响光电性能。而较低的Cu/In比例下,产物为较纯的ZnS立方相,所制备的光响应器件也表现出较好的光响应特性。通过实施例1制备的Cu-In-Zn-S可以构造一个具有良好光响应性能的器件。
实施例中未注明具体条件者,按照常规条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (9)

1.一种Cu-In-Zn-S纳米球的制备方法,其特征在于,步骤如下:
步骤1:配制氯化亚铜,氯化铟,二水乙酸锌和硫代乙酰胺的混合水溶液;
步骤2:将配制好的溶液转移至反应釜中密封,加热反应后自然冷却至室温;
步骤3:离心步骤2的反应溶液,得到固相后清洗、干燥,得到Cu-In-Zn-S纳米球粉体。
2.如权利要求1所述Cu-In-Zn-S纳米球的制备方法,其特征在于:所述氯化亚铜与氯化铟的摩尔比为1:9~9:1。
3.如权利要求2所述Cu-In-Zn-S纳米球的制备方法,其特征在于:所述氯化亚铜与氯化铟的摩尔比为1:9。
4.如权利要求1所述Cu-In-Zn-S纳米球的制备方法,其特征在于:所述硫代乙酰胺在混合水溶液中的浓度为0.17mol/L,二水乙酸锌在混合水溶液中的浓度为0.07mol/L。
5.如权利要求1所述Cu-In-Zn-S纳米球的制备方法,其特征在于:步骤2中,所述加热反应温度为150-200℃,加热反应时间为10-20小时。
6.如权利要求1所述Cu-In-Zn-S纳米球的制备方法,其特征在于:步骤2中,所述Cu-In-Zn-S的晶相为立方相,Cu-In-Zn-S纳米球平均直径为150-200纳米。
7.如权利要求1-6任一项所制备的Cu-In-Zn-S纳米球作为光探测材料在光响应探测器中的应用。
8.如权利要求7所述Cu-In-Zn-S纳米球作为光探测材料在光响应探测器中的应用,其特征在于:
将Cu-In-Zn-S纳米球粉体分散于乙醇制成悬浊液,然后将悬浊液喷涂于叉指电极表面,干燥成膜,构造得到光响应探测器。
9.如权利要求8所述Cu-In-Zn-S纳米球作为光探测材料在光响应探测器中的应用,其特征在于:为可见光范围响应的光响应探测器。
CN202010179370.1A 2020-03-16 2020-03-16 一种Cu-In-Zn-S纳米球的制备方法及其在光响应探测器中的应用 Pending CN111285396A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010179370.1A CN111285396A (zh) 2020-03-16 2020-03-16 一种Cu-In-Zn-S纳米球的制备方法及其在光响应探测器中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010179370.1A CN111285396A (zh) 2020-03-16 2020-03-16 一种Cu-In-Zn-S纳米球的制备方法及其在光响应探测器中的应用

Publications (1)

Publication Number Publication Date
CN111285396A true CN111285396A (zh) 2020-06-16

Family

ID=71023803

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010179370.1A Pending CN111285396A (zh) 2020-03-16 2020-03-16 一种Cu-In-Zn-S纳米球的制备方法及其在光响应探测器中的应用

Country Status (1)

Country Link
CN (1) CN111285396A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114130407A (zh) * 2021-12-17 2022-03-04 永高股份有限公司 一种Cu2S/CuInS2/ZnIn2S4复合光催化剂的制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102433124A (zh) * 2011-09-05 2012-05-02 北京理工大学 一种纳米晶荧光粉及其制备方法
CN102764661A (zh) * 2012-07-26 2012-11-07 上海交通大学 一种光催化剂的固溶体纳米颗粒及其制备方法
KR101404289B1 (ko) * 2012-12-10 2014-06-13 전남대학교산학협력단 Czts 나노입자의 제조방법 및 이를 통해 제조된 czts 나노입자
CN107297213A (zh) * 2017-05-31 2017-10-27 盐城工学院 一种制备四元硫化物量子点光催化剂的方法
CN107311222A (zh) * 2017-07-11 2017-11-03 重庆大学 CsPb2Br5纳米片的制备方法
CN107652966A (zh) * 2017-10-16 2018-02-02 中南民族大学 一种亲水性Cu‑In‑S/ZnS核壳型纳米晶体的常压水相制备方法
CN108816248A (zh) * 2018-06-28 2018-11-16 重庆大学 铜铟锌硫/还原氧化石墨烯纳米复合材料在光催化去除氮氧化合物中的应用
CN110124697A (zh) * 2019-04-12 2019-08-16 江苏大学 一种0d/2d复合光催化材料及制备方法和用途

