CN107293616A - 一种铁电栅介质CdSe纳米线光电晶体管及其制备方法 - Google Patents

一种铁电栅介质CdSe纳米线光电晶体管及其制备方法 Download PDF

Info

Publication number
CN107293616A
CN107293616A CN201710523329.XA CN201710523329A CN107293616A CN 107293616 A CN107293616 A CN 107293616A CN 201710523329 A CN201710523329 A CN 201710523329A CN 107293616 A CN107293616 A CN 107293616A
Authority
CN
China
Prior art keywords
cdse
ferroelectric thin
pzt ferroelectric
grid
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710523329.XA
Other languages
English (en)
Other versions
CN107293616B (zh
Inventor
金伟锋
王婧文
牟笑静
尚正国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201710523329.XA priority Critical patent/CN107293616B/zh
Publication of CN107293616A publication Critical patent/CN107293616A/zh
Application granted granted Critical
Publication of CN107293616B publication Critical patent/CN107293616B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/516Insulating materials associated therewith with at least one ferroelectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Light Receiving Elements (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明属于微纳光电探测器领域,具体涉及一种基于PZT铁电薄膜栅介质的CdSe纳米线光电晶体管及其制备方法。该器件为背栅结构,主要包括源极、漏极、沟道、栅极、栅介质和衬底。其中,沟道材料为In掺杂的CdSe纳米线,栅极为金属或SrRuO3,栅介质为PZT铁电薄膜,衬底为SiO2/Si或SrTiO3基片。相比之前CdSe纳米线光电晶体管,本发明具有如下优点:1)PZT铁电薄膜的介电常数远高于SiO2、HfO2和Al2O3等传统栅介质,提高了栅极对沟道载流子调控能力;2)PZT铁电薄膜可利用剩余极化场强来调控沟道载流子,降低器件功耗;3)PZT铁电薄膜相比有机铁电材料P(VDF‑TrFE),具有高剩余极化、低矫顽场强、性质稳定且与微电子工艺兼容等优点。

