WO2023108948A1 - 一种Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂的制备方法和应用 - Google Patents

一种Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂的制备方法和应用 Download PDF

Info

Publication number
WO2023108948A1
WO2023108948A1 PCT/CN2022/083324 CN2022083324W WO2023108948A1 WO 2023108948 A1 WO2023108948 A1 WO 2023108948A1 CN 2022083324 W CN2022083324 W CN 2022083324W WO 2023108948 A1 WO2023108948 A1 WO 2023108948A1
Authority
WO
WIPO (PCT)
Prior art keywords
cuins
znin
composite photocatalyst
source
preparation
Prior art date
Application number
PCT/CN2022/083324
Other languages
English (en)
French (fr)
Inventor
陈卫
陈伟
黄剑
Original Assignee
公元股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公元股份有限公司 filed Critical 公元股份有限公司
Publication of WO2023108948A1 publication Critical patent/WO2023108948A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the invention relates to a preparation method and application of a Cu 2 S/CuInS 2 /ZnIn 2 S 4 composite photocatalyst, belonging to the technical field of photocatalytic materials.
  • pn junction photocatalysts In the selection of photocatalysts, especially in pn junction heterogeneous photocatalysts, due to the structure of pn junctions, a strong built-in electric field will be generated, which will accelerate the photogenerated electrons on the conduction band of p-type semiconductors to the conduction band of n-type semiconductors. Correspondingly, the photogenerated holes on the valence band of the n-type semiconductor will jump to the valence band of the p-type semiconductor, and finally realize the efficient separation of the photogenerated carrier pairs. Therefore, pn junction photocatalysts usually have high photocatalytic activity.
  • CuInS 2 belongs to I-III-VI group ternary direct bandgap semiconductor compounds with narrow energy band width (about 1.5eV), strong visible light absorption, photoelectric High conductivity and high stability are widely used in photocatalytic materials, such as cuprous sulfide (Cu 2 S), whose bandgap width is about 1.2eV, and is an important p-type narrow bandgap semiconductor material.
  • Cu 2 S cuprous sulfide
  • a zinc indium sulfur/copper indium sulfur two-dimensional heterojunction photocatalyst in order to solve this problem and improve the overall photocatalytic activity, by reacting the zinc source, indium source and sulfur source compound in molar ratio first to generate indium zinc sulfide; then mix the copper source, indium source and sulfur source in a certain molar ratio, and then add the above indium zinc sulfide to mix The reaction was carried out to form a two-dimensional heterojunction photocatalyst of CuInS2 and ZnIn2S4 .
  • This treatment method is to improve the photocatalytic ability by adopting two kinds of components to form successively and mix them.
  • CuInS 2 and ZnIn 2 S 4 are formed step by step, which is equivalent to forming ZnIn 2 S 4 (indium zinc sulfide) first. ), and then form CuInS 2 step by step to form a mixed two-dimensional heterogeneous structure, which is only a combination of two photocatalytic substances, and the formation is still a single pn-type structural characteristic, and the interface tightness is not good.
  • the degradation ability of organic pollutants, especially tetracycline is not good.
  • the present invention aims at the above existing problems in the prior art, and provides a preparation method and application of a Cu 2 S/CuIn S 2 /ZnIn 2 S 4 composite photocatalyst.
  • the problem to be solved is how to make the formed composite photocatalyst have dual The structural characteristics of pn type make it have high catalytic degradation activity.
  • One of the objectives of the present invention is achieved by the following technical solutions, a method for preparing a Cu2S / CuInS2 / ZnIn2S4 composite photocatalyst, characterized in that the method comprises the following steps:
  • the hydrothermal reaction kettle add the raw materials copper source, zinc source, indium source and sulfur source into the organic solvent that can dissolve the raw materials to dissolve, then keep the hydrothermal reaction kettle in a sealed state, and then control the temperature at 110 ° C ⁇ 160 ° C
  • the one-step reaction is carried out under the condition of the reaction, and after the reaction is completed, cooling and separation are carried out to obtain a Cu 2 S/CuInS 2 /ZnIn 2 S 4 composite photocatalyst.
  • the organic solvent that can dissolve the raw materials refers to the organic solvent that can dissolve the copper source, zinc source, indium source and sulfur.
  • the organic solvent of the raw material of the source and then carry out the one-step solvothermal reaction, and the reaction is carried out in a sealed state, which is equivalent to the reaction process, the system can be carried out under a certain positive pressure condition, and in the sealed state, make the system
  • the solvent in the solvent can form a saturated vapor pressure.
  • reaction process it can simultaneously react in situ to form p-type CuInS 2 and p-type Cu 2 S and n-type ZnIn 2 S 4 to form a composite structure system, forming a double pn junction with a tight heterogeneous interface.
  • the Cu 2 S/CuInS 2 /ZnIn 2 S 4 composite photocatalyst is equivalent to a double pn junction system that is conducive to the construction of a pn junction structure (ppn) with a tight heterogeneous interface, and the formed composite photocatalyst utilizes the composite system
  • the structural construction of this method can give full play to the synergistic effect of the two components and use the construction of the pn junction to effectively promote the separation of photogenerated carriers, thereby achieving efficient visible light photocatalytic activity.
  • the heterogeneous interface characteristics of the double pn junction system cannot be formed, and the method of the present invention has the advantages of tight interface in terms of operation. Therefore, the process of the present invention is more conducive to mass production of highly active Cu 2 S/CuInS 2 /ZnIn 2 S 4 composite photocatalysts, and has high photocatalytic activity.
  • the molar ratio of the copper source: zinc source: indium source: sulfur source is x: 1:2 ⁇ 5:8 ⁇ 12, where the value of x is 0 ⁇ x ⁇ 3.
  • the composite construction system of p-type CuInS 2 , p-type Cu 2 S and n-type ZnIn 2 S 4 can be formed synchronously in the reaction process more effectively, and there is a tighter heterogeneity between them.
  • the value of x is 0.15 ⁇ x ⁇ 0.5.
  • the system pressure of the hydrothermal reactor is maintained at a positive pressure, and the positive pressure is controlled at ⁇ 0.3MPa.
  • the positive pressure is controlled at ⁇ 0.3MPa.
  • the above-mentioned copper source, zinc source and indium source can be organic or inorganic, but because the organic salt is quite expensive . Therefore, it is best to use inorganic sources of copper, zinc and indium.
  • the copper source is selected from one or more of copper sulfate, copper chloride and copper nitrate;
  • the zinc source is selected from one or more of zinc nitrate, zinc chloride and zinc acetate;
  • the indium source is selected from one or more of indium nitrate and indium chloride;
  • the sulfur source is selected from one or more of sodium sulfide, thiourea and thioacetamide.