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102433124A (zh) * 2011-09-05 2012-05-02 北京理工大学 一种纳米晶荧光粉及其制备方法
CN102764661A (zh) * 2012-07-26 2012-11-07 上海交通大学 一种光催化剂的固溶体纳米颗粒及其制备方法
KR101404289B1 (ko) * 2012-12-10 2014-06-13 전남대학교산학협력단 Czts 나노입자의 제조방법 및 이를 통해 제조된 czts 나노입자
CN107297213A (zh) * 2017-05-31 2017-10-27 盐城工学院 一种制备四元硫化物量子点光催化剂的方法
CN107311222A (zh) * 2017-07-11 2017-11-03 重庆大学 CsPb2Br5纳米片的制备方法
CN107652966A (zh) * 2017-10-16 2018-02-02 中南民族大学 一种亲水性Cu‑In‑S/ZnS核壳型纳米晶体的常压水相制备方法
CN108816248A (zh) * 2018-06-28 2018-11-16 重庆大学 铜铟锌硫/还原氧化石墨烯纳米复合材料在光催化去除氮氧化合物中的应用
CN110124697A (zh) * 2019-04-12 2019-08-16 江苏大学 一种0d/2d复合光催化材料及制备方法和用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIAOSHENG TANG ET AL.: ""CsPbBr3/Reduced Graphene Oxide nanocomposites and their enhanced photoelectric detection application"", 《 SENSORS AND ACTUATORS B: CHEMICAL》 *
XIAOSHENG TANG ET AL.: ""CuInZnS-decorated graphene as a high-rate durable anode for lithium-ion batteries"", 《JOURNAL OF POWER SOURCES》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114130407A (zh) * 2021-12-17 2022-03-04 永高股份有限公司 一种Cu2S/CuInS2/ZnIn2S4复合光催化剂的制备方法和应用
WO2023108948A1 (zh) * 2021-12-17 2023-06-22 公元股份有限公司 一种Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂的制备方法和应用

Similar Documents

Publication Publication Date Title
Rana et al. Multilayer MgZnO/ZnO thin films for UV photodetectors
Li et al. Bismuth chalcogenide iodides Bi 13 S 18 I 2 and BiSI: Solvothermal synthesis, photoelectric behavior, and photovoltaic performance
Selman et al. Fabrication and characterization of metal–semiconductor–metal ultraviolet photodetector based on rutile TiO2 nanorod
Arya et al. Sol-gel synthesis of Cu-doped p-CdS nanoparticles and their analysis as p-CdS/n-ZnO thin film photodiode
Raghavendra et al. Visible light sensitive cupric oxide metal-semiconductor-metal photodetectors
Devi et al. Improved UV Photodetection of Terbium-doped NiO thin films prepared by cost-effective nebulizer spray technique
Jacob et al. Improved optoelectronic properties of spray pyrolysis coated Zn doped Cu2O thin films for photodetector applications
Li et al. The fabrication of a self-powered CuInS 2/TiO 2 heterojunction photodetector and its application in visible light communication with ultraviolet light encryption
Shi et al. A silicon-based PbSe quantum dot near-infrared photodetector with spectral selectivity
Qu et al. From BiI 3 to CuBiI 4: a striking improvement in the photoelectric performance of a novel photodetector candidate
Li et al. Coaxially enhanced photocarrier transport of a highly oriented Cu 2 ZnSnS 4/ZnO photodetector through the nanoconfinement effect
Su et al. Tailoring the interface assembly of mesoporous TiO 2 on BTO film toward high-performance UV photodetectors
CN111285396A (zh) 一种Cu-In-Zn-S纳米球的制备方法及其在光响应探测器中的应用
Hou et al. Surface lattice reconstruction enhanced the photoresponse performance of a self-powered ZnO nanorod arrays/Si heterojunction photodetector
Prasad et al. 2D layered structure of bismuth oxyhalides for advanced applications
Li et al. High photocatalytic activity of rutile TiO 2–BiOBr composites via an in situ synthesis approach
Raj et al. Development of a highly sensitive UV sensor using Al, Ga, and In-doped NiO thin films via nebulizer spray pyrolysis method for photodetector applications
Baghchesara et al. Photocurrent application of Cd-doped ZnTe nanowires grown in a large scale by a CVD method
CN108417649A (zh) 一种氧化锡基太阳能电池纳米材料的制备方法及应用
CN102040201A (zh) 一种溶剂热可控制备ZnSe和ZnTe纳米材料的方法
Wei et al. Broad spectral photodetectors based on BiOCl@ boronate polymer core-shell heterojunctions
CN114653382B (zh) 一种p-n型硫化亚锡-锡酸锌半导体材料及其制备方法和应用
Karthick et al. Defects-driven photoconduction in one step direct injection flame synthesized inverse spinel Zn2SnO4 nanoparticles for photodetector applications
Cui et al. Low-temperature solution-processed LaNiO 3 hole-transport layer for UV-stable inverted perovskite solar cells
Lai et al. Self-driven heterostructure photodetector of sputtered CZTS film on c-Si with an inverted pyramid structure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200616

RJ01 Rejection of invention patent application after publication