Description

一种铁电栅介质CdSe纳米线光电晶体管及其制备方法
技术领域
本发明属于微纳光电探测器领域,具体涉及一种基于锆钛酸铅(PZT,PbZrxTi(1-x)O3,0<x<1)铁电薄膜栅介质的CdSe纳米线光电晶体管及其制备方法。
背景技术
光电探测器是一类将光信号转变成电信号的器件,被广泛应用于传感、成像、显示和光通信等领域。光电探测器按照工作原理大致可以分为三类:光电导型、光电二极管型和光电晶体管型。其中,光电晶体管是一类三端器件,通常结构包括金属-氧化物-半导体场效应管型、结型场效应晶体管型和金属-半导体场效应晶体管型。其中,金属-氧化物-半导体场效应管型光电晶体管是较常见的一种结构(主要结构包括源极、漏极、沟道、栅极、栅介质和衬底),其主要原理是利用沟道材料的光电导效应来探测入射光,并且可以通过栅极施加栅压来调控沟道中载流子的输运特性。
半导体纳米线是一种具有特殊结构的准一维材料,具有独特的电学、光学和力学特性,被认为是构建下一代微纳电子和光电器件与集成系统的潜在基石。CdSe纳米线是一种重要的Ⅱ-Ⅵ族直接带隙半导体,室温下禁带宽度约1.74eV,被广泛应用于场效应晶体管、光电探测器、太阳能电池、发光二极管和光波导等领域。用纳米线来构建新型微纳光电器件有其独特的优点:(1)小的材料尺寸满足器件小型化的要求,并且具有比体材料和薄膜材料更低的工作电压和功耗;(2)半导体纳米线具有优良的机械性能,适用于柔性光电器件;(3)可以通过调控材料尺寸来调控能带结构;(4)大的比表面积以及与结构相关的偏振光探测能力等。S.T.Lee等人[Small 5,345(2009)]制备了背栅结构的CdSe纳米线光电晶体管,其中SiO2作为栅介质。W.F.Jin等人[Journal of Materials Chemistry C 2,1592(2014)]报道了顶栅结构的CdSe纳米线光电晶体管,其中HfO2作为栅介质。以SiO2、HfO2和Al2O3作为栅介质的CdSe纳米线光电晶体管在工作时需要施加恒定栅压,增大了器件功耗。D.S.Zheng等人[Advanced Functional Materials 26,7690(2016)]报道了一种以有机铁电材料P(VDF-TrFE)作为栅介质的CdS纳米线光电晶体管。相比SiO2、HfO2和Al2O3等栅介质,P(VDF-TrFE)铁电栅介质能利用其剩余极化电场来耗尽沟道载流子,降低光电晶体管的暗电流和功耗,但P(VDF-TrFE)具有如下缺点:较慢的铁电畴反转速率,较高的矫顽场强,较差的机械和热稳定性,并且不与微电子工艺兼容。
发明内容
针对现有技术的不足,本发明提出了一种以PZT铁电薄膜作为栅介质的CdSe纳米线光电晶体管及其制备方法。
本发明是通过如下技术方案予以实现的:一种基于PZT铁电薄膜栅介质的CdSe纳米线光电晶体管,主要包括源极、漏极、沟道、栅极、栅介质和衬底。其中,源极和漏极材料为In/Au,沟道材料CdSe纳米线,栅极为金属或者SrRuO3,栅介质为PZT铁电薄膜。该光电晶体管为背栅结构,即CdSe纳米线沟道位于PZT铁电薄膜栅介质上表面,栅极位于PZT铁电薄膜栅介质下表面,源极和漏极分别位于CdSe纳米线两端且与其接触。
本发明提出的光电晶体管其具体制备流程如下:
a)通过薄膜沉积工艺(例如,磁控溅射、脉冲激光沉积、热蒸发或电子束蒸发等)在衬底上(例如,SiO2/Si或者SrTiO3基片)制备一定厚度的导电层(例如,Ti/Pt或者SrRuO3),作为栅极;
b)通过薄膜沉积工艺(磁控溅射、脉冲激光沉积或溶胶凝胶法等),在栅极上制备一定厚度的PZT铁电薄膜,作为栅介质;
c)通过化学气相沉积工艺(CVD)制备In掺杂CdSe纳米线主要是基于气-液-固生长机制,具体工艺步骤如下:1)将(100)硅片切成4mm×4mm大小的片子,然后分别用丙酮、无水乙醇和去离子水超声清洗10min,在清洗干净的硅片上热蒸发10nm的金薄膜作为催化剂;2)将CdSe粉末(99.995%)、In粒(掺杂源)和带有金催化剂的硅片置于石英舟上并推入管式炉内,CdSe粉末、In粒和硅片分别放置在温度为770℃、730℃和500℃的位置;3)从生长前1h到生长结束,持续通50sccm流量的Ar气作为载气和保护气体;生长时间持续约1h,然后让炉体自然降温至室温,取出硅片,在光学显微镜下会看到硅片上大量黑色绒毛状物质,即为CdSe纳米线;
d)利用扫描电子显微镜(SEM)和光致荧光谱仪(PL)对制备的CdSe纳米线进行表征;
e)将制备好的CdSe纳米线置于无水乙醇中,并轻微超声震荡使其均匀分散;用吸管将含有CdSe纳米线的无水乙醇溶液滴少许到PZT铁电薄膜上,置于烘箱中100℃烘烤15min;