  • the solvent here contains at least a solvent with a boiling point greater than 105°C, which can effectively ensure that the reaction is carried out at a relatively high temperature , in order to better realize the formation of three products of Cu 2 S, CuInS 2 and ZnIn 2 S 4 in the reaction process, and the system formed by the original reaction also has tighter heterogeneous interface characteristics.
  • the organic solvent capable of dissolving raw materials is selected from alcohol solvents and/or amine solvents.
  • the alcohol solvent is selected from one or more of methanol, ethanol, ethylene glycol, propylene glycol and propanol;
  • the amine solvent is selected from dimethylformamide and/or dimethylacetamide.
  • the solvent is selected from ethylene glycol, dimethylformamide or their mixed solvents. It can fully dissolve and disperse the raw materials in the solvent system, better ensure the full reaction, and improve the yield effect of the product.
  • the one-step reaction takes 12 to 36 hours.
  • the reaction can be fully carried out through time control, and the yield and quality of the product can be improved.
  • the Cu 2 S/CuInS 2 /ZnIn 2 S 4 composite photocatalyst is used to degrade tetracycline or tetracycline hydrochloride.
  • the present invention has the following advantages:
  • the present invention adopts a one-step solvothermal method, and keeps the reaction system in a sealed state during the reaction process to maintain a certain positive pressure, which can effectively realize the synchronous in-situ reaction to form p-type CuInS 2 and p-type Cu
  • the composite structure of 2 S and n-type ZnIn 2 S 4 enables the formation of a Cu 2 S/CuInS 2 /ZnIn 2 S 4 composite photocatalyst with a double pn junction with a tight heterointerface, so that the formed composite photocatalyst utilizes the composite
  • the structural construction of the structure can give full play to the synergistic effect of the two components and use the construction of the pn junction to effectively promote the separation of photogenerated carriers and significantly improve the photocatalytic activity.
  • Fig. 1 is an X-ray diffraction spectrum analysis of Cu 2 S/CuInS 2 /ZnIn 2 S 4 composite photocatalyst obtained in Example 1 of the present invention and single CuInS 2 and ZnIn 2 S 4 .
  • Fig. 2 is a comparison chart of the photocatalytic degradation activity of tetracycline hydrochloride between the Cu 2 S/CuInS 2 /ZnIn 2 S 4 -0.15 composite photocatalyst prepared in the embodiment of the present invention and the single CuInS 2 and ZnIn 2 S 4 catalyst.
  • each raw material add an appropriate amount of copper sulfate, 1 mmol of zinc acetate, 2 mmol of indium chloride and 8 mmol of thiourea into 30 mL of dimethylformamide, mix well and dissolve evenly, and then transfer to a volume of 50 mL of water Heat the reaction kettle, make the hydrothermal reaction kettle in a sealed state, heat the temperature and control the temperature to perform a one-step reaction at 160°C for 24 hours. During the reaction, the control system is carried out under positive pressure, and the system pressure is kept ⁇ 0.3MPa. After finishing, after natural cooling, high-speed centrifugation, water washing, and drying at room temperature, the corresponding product Cu 2 S/CuInS 2 /ZnIn 2 S 4 composite photocatalyst can be obtained.
  • the prepared product is named Cu 2 S/CuInS 2 /ZnIn 2 S 4 -x, that is, in this example, in order to use for analysis and description, the Cu 2 S/ CuInS 2 /ZnIn 2 S 4 composite photocatalyst samples correspond to the following names, and the molar amounts of copper sulfate added are 0.2mmol, 0.3mmol, 0.4mmol and 0.5mmol respectively.
  • the above samples were represented by Cu 2 S/CuInS 2 /ZnIn 2 S 4 -0.2, Cu 2 S/CuInS 2 /ZnIn 2 S 4 -0.3, Cu 2 S/CuInS 2 /ZnIn 2 S 4 -0.4 and Cu 2 S /CuInS 2 /ZnIn 2 S 4 -0.5 means.
  • the diffraction peak of composite photocatalyst of the present invention appears Cu2S , CuInS2 and ZnIn2S4 at the same time Diffraction peaks show that the present invention can effectively form three kinds of substances through one-step reaction, and no diffraction peaks of other impurities are detected in the spectrogram, indicating that the composite photocatalyst obtained by the method of the present invention has a certain high purity.
  • the characteristics, the Cu 2 S in the obtained Cu 2 S/CuInS 2 /ZnIn 2 S 4 sample belongs to the 00-009-0328 type Cu 2 S in the JCPDS standard library.
  • each raw material add 0.15mmol of copper chloride, 1mmol of zinc acetate, 2.15mmol of indium nitrate and 8mmol of thiourea into a mixed solvent of 20mL of dimethylformamide and 10mL of ethanol, stir well and dissolve evenly , and then transferred to a hydrothermal reactor with a volume of 50mL, heating and controlling the temperature to carry out one-step reaction for 30h under the condition of 160°C.
  • the Cu 2 S/CuInS 2 /ZnIn 2 S 4 composite photocatalyst sample is corresponding to the following name, that is, the Cu 2 S/CuInS 2 /ZnIn 2 S 4 -0.15 sample, namely
  • the addition amount of copper source (copper chloride) in the present embodiment is 0.15mmol.
  • test conditions for the degradation performance are as follows: using visible light as the light source, first disperse 10 mg of photocatalyst in 40 mL of tetracycline hydrochloride solution with an initial concentration of 50 mg L -1 , and then carry out the photocatalytic test after dark treatment.
  • the Cu 2 S/CuInS 2 /ZnIn 2 S 4 composite photocatalyst obtained by the present invention has efficient photocatalytic degradation of tetracycline hydrochloride activity This is precisely because the composite catalyst formed by the one-step reaction of the present invention constructs the color of the double pn junction, which significantly accelerates the separation of photogenerated carriers, thereby improving its photocatalytic activity.
  • each raw material add 3mmol of copper sulfate, 1mmol of zinc acetate, 5mmol of indium chloride, and 12mmol of thiourea into 30mL of dimethylformamide, mix well and dissolve evenly, and then transfer to a volume of 50mL of water Thermal reaction kettle, heat up and control the temperature to carry out one-step reaction at 140°C for 36 hours.
  • the control system is under positive pressure, and the system pressure is kept ⁇ 0.3MPa.
  • the Centrifuge wash with water, and dry at room temperature to obtain the corresponding product Cu 2 S/CuInS 2 /ZnIn 2 S 4 composite photocatalyst.
  • the obtained product Cu 2 S/CuInS 2 /ZnIn 2 S 4 composite photocatalyst is carried out X-diffraction analysis, the result is substantially consistent with the X-diffraction analysis result about composite photocatalyst in embodiment 1, shows that the diffraction peak of composite photocatalyst
  • the diffraction peaks of Cu 2 S, CuInS 2 and ZnIn 2 S 4 appeared at the same time, indicating that the present invention can indeed effectively form three substances through one-step reaction, and no diffraction peaks of other impurities are detected in the spectrogram, which has relatively high High product purity quality.
  • the product Cu2S / CuInS2 / ZnIn2S4 composite photocatalyst obtained in this example was used to test the degradation performance of tetracycline hydrochloride, and the results showed that it basically reached the same level as the degradation activity of tetracycline hydrochloride in Example 2 , indicating the same high photocatalytic degradation activity.
  • each raw material add 0.4mmol of copper nitrate, 1mmol of zinc chloride, 2.4mmol of indium chloride and 10mmol of thioacetamide into a mixed solvent of 20mL of dimethylformamide and 10mL of ethanol, and stir well Mix and dissolve evenly, then transfer to a hydrothermal reactor with a volume of 50mL, heat up and control the temperature to carry out one-step reaction for 32h under the condition of 135°C, control the system under positive pressure during the reaction, and keep the system pressure ⁇ 0.3MPa , after the reaction, after natural cooling, high-speed centrifugation, washing with water, and drying at room temperature, the corresponding product Cu 2 S/CuInS 2 /ZnIn 2 S 4 composite photocatalyst was obtained.
  • the obtained product Cu 2 S/CuInS 2 /ZnIn 2 S 4 composite photocatalyst is carried out X-diffraction analysis, the result is substantially the same as the X-diffraction analysis result about Cu 2 S/CuInS 2 /ZnIn 2 S 4 composite photocatalyst in embodiment 1
  • the above phase is consistent, showing that the diffraction peaks of the composite photocatalyst obtained by the present invention appear simultaneously Cu 2 S, CuInS 2 and ZnIn 2 S 4 diffraction peaks, indicating that the present invention can indeed effectively form three substances by one-step reaction, and No diffraction peaks of other impurities are detected in the spectrogram, and the product has a high purity quality.
  • the product Cu2S / CuInS2 / ZnIn2S4 composite photocatalyst obtained in this example was used to test the degradation performance of tetracycline hydrochloride, and the results showed that it basically reached the same level as the degradation activity of tetracycline hydrochloride in Example 2 , indicating the same high photocatalytic degradation activity.
  • each raw material add 1mmol of copper chloride, 1mmol of zinc nitrate, 3mmol of indium chloride and 10mmol of thioacetamide into a mixed solvent of 25mL of dimethylacetamide and 5mL of propanol, stir and mix thoroughly Dissolve evenly, then transfer to a hydrothermal reactor with a volume of 50mL, heat and control the temperature to carry out a one-step reaction at 110°C for 36 hours, control the system under positive pressure during the reaction, and keep the system pressure ⁇ 0.3MPa, After the reaction, after natural cooling, high-speed centrifugation, water washing, and drying at room temperature, the corresponding product Cu 2 S/CuInS 2 /ZnIn 2 S 4 composite photocatalyst was obtained.
  • the obtained product Cu 2 S/CuInS 2 /ZnIn 2 S 4 composite photocatalyst is carried out X-diffraction analysis, the result is substantially the same as the X-diffraction analysis result about Cu 2 S/CuInS 2 /ZnIn 2 S 4 composite photocatalyst in embodiment 1
  • the above phase is consistent, showing that the diffraction peaks of the composite photocatalyst obtained in this embodiment appear simultaneously Cu 2 S, CuInS 2 and ZnIn 2 S 4 diffraction peaks, indicating that the present invention can effectively form three kinds of substances through one-step reaction, And no diffraction peaks of other impurities are detected in the spectrogram, and the product has a high purity quality.
  • the product Cu2S / CuInS2 / ZnIn2S4 composite photocatalyst obtained in this example was used to test the degradation performance of tetracycline hydrochloride, and the results showed that it basically reached the same level as the degradation activity of tetracycline hydrochloride in Example 2 , indicating the same high photocatalytic degradation activity.
  • each raw material add 0.5mmol of copper sulfate, 1mmol of zinc acetate, 2.5mmol of indium chloride and 10mmol of thiourea into 30mL of ethylene glycol solvent, stir well and mix evenly to dissolve, and then transfer to a volume of 50mL
  • the hydrothermal reaction kettle heating and controlling the temperature at 110°C for one-step reaction for 32 hours, during the reaction process, the control system is under positive pressure, and the system pressure is kept ⁇ 0.3MPa. After the reaction is completed, after natural cooling, After high-speed centrifugation, washing with water, and drying at room temperature, the corresponding product Cu 2 S/CuInS 2 /ZnIn 2 S 4 composite photocatalyst can be obtained.
  • the obtained product Cu 2 S/CuInS 2 /ZnIn 2 S 4 composite photocatalyst is carried out X-diffraction analysis, the result is substantially the same as the X-diffraction analysis result about Cu 2 S/CuInS 2 /ZnIn 2 S 4 composite photocatalyst in embodiment 1
  • the above phase is consistent, showing that the diffraction peaks of the composite photocatalyst obtained in this embodiment appear simultaneously Cu 2 S, CuInS 2 and ZnIn 2 S 4 diffraction peaks, indicating that the present invention can effectively form three kinds of substances through one-step reaction, And no diffraction peaks of other impurities are detected in the spectrogram, and the product has a high purity quality.
  • the product Cu2S / CuInS2 / ZnIn2S4 composite photocatalyst obtained in this example was used to test the degradation performance of tetracycline hydrochloride, and the results showed that it basically reached the same level as the degradation activity of tetracycline hydrochloride in Example 2 , indicating the same high photocatalytic degradation activity.
  • each raw material add 0.3mmol of copper sulfate, 1mmol of zinc acetate, 2.3mmol of indium nitrate and 8mmol of thiourea into a mixed solvent of 20mL of ethylene glycol and 10mL of dimethylformamide, stir well and mix evenly to dissolve , and then transferred to a hydrothermal reactor with a volume of 50mL, heating and controlling the temperature to carry out a one-step reaction at 120°C for 30h.
  • the obtained product Cu 2 S/CuInS 2 /ZnIn 2 S 4 composite photocatalyst is carried out X-diffraction analysis, the result is substantially the same as the X-diffraction analysis result about Cu 2 S/CuInS 2 /ZnIn 2 S 4 composite photocatalyst in embodiment 1
  • the above phase is consistent, showing that the diffraction peaks of the composite photocatalyst obtained in this embodiment appear simultaneously Cu 2 S, CuInS 2 and ZnIn 2 S 4 diffraction peaks, indicating that the present invention can effectively form three kinds of substances through one-step reaction, And no diffraction peaks of other impurities are detected in the spectrogram, and the product has a high purity quality.
  • the product Cu2S / CuInS2 / ZnIn2S4 composite photocatalyst obtained in this example was used to test the degradation performance of tetracycline hydrochloride, and the results showed that it basically reached the same level as the degradation activity of tetracycline hydrochloride in Example 2 , indicating the same high photocatalytic degradation activity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂的制备方法和应用,属于光催化材料技术领域。为了解决现有的对污染物降解不佳的问题,提供一种Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂的制备方法和应用,该方法包括水热反应釜中,将原料铜源、锌源、铟源和硫源加入能溶解原料的有机溶剂中溶解,然后使水热反应釜在密封状态下,再控制温度进行一步法反应,进行冷却和分离,得到Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂。本发明能够实现同步原位反应形成p型CuInS 2和p型Cu 2S与n型ZnIn 2S 4的复合构建结构,形成具有紧密异质界面的双p-n结的结构,显著提高光催化活性。