f)通过光刻(紫外光刻或电子束曝光)、显影、金属化(磁控溅射、热蒸发或电子束蒸发等)和剥离等工艺在CdSe纳米线两端制备出In/Au(50nm/100nm)电极,作为源极和漏极,In/Au电极与CdSe纳米线为欧姆接触,其中源极和漏极间距约0.5-10μm。
相比之前的CdSe纳米线光电晶体管,本发明具有如下优点:(1)PZT铁电薄膜的介电常数约100-1000(具体值取决于制备工艺),远远高于SiO2、HfO2和Al2O3等传统栅介质,可以大大提高栅极对沟道载流子输运的调控能力;(2)相比SiO2、HfO2和Al2O3等非铁电栅介质,PZT铁电薄膜可以在不施加栅压的情况下利用其剩余极化场强来调控沟道中载流子的输运特性,从而可以降低器件的功耗;(3)PZT铁电薄膜相比有机铁电材料P(VDF-TrFE),具有较快的铁电畴反转速率、高剩余极化、低矫顽场强、化学性质稳定且与微电子工艺兼容等优点。
附图说明
图1,本发明的制备流程示意图。
图2,本发明的整体结构示意图。1,衬底;2,栅极;3,PZT铁电薄膜栅介质;4,源极;5,漏极;6,CdSe纳米线沟道。
图3,本发明中采用CVD工艺制备的CdSe纳米线(a)SEM图和(b)PL图。
图4,本发明实施例得到的基于PZT铁电栅介质的CdSe纳米线光电晶体管在暗态下的电学特性。其中,(a)源极和漏极两端的I-V特性曲线,(b)转移特性曲线
图5,本发明实施例得到的基于PZT铁电栅介质的CdSe纳米线光电晶体管对633nm波长激光的响应曲线。
具体实施方式
为了使本发明的内容被更清楚地理解,下面结合附图根据具体实施例对本发明作进一步说明。
一种基于PZT铁电薄膜栅介质的CdSe纳米线光电晶体管(图2为器件结构示意图),主要包括衬底1、栅极2、栅介质3、源极4、漏极5和沟道6。其中,源极4和漏极5材料为In(50nm)/Au(100nm),沟道6为CdSe纳米线,栅极2为Ti(10nm)/Pt(50nm),栅介质3为PZT铁电薄膜。该光电晶体管为背栅结构,即CdSe纳米线沟道6位于PZT铁电薄膜栅介质3上表面,栅极2位于PZT铁电薄膜栅介质3下表面,源极4和漏极5分别位于CdSe纳米线两端且与其接触。
本发明提出的光电晶体管其具体制备流程如下(图1为器件制备流程示意图):
1.通过磁控溅射工艺在SiO2/Si衬底1上制备出Ti(10nm)/Pt(50nm),作为栅极2。
2.通过磁控溅射工艺,在栅极上制备出1μm厚度的PZT铁电薄膜,作为栅介质3。
3.通过CVD工艺制备In掺杂CdSe纳米线,具体工艺步骤如下:1)将(100)晶面硅片切成4mm×4mm大小的片子,然后分别用丙酮、无水乙醇和去离子水超声清洗10min,在清洗干净的硅片上热蒸发10nm的金薄膜作为催化剂;2)将CdSe粉末(99.995%)、In粒(掺杂源)和带有金催化剂的硅片置于石英舟上并推入管式炉内,CdSe粉末、In粒和硅片置于温度为770℃、730℃和500℃的位置;3)从生长前1h到生长结束,持续通50sccm流量的Ar气作为载气和保护气体;生长时间持续约1h,然后让炉体自然降温至室温,取出硅片,在光学显微镜下会看到硅片上大量黑色绒毛状物质,即为CdSe纳米线。
4.利用SEM和PL对制备的CdSe纳米线进行表征。图3(a)为制备的CdSe纳米线的SEM图,可以看出制备的CdSe纳米线长度可达几十微米,直径约100-200nm。图3(b)为制备的CdSe纳米线的PL图,所用的激发光源为325nm的He-Cd激光,在712nm处可以看到明显的带边发射峰,峰的半高宽约29nm,没有观察到缺陷能级参与的辐射跃迁过程,说明制备的CdSe纳米线晶体质量较高。
5.将制备好的CdSe纳米线置于无水乙醇中,并轻微超声震荡使其均匀分散;用吸管将含有CdSe纳米线的无水乙醇溶液滴少许到PZT铁电薄膜上,置于烘箱中100℃烘烤15min。
6.通过紫外光刻、显影、热蒸发和剥离等工艺在CdSe纳米线两端制备出In/Au(50nm/100nm)电极,作为源极4和漏极5,In/Au电极与CdSe纳米线为欧姆接触,其中源极和漏极间距约10μm。一种基于PZT铁电薄膜栅介质的CdSe纳米线光电晶体管制备完毕。
对制备的器件进行室温下的电学和光响应表征。图4(a)为器件在暗态不加栅压时源极和漏极两端的I-V关系曲线,良好的线性关系证明了源极和漏极与CdSe纳米线之间形成了良好的欧姆接触。图4(b)为器件在暗态下的转移特性曲线,其中Vds=1V。图5为器件对633nm波长激光开态和关态的响应曲线,其中Vds=1V,Vgs=-3V,可以看出器件对光信号有明显的响应。
值得一提的是,以上实施例的说明只是为了帮助理解本发明的方法及其核心思想,但本发明绝非局限于实施例,在不脱离本发明特征和思想下做出的各种改进、替换或组合等,均包含在本发明的保护范围之内。