Description

一种Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂的制备方法和应用 技术领域
本发明涉及一种Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂的制备方法和应用,属于光催化材料技术领域。
背景技术
随着能源危机和环境污染成为困扰着人类的两大难题,开发无污染、可再生和绿色的新能源是当今世界发展面临的巨大挑战。而太阳能基于环境友好和资源丰富等优势,是未来最理想的能量来源。而通过光催化剂材料能够有效的利用太阳能实现对环境污染中的有机物四盐酸四环素等进行降解,对于生产加工中废液中的有机污染物的降解,如对于医药企业中生产废液中含有的有机污染物如盐酸四环素等的解降,又如塑料管道生产加工中后期处理过程中形成的废液或处理液等中的有机污染物的降解。
在光催化剂的选择上,尤其在p-n结异质光催化剂中,由于p-n结的结构构筑会产生一个强的内建电场,促使p型半导体导带上的光生电子加速向n型半导体的导带上转移;相应地,n型半导体价带上的光生空穴会跳跃到p型半导体的价带上,最终实现光生载流子对的高效分离。因此,p-n结光催化剂通常具有较高的光催化活性,如CuInS 2属于I-III-VI族三元直接带隙半导体化合物,能带宽度较窄(约1.5eV),具有可见光吸收强、光电导率高和稳定性高等特性,被广泛用于光催化材料,又如硫化亚铜(Cu 2S),其禁带宽度约为1.2eV,是一种重要的p型窄禁带半导体材料。作为典型的p型窄带隙半导体,当其在构建复合物形成p-n结后,其导带和价带位置进一步提升。因此,光生电子具有强还原性。但是,对于单组分的Cu 2S或CuInS 2受限于载流子分 离效率影响,导致光生空穴和电子复合严重,总体催化效率较低。因此,如何有效调控以上两种p型半导体载流子的疏运行为,实现其光生空穴和电子的高效分离,是构筑具有高活性p型光催化剂需要解决的核心问题。为了解决这一问题,提高整体光催化活性,现有技术中如现有文献(公开号CN109589991B)公开的一种锌铟硫/铜铟硫二维异质结的光催化剂、其制备方法和应用,通过将锌源、铟源和硫源化合物按摩尔比先进行反应生成硫化铟锌后;再以铜源、铟源和硫源热安一定的摩尔比混合后,再加入上述硫化铟锌混合进行反应,形成CuInS 2和ZnIn 2S 4的二维异质结光催化剂。该处理方法是通过采用两种成分先后形成而混合对光催化能力有一定的提升,但是,其CuInS 2和ZnIn 2S 4是分步形成的,相当于先形成ZnIn 2S 4(硫化铟锌)后,再形成CuInS 2的方式分步形成的混合后的二维异质结构,仅是两种光催化物质的组合,形成的仍是单一的p-n型结构特性,且界面紧密性不好,对有机污染物尤其是对四环素的降解能力并不佳。
发明内容
本发明针对以上现有技术中存在的问题,提供一种Cu 2S/CuIn S 2/ZnIn 2S 4复合光催化剂的制备方法和应用,解决的问题是如何实现使形成的复合光催化剂具有双p-n型的结构特性,使具有高催化降解活性能力。
本发明的目的之一是通过以下技术方案来实现的,一种Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂的制备方法,其特征在于,该方法包括以下步骤:
在水热反应釜中,将原料铜源、锌源、铟源和硫源加入能溶解原料的有机溶剂中溶解,然后使水热反应釜在密封状态下,再控制温度在110℃~160℃的条件下进行一步法反应,反应结束后,进行冷却和分离,得到Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂。
通过直接将铜源、锌源、铟源和硫源四种成分先整体加入能溶解原料的有机溶剂中,这里的能溶解原料的有机溶剂是指能溶解铜源、锌源、铟源和硫源的原料的有机溶剂,再进行一步法溶剂热法进行反应,并使反应在密封状态下进行,相当于反应过程中,体系能保持一定的正压条件下进行,且密封状态下,使体系中的溶剂能形成饱和蒸汽压,反应过程中能够同步原位反应形成p型CuInS 2和p型Cu 2S与n型ZnIn 2S 4复合构建结构体系,形成具有紧密异质界面的双p-n结的Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂,即相当于使有利于构建具有紧密异质界面的p-n结结构(p-p-n)的双p-n结体系,且形成的复合光催化剂利用复合体系的结构构建能够充分发挥两组分的协同效应并利用p-n结的构建有效促进光生载流子分离,进而实现高效的可见光光催化活性。相比于现有传统的多步反应得到的复合光催化剂,不能形成双p-n结体系的异质界面特性,且本发明的方法具有操作方面,界面紧密的优势。所以说,本发明的工艺过程更有利于大批量制备高活性Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂,且具有高光催化活性。
在上述Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂的制备方法中,作为优选,所述铜源:锌源:铟源:硫源的摩尔比为x:1:2~5:8~12,其中x的取值为0<x≤3。通过对各成分的用量比例进一步的控制,能够在反应过程更有效的同步形成p型CuInS 2、p型Cu 2S与n型ZnIn 2S 4的复合构建体系,且它们之间具有更紧密异质界面的特性,从而形成的复合催化剂具有更好的催化活性。作为进一步的优选,所述x的取值为0.15<x≤0.5。
在上述Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂的制备方法中,作为优选,所述一步法反应过程中,使水热反应釜的体系压力保持正压,且正压压力控制在≤0.3MPa。使反应过程中体系形成一定的正压条件,更有利于反应达到所要求的高温下进行,且由于体系是密封状态的,溶剂也不会直接挥发,而是在水热反应釜内进 行了饱和的蒸汽压,使能更好的保证反应过程中形成三相体系(Cu 2S/CuInS 2/ZnIn 2S 4)的复合特性,从而实现高光催化活性的效果。
在上述Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂的制备方法中,上述的铜源、锌源和铟源可以是有机的,也可以是无机的,但是由于有机盐相当价格较高。因此,最好采用无机的铜源、锌源和铟源。作为优选,所述铜源选自硫酸铜、氯化铜和硝酸铜中的一种或几种;所述锌源选自硝酸锌、氯化锌和乙酸锌中的一种或几种;所述铟源选自硝酸铟和氯化铟中的一种或几种;所述硫源选自硫化钠、硫脲和硫代乙酰胺中的一种或几种。
在上述Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂的制备方法中,这里对于其中的溶剂是至少含有沸点大于105℃以上的溶剂,能够有效的保证反应在相对较高的温度下进行,以利于更好的实现反应过程中形成Cu 2S、CuInS 2和ZnIn 2S 4三种产物,且同步原来反应形成的体系也具有更紧密的异质界面特性。最好采用所述能溶解原料的有机溶剂选自醇溶剂和/或胺类溶剂。如所述醇类溶剂选自甲醇、乙醇、乙二醇、丙二醇和丙醇中的一种或几种;所述胺类溶剂选自二甲基甲酰胺和/或二甲基乙酰胺。作为优选,所述溶剂选自乙二醇、二甲基甲酰胺或它们的混合溶剂。能够使原料充分的溶解分散在溶剂体系,更好的保证反应充分,提高产物的收率效果。
在上述Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂的制备方法中,作为优选,所述一步法反应的时间为12~36小时。通过时间控制能够充分使反应进行,提高产物收率和质量。
在上述Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂的应用,作为优选,所述Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂用于降解四环素或盐酸四环素。
综上所述,与现有技术相比,本发明具有以下优点:
本发明通过一步法溶剂热法,且使反应过程中在密封状态下,使反应过程中,反应体系保持一定的正压,能够使有效的实现同步原位反应形成p型CuInS 2和p型Cu 2S与n型ZnIn 2S 4的复合构建结构,使形成具有紧密异质界面的双p-n结的Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂,使形成的复合光催化剂利用复合物的结构构建能够充分发挥两组分的协同效应并利用p-n结的构建有效促进了光生载流子分离,显著提高光催化活性。
附图说明
图1是本发明实施例1得到的Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂和单一的CuInS 2和ZnIn 2S 4的X射线衍射谱图分析。
图2是本发明实施例制备得到的Cu 2S/CuInS 2/ZnIn 2S 4-0.15复合光催化剂和单一的CuInS 2和ZnIn 2S 4催化剂光催化降解盐酸四环素的活性对比图。
具体实施方式
下面通过具体实施例和附图,对本发明的技术方案作进一步具体的说明,但是本发明并不限于这些实施例。
实施例1
按照各原料的摩尔用量,将适量的硫酸铜、1mmol乙酸锌、2mmol的氯化铟以及8mmol的硫脲加入于30mL二甲基甲酰胺,搅拌充分混合均匀溶解,然后转移至体积为50mL的水热反应釜,使水热反应釜在密封状态下,加热升温控制温度在160℃的条件下进行一步法反应24h,反应过程中控制体系在正压力下进行,且保持体系压力≤0.3MPa,反应结束后,待自然冷却后,经高速离心、水洗,室温下干燥,即得相应的产物Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂。
本实施例中根据硫酸铜的加入量不同,将制备产物命名为 Cu 2S/CuInS 2/ZnIn 2S 4-x,即本实施例中为了利用进行分析说明,将取用的Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂样品按以下名称进行对应,分别以硫酸铜的加入摩尔量为0.2mmol、0.3mmol、0.4mmol和0.5mmol的量。即将上述样品分别以Cu 2S/CuInS 2/ZnIn 2S 4-0.2、Cu 2S/CuInS 2/ZnIn 2S 4-0.3、Cu 2S/CuInS 2/ZnIn 2S 4-0.4和Cu 2S/CuInS 2/ZnIn 2S 4-0.5表示。
取少量得到的上述复合光催化剂作为样品进行分析,分析结果如图1所示,是以本实施例中得到的复合光催化剂的Cu 2S/CuInS 2/ZnIn 2S 4-x样品(x表示加入硫酸铜的摩尔量),以及CuInS 2样品的x射线衍射谱图,从图1中可以看出本发明的复合光催化剂的衍射峰同时出现了Cu 2S、CuInS 2和ZnIn 2S 4的衍射峰,说明本发明通过一步法反应确实能够有效的形成三种物质,且谱图中也没有检测到其它杂质的衍射峰,说明采用本发明的方法得到的复合光催化剂具有一定的高纯度的特性,其中得到的Cu 2S/CuInS 2/ZnIn 2S 4样品中的Cu 2S属于JCPDS标准库里的00-009-0328类型的Cu 2S。
实施例2
按照各原料的摩尔用量,将0.15mmol的氯化铜、1mmol乙酸锌、2.15mmol的硝酸铟以及8mmol的硫脲加入于20mL二甲基甲酰胺和10mL乙醇的混合溶剂中,搅拌充分混合均匀溶解,然后转移至体积为50mL的水热反应釜,加热升温控制温度在160℃的条件下进行一步法反应30h,反应过程中控制体系在正压力下进行,且保持体系压力≤0.3MPa,反应结束后,待自然冷却后,经高速离心、水洗,室温下干燥,即得相应的产物Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂。
取用一定量的分析产物Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂作为样品应用于降解盐酸四环素,即在含有盐酸四环素的溶液体系中加入本发明的Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂进行降解。进 行降解活性性能的分析说明,将取用的Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂样品按以下名称进行对应,即Cu 2S/CuInS 2/ZnIn 2S 4-0.15样品,即本实施例中铜源(氯化铜)的加入量为0.15mmol。
对于降解性能的测试条件如下:采用可见光作为光源,首先将10mg的光催化剂分散于40mL初始浓度为50mg L -1的盐酸四环素溶液中,待暗处理后,再进行光催化测试。以单组分的CuInS 2或ZnIn 2S 4样品作为对照,从图2中可以看出本发明得到的Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂具有高效的光催化降解盐酸四环素活性的性能,这正是由于本发明通过一步法反应形成的复合催化剂构建了双重p-n结的结色,显著加速了光生载流子的分离,进而提高了其光催化活性。
实施例3
按照各原料的摩尔用量,将3mmol的硫酸铜、1mmol乙酸锌、5mmol的氯化铟以及12mmol的硫脲加入于30mL二甲基甲酰胺,搅拌充分混合均匀溶解,然后转移至体积为50mL的水热反应釜,加热升温控制温度在140℃的条件下进行一步法反应36h,反应过程中控制体系在正压力下进行,且保持体系压力≤0.3MPa,反应结束后,待自然冷却后,经高速离心、水洗,室温下干燥,即得相应的产物Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂。