Claims (5)

1.一种基于PZT铁电薄膜栅介质的CdSe纳米线光电晶体管,主要包括源极、漏极、沟道、栅极、栅介质和衬底,其特征在于以下制备步骤:
a)通过薄膜沉积工艺(例如,磁控溅射、脉冲激光沉积、热蒸发或电子束蒸发等)在衬底上(例如,SiO2/Si或者SrTiO3基片)制备一定厚度的导电层(例如,Ti/Pt或者SrRuO3),作为栅极;
b)通过薄膜沉积工艺(磁控溅射、脉冲激光沉积、溶胶凝胶法或金属有机物化学气相沉积等),在栅极上制备一定厚度的PZT铁电薄膜,作为栅介质;
c)通过化学气相沉积工艺(CVD)制备CdSe纳米线;利用扫描电子显微镜和光致荧光谱仪对生长的CdSe纳米线进行表征;
d)将制备好的CdSe纳米线置于无水乙醇中,轻微超声震荡使其均匀分散;用吸管将含有CdSe纳米线的无水乙醇溶液滴少许到PZT铁电薄膜上,将其置于烘箱中100℃烘烤15min;
e)通过光刻(紫外光刻或电子束曝光)、显影、金属化(磁控溅射、热蒸发或电子束蒸发等)和剥离等工艺在CdSe纳米线两端制备出In/Au(50nm/100nm)电极,作为源极和漏极,其中源极和漏极间距约0.5-10μm。
2.根据权利要求1所述的一种基于PZT铁电薄膜栅介质的CdSe纳米线光电晶体管及其制备方法,其特征在于,源极和漏极为In/Au,沟道为CdSe纳米线,栅介质为PZT铁电薄膜,栅极为金属或者SrRuO3,衬底为SiO2/Si或者SrTiO3基片。
3.根据权利要求1所述的一种基于PZT铁电薄膜栅介质的CdSe纳米线光电晶体管及其制备方法,其特征在于,器件为背栅结构,即CdSe纳米线沟道位于PZT铁电薄膜栅介质上表面,栅极位于PZT铁电薄膜栅介质下表面,源极和漏极分别位于CdSe纳米线两侧且与其接触。
4.根据权利要求1所述的一种基于PZT铁电薄膜栅介质的CdSe纳米线光电晶体管及其制备方法,其特征在于,CdSe纳米线是用CVD工艺制备,具体制备过程如下:(1)将(100)硅片切成4mm×4mm大小的片子,然后分别用丙酮、无水乙醇和去离子水超声清洗10min,在清洗干净的硅片上热蒸发10nm的金薄膜作为催化剂;(2)将CdSe粉末(99.995%)、In粒(掺杂源)和带有金催化剂的硅片置于石英舟上并推入管式炉内,CdSe粉末、In粒和硅片分别置于温度为770℃、730℃和500℃的位置;(3)从生长前1h到生长结束,持续通50sccm流量的Ar气作为载气和保护气体;生长时间持续约1h,然后让炉体自然降温至室温,取出硅片,在光学显微镜下会看到硅片上大量黑色绒毛状物质,即为CdSe纳米线。
5.根据权利要求1所述的一种基于PZT铁电薄膜栅介质的CdSe纳米线光电晶体管及其制备方法,其特征在于,CdSe纳米线电子浓度在1016-1019cm-3
CN201710523329.XA 2017-06-30 2017-06-30 一种基于铁电栅介质和CdSe纳米线的光电晶体管 Expired - Fee Related CN107293616B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710523329.XA CN107293616B (zh) 2017-06-30 2017-06-30 一种基于铁电栅介质和CdSe纳米线的光电晶体管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710523329.XA CN107293616B (zh) 2017-06-30 2017-06-30 一种基于铁电栅介质和CdSe纳米线的光电晶体管

Publications (2)

Publication Number Publication Date
CN107293616A true CN107293616A (zh) 2017-10-24
CN107293616B CN107293616B (zh) 2019-05-21

Family

ID=60098548

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710523329.XA Expired - Fee Related CN107293616B (zh) 2017-06-30 2017-06-30 一种基于铁电栅介质和CdSe纳米线的光电晶体管

Country Status (1)