将得到的产物Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂进行X衍射分析,结果同实施例1中关于复合光催化剂的X衍射分析结果实质上相一致,表明复合光催化剂的衍射峰同时出现了Cu 2S、CuInS 2和ZnIn 2S 4的衍射峰,说明本发明通过一步法反应确实能够有效的形成三种物质,且谱图中也没有检测到其它杂质的衍射峰,具有较高的产物纯度质量。
同时,采用本实施例得到的产物Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂对盐酸四环素进行降解性能测试,结果表明也基本达到与实施例2中对盐酸四环素的降解活性相当的水平,表明同样具有 高光催化降解活性。
实施例4
按照各原料的摩尔用量,将0.4mmol的硝酸铜、1mmol氯化锌、2.4mmol的氯化铟以及10mmol的硫代乙酰胺加入于20mL二甲基甲酰胺和10mL乙醇的混合溶剂中,搅拌充分混合均匀溶解,然后转移至体积为50mL的水热反应釜,加热升温控制温度在135℃的条件下进行一步法反应32h,反应过程中控制体系在正压力下进行,且保持体系压力≤0.3MPa,反应结束后,待自然冷却后,经高速离心、水洗,室温下干燥,即得相应的产物Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂。
将得到的产物Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂进行X衍射分析,结果同实施例1中关于Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂的X衍射分析结果实质上相一致,表明本发明得到的复合光催化剂的衍射峰同时出现了Cu 2S、CuInS 2和ZnIn 2S 4的衍射峰,说明本发明通过一步法反应确实能够有效的形成三种物质,且谱图中也没有检测到其它杂质的衍射峰,具有较高的产物纯度质量。
同时,采用本实施例得到的产物Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂对盐酸四环素进行降解性能测试,结果表明也基本达到与实施例2中对盐酸四环素的降解活性相当的水平,表明同样具有高光催化降解活性。
实施例5
按照各原料的摩尔用量,将1mmol的氯化铜、1mmol硝酸锌、3mmol的氯化铟以及10mmol的硫代乙酰胺加入于25mL二甲基乙酰胺和5mL丙醇的混合溶剂中,搅拌充分混合均匀溶解,然后转移至体积为50mL的水热反应釜,加热升温控制温度在110℃的条件下进行一步法反应36h,反应过程中控制体系在正压力下进行,且保持体系压力≤0.3MPa,反应结束后,待自然冷却后,经高速离心、水洗,室温下干燥,即得相应的产物 Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂。
将得到的产物Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂进行X衍射分析,结果同实施例1中关于Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂的X衍射分析结果实质上相一致,表明本实施例得到的复合光催化剂的衍射峰同时出现了Cu 2S、CuInS 2和ZnIn 2S 4的衍射峰,说明本发明通过一步法反应确实能够有效的形成三种物质,且谱图中也没有检测到其它杂质的衍射峰,具有较高的产物纯度质量。
同时,采用本实施例得到的产物Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂对盐酸四环素进行降解性能测试,结果表明也基本达到与实施例2中对盐酸四环素的降解活性相当的水平,表明同样具有高光催化降解活性。
实施例6
按照各原料的摩尔用量,将0.5mmol的硫酸铜、1mmol乙酸锌、2.5mmol的氯化铟以及10mmol的硫脲加入于30mL乙二醇溶剂中,搅拌充分混合均匀溶解,然后转移至体积为50mL的水热反应釜,加热升温控制温度在110℃的条件下进行一步法反应32h,反应过程中控制体系在正压力下进行,且保持体系压力≤0.3MPa,反应结束后,待自然冷却后,经高速离心、水洗,室温下干燥,即得相应的产物Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂。
将得到的产物Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂进行X衍射分析,结果同实施例1中关于Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂的X衍射分析结果实质上相一致,表明本实施例得到的复合光催化剂的衍射峰同时出现了Cu 2S、CuInS 2和ZnIn 2S 4的衍射峰,说明本发明通过一步法反应确实能够有效的形成三种物质,且谱图中也没有检测到其它杂质的衍射峰,具有较高的产物纯度质量。
同时,采用本实施例得到的产物Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂对盐酸四环素进行降解性能测试,结果表明也基本达到与实施例2中对盐酸四环素的降解活性相当的水平,表明同样具有 高光催化降解活性。
实施例7
按照各原料的摩尔用量,将0.3mmol的硫酸铜、1mmol乙酸锌、2.3mmol的硝酸铟以及8mmol的硫脲加入于20mL乙二醇和10mL二甲基甲酰胺的混合溶剂中,搅拌充分混合均匀溶解,然后转移至体积为50mL的水热反应釜,加热升温控制温度在120℃的条件下进行一步法反应30h,反应过程中控制体系在正压力下进行,且保持体系压力≤0.3MPa,反应结束后,待自然冷却后,经高速离心、水洗,室温下干燥,即得相应的产物Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂。
将得到的产物Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂进行X衍射分析,结果同实施例1中关于Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂的X衍射分析结果实质上相一致,表明本实施例得到的复合光催化剂的衍射峰同时出现了Cu 2S、CuInS 2和ZnIn 2S 4的衍射峰,说明本发明通过一步法反应确实能够有效的形成三种物质,且谱图中也没有检测到其它杂质的衍射峰,具有较高的产物纯度质量。
同时,采用本实施例得到的产物Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂对盐酸四环素进行降解性能测试,结果表明也基本达到与实施例2中对盐酸四环素的降解活性相当的水平,表明同样具有高光催化降解活性。
本发明中所描述的具体实施例仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。
尽管对本发明已作出了详细的说明并引证了一些具体实施例,但是对本领域熟练技术人员来说,只要不离开本发明的精神和范围可作各种变化或修正是显然的。