Country Link
CN (1) CN107293616B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108565312A (zh) * 2018-03-20 2018-09-21 上海集成电路研发中心有限公司 一种石墨烯红外传感器结构
CN110224025A (zh) * 2018-03-01 2019-09-10 南京理工大学 基于黑磷二维半导体的柔性铁电光伏场效应管的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1790643A (zh) * 2004-11-18 2006-06-21 国际商业机器公司 包含掺杂了的纳米元件的装置及其形成方法
CN103500703A (zh) * 2013-10-10 2014-01-08 中国科学院上海技术物理研究所 提高CdS和CdSe纳米材料电导率和光电流的方法
US20140038350A1 (en) * 2011-12-01 2014-02-06 International Business Machines Corporation N-Dopant for Carbon Nanotubes and Graphene
CN104221154A (zh) * 2012-03-23 2014-12-17 独立行政法人科学技术振兴机构 薄膜晶体管及薄膜晶体管的制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1790643A (zh) * 2004-11-18 2006-06-21 国际商业机器公司 包含掺杂了的纳米元件的装置及其形成方法
US20140038350A1 (en) * 2011-12-01 2014-02-06 International Business Machines Corporation N-Dopant for Carbon Nanotubes and Graphene
CN104221154A (zh) * 2012-03-23 2014-12-17 独立行政法人科学技术振兴机构 薄膜晶体管及薄膜晶体管的制造方法
CN103500703A (zh) * 2013-10-10 2014-01-08 中国科学院上海技术物理研究所 提高CdS和CdSe纳米材料电导率和光电流的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110224025A (zh) * 2018-03-01 2019-09-10 南京理工大学 基于黑磷二维半导体的柔性铁电光伏场效应管的制备方法
CN108565312A (zh) * 2018-03-20 2018-09-21 上海集成电路研发中心有限公司 一种石墨烯红外传感器结构

Also Published As

Publication number Publication date
CN107293616B (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
TWI397111B (zh) 包括矽奈米晶粒之多層結構、太陽能晶胞、非揮發記憶體單元、光感測單元及其製作方法、形成矽奈米晶粒之方法
CN107342345A (zh) 一种基于铁电栅介质和薄层二硫化钼沟道的光电晶体管
Everaerts et al. Printed indium gallium zinc oxide transistors. Self-assembled nanodielectric effects on low-temperature combustion growth and carrier mobility
Silva et al. High-performance self-powered photodetectors achieved through the pyro-phototronic effect in Si/SnOx/ZnO heterojunctions
CN105552131B (zh) 基于量子点掺杂栅绝缘层的光调制薄膜晶体管
Pradel et al. Optoelectronic properties of solution grown ZnO np or pn core–shell nanowire arrays
KR20110084178A (ko) 측면 성장 반도체 나노와이어 제조 방법 및 상기 방법에 의해 얻어진 트랜지스터
CN110164997B (zh) 一种基于高空穴迁移率GaSb纳米线的高性能红外探测器及其制备方法
TWI705577B (zh) 二維電子元件與相關製造方法
CN106449854A (zh) 全耗尽铁电侧栅单根纳米线近红外光电探测器及制备方法
CN107293616A (zh) 一种铁电栅介质CdSe纳米线光电晶体管及其制备方法
Song et al. Fabrication of PZT/CuO composite films and their photovoltaic properties
Chen et al. Monolithic Integration of Perovskite Photoabsorbers with IGZO Thin‐Film Transistor Backplane for Phototransistor‐Based Image Sensor
Huang et al. Easily processable Cu2O/Si self-powered photodetector array for image sensing applications
Mei et al. Ultraviolet‐Visible‐Short‐Wavelength Infrared Broadband and Fast‐Response Photodetectors Enabled by Individual Monocrystalline Perovskite Nanoplate
WO2022100053A1 (zh) 含有金属硅化物红外吸收层的石墨烯场效应电荷耦合器件
Zhang et al. Type II Homo-Type Bi2O2Se Nanosheet/InSe Nanoflake Heterostructures for Self-Driven Broadband Visible–Near-Infrared Photodetectors
WO2021135062A1 (zh) 一种基于二维黑磷材料实现igzo光电流调控的方法
CN109950364B (zh) 基于二维硒化亚锗光电探测器的成像元件制备方法
Li et al. Synthesis of CdS X Se1− X Nanoribbons with Uniform and Controllable Compositions via Sulfurization: Optical and Electronic Properties Studies
Paul Inbaraj et al. Coupling between pyroelectricity and built-in electric field enabled highly sensitive infrared phototransistor based on InSe/WSe2/P (VDF-TrFE) heterostructure
CN115621353A (zh) 一种具有栅压调控光电转化效率的硒氧铋/二碲化钼异质结光电晶体管及其制备方法和应用
Taghibakhsh et al. Characterization of short-wavelength-selective a-Si: H MSM photoconductors for large-area digital-imaging applications
CN111129205B (zh) 碳纳米管-z907复合薄膜光电晶体管及其制备方法和应用
Shen et al. Improved Self-Powered Photodetection of Ferroelectric PbZr0. 52Ti0. 48O3 Thin Films via Interfacial Engineering

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190521

Termination date: 20200630