Claims (10)

  1. 一种Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂的制备方法,其特征在于,该方法包括以下步骤:
    在水热反应釜中,将原料铜源、锌源、铟源和硫源加入能溶解原料的有机溶剂中溶解,然后使水热反应釜在密封状态下,再控制温度在110℃~160℃的条件下进行一步法反应,反应结束后,进行冷却和分离,得到Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂。
  2. 根据权利要求1所述Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂的制备方法,其特征在于,所述铜源:锌源:铟源:硫源的摩尔比为x:1:2~5:8~12,其中x的取值为0<x≤3。
  3. 根据权利要求2所述Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂的制备方法,其特征在于,所述x的取值为0.15<x≤0.5。
  4. 根据权利要求2所述Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂的制备方法,其特征在于,所述一步法反应过程中,使水热反应釜的体系压力保持正压,且正压压力控制在≤0.3MPa。
  5. 根据权利要求1所述Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂的制备方法,其特征在于,所述铜源选自硫酸铜、氯化铜和硝酸铜中的一种或几种;所述锌源选自硝酸锌、氯化锌和乙酸锌中的一种或几种;所述铟源选自硝酸铟和氯化铟中的一种或几种;所述硫源选自硫化钠、硫脲和硫代乙酰胺中的一种或几种。
  6. 根据权利要求1所述Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂的制备方法,其特征在于,所述能溶解原料的有机溶剂选自醇溶剂和/或胺类溶剂。
  7. 根据权利要求6所述Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂的制备方法,其特征在于,所述醇类溶剂选自甲醇、乙醇、乙二醇、丙二醇和丙醇中的一种或几种;所述胺类溶剂选自二甲基甲酰胺和/或二甲基乙酰胺。
  8. 根据权利要求7所述Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂的制备方法,其特征在于,所述能溶解原料的有机溶剂选自乙二醇、 二甲基甲酰胺或它们的混合溶剂。
  9. 根据权利要求1-8任意一项所述Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂的制备方法,其特征在于,所述一步法反应的时间为12~36小时。
  10. 一种Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂的应用,其特征在于,采用Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂降解四环素或盐酸四环素。
PCT/CN2022/083324 2021-12-17 2022-03-28 一种Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂的制备方法和应用 WO2023108948A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111554694.X 2021-12-17
CN202111554694.XA CN114130407B (zh) 2021-12-17 2021-12-17 一种Cu2S/CuInS2/ZnIn2S4复合光催化剂的制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023108948A1 true WO2023108948A1 (zh) 2023-06-22

Family

ID=80382884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083324 WO2023108948A1 (zh) 2021-12-17 2022-03-28 一种Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂的制备方法和应用

Country Status (2)

Country Link
CN (1) CN114130407B (zh)
WO (1) WO2023108948A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114130407B (zh) * 2021-12-17 2023-05-16 公元股份有限公司 一种Cu2S/CuInS2/ZnIn2S4复合光催化剂的制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102764661A (zh) * 2012-07-26 2012-11-07 上海交通大学 一种光催化剂的固溶体纳米颗粒及其制备方法
CN107297213A (zh) * 2017-05-31 2017-10-27 盐城工学院 一种制备四元硫化物量子点光催化剂的方法
CN109589991A (zh) * 2018-08-14 2019-04-09 河南大学 一种锌铟硫/铜铟硫二维异质结光催化剂、其制备方法及应用
CN111285396A (zh) * 2020-03-16 2020-06-16 常州大学 一种Cu-In-Zn-S纳米球的制备方法及其在光响应探测器中的应用
CN112551571A (zh) * 2020-11-18 2021-03-26 汕头大学 一种超薄纳米片微单元空心硫化铟锌纳米笼的制备与应用
CN114130407A (zh) * 2021-12-17 2022-03-04 永高股份有限公司 一种Cu2S/CuInS2/ZnIn2S4复合光催化剂的制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105964275B (zh) * 2016-05-05 2021-03-23 齐齐哈尔大学 CuS/CdIn2S4/ZnIn2S4复合光催化剂的微波辅助一步合成方法
CN107552072B (zh) * 2017-10-23 2020-02-18 南昌航空大学 一种石墨烯-CuInS2纳米复合光催化剂
US10843175B2 (en) * 2018-05-29 2020-11-24 Firouzeh Siadatnasab Composition and method for treating dye wastewater
CN110639555A (zh) * 2019-10-09 2020-01-03 长春工业大学 一种可见光响应的CdS/CdIn2S4复合纳米结构光催化剂的制备方法及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102764661A (zh) * 2012-07-26 2012-11-07 上海交通大学 一种光催化剂的固溶体纳米颗粒及其制备方法
CN107297213A (zh) * 2017-05-31 2017-10-27 盐城工学院 一种制备四元硫化物量子点光催化剂的方法
CN109589991A (zh) * 2018-08-14 2019-04-09 河南大学 一种锌铟硫/铜铟硫二维异质结光催化剂、其制备方法及应用
CN111285396A (zh) * 2020-03-16 2020-06-16 常州大学 一种Cu-In-Zn-S纳米球的制备方法及其在光响应探测器中的应用
CN112551571A (zh) * 2020-11-18 2021-03-26 汕头大学 一种超薄纳米片微单元空心硫化铟锌纳米笼的制备与应用
CN114130407A (zh) * 2021-12-17 2022-03-04 永高股份有限公司 一种Cu2S/CuInS2/ZnIn2S4复合光催化剂的制备方法和应用

Also Published As

Publication number Publication date
CN114130407B (zh) 2023-05-16
CN114130407A (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
CN109589991B (zh) 一种锌铟硫/铜铟硫二维异质结光催化剂、其制备方法及应用
CN110961123B (zh) 水热法制备的全固态直接Z型ZnIn2S4-MoSe2高效光催化剂
CN113171780B (zh) 一种硒化钼/富缺陷硫铟锌/硒化镉双z型光解水制氢催化剂
CN109364933A (zh) 一种铜-铋/钒酸铋复合光催化剂的制备和应用
CN110180577A (zh) 一种光催化分解水的光催化剂及其制备方法和应用
WO2023108948A1 (zh) 一种Cu 2S/CuInS 2/ZnIn 2S 4复合光催化剂的制备方法和应用
CN105869893A (zh) 一步水热合成石墨烯-SnS2复合对电极材料的方法
CN108043426B (zh) 一种可见光产氢二硫化钼量子点/铜铟硫复合光催化剂及其制备方法
CN110624563A (zh) 一种银离子掺杂硫代铟酸锌异质结光催化剂制备方法
CN112827503A (zh) 一种2D/2D硫化铟锌/MXene光催化异质结产氢材料及其制备方法
CN107308961A (zh) 一种碘掺杂纳米Bi4O5Br2可见光催化剂、制备方法及其应用
CN111330602A (zh) 一种碳布负载BiOCl/BiVO4可回收柔性复合光催化材料、制备方法及应用
WO2023108950A1 (zh) 一种Z型α-Fe2O3/ZnIn2S4复合光催化剂的制备方法和应用
CN106807411A (zh) 一种铁酸镧掺杂溴化银复合光催化剂的制备方法
CN109731585B (zh) 一种BiOCl/Bi2WO6复合材料的制备方法
CN111558382B (zh) 一种硫化铋/钼酸铋氧缺陷空心球复合光催化剂的制备方法及应用
CN112495402A (zh) 一种二硫化钼负载钴掺杂氧化锌光催化降解材料及制法
CN106345509A (zh) 一种采用溶剂热法制备C3N4/CaTi2O5复合材料的方法
CN109402661B (zh) MIL-100(Fe)/TiO2复合光电极的制备方法及其应用
CN112337476A (zh) 一种钨酸铜/铋酸铜复合光催化剂及其制备方法
CN116173987A (zh) CdIn2S4/CeO2异质结光催化剂及其制备方法和应用
CN113134369B (zh) 一种三元光催化剂及其制备方法和应用
CN114405522A (zh) 一种能够高效还原六价铬离子的ZnIn2S4/MoSe2光催化剂
CN111871434B (zh) 一种碘氧化铋/纳米金刚石复合光催化剂及其制备方法
CN107570198A (zh) 一种用于可见光下分解水制备氢能源的复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22905718

Country of ref document: EP

Kind code of ref document: A1