CN107286546A - 一种生物可降解高分子薄膜的制备方法 - Google Patents

一种生物可降解高分子薄膜的制备方法 Download PDF

Info

Publication number
CN107286546A
CN107286546A CN201710636226.4A CN201710636226A CN107286546A CN 107286546 A CN107286546 A CN 107286546A CN 201710636226 A CN201710636226 A CN 201710636226A CN 107286546 A CN107286546 A CN 107286546A
Authority
CN
China
Prior art keywords
polycaprolactone
preparation
polyvinyl alcohol
biodegradable
film according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710636226.4A
Other languages
English (en)
Other versions
CN107286546B (zh
Inventor
吴德峰
黄婧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN201710636226.4A priority Critical patent/CN107286546B/zh
Publication of CN107286546A publication Critical patent/CN107286546A/zh
Application granted granted Critical
Publication of CN107286546B publication Critical patent/CN107286546B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/07Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from polymer solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • C08J3/093Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种生物可降解高分子薄膜的制备方法,涉及可降解高分子复合薄膜的制备技术领域。本发明利用乳液法将聚己内酯和聚乙烯醇溶液混合,并采用生物型颗粒纤维素纳米晶来稳定两相界面,由此即可利用稳定颗粒的加入量来控制所得材料的相畴的大小,从而控制材料的性能。本发明一方面在无需复杂的加工工艺,另一方面仅需简单稳定颗粒加入量即可实现对生物可降解及生物相容的聚乙烯醇/聚己内酯薄膜形态的有效控制。

Description

一种生物可降解高分子薄膜的制备方法
技术领域
本发明涉及可降解高分子复合薄膜的制备技术领域。
背景技术
如聚己内酯(PCL)、聚乙烯醇(PVA)等生物可降解高分子是当今材料科学的研究热点。它们具有良好的生物相容性、生物可降解性以及较好的力学性能等特点,因此不仅在通用领域,而且在组织工程方面如骨组织工程、皮肤组织工程等具有重要的应用价值。不过在作为单一材料使用时这些生物可降解高分子或多或少存在着不足。如聚己内酯具有良好可加工性以及低温韧性、生物适应性也比较好,但降解速率较慢;而水溶性的聚乙烯醇具有一定的强度和较快的降解速率,但其韧性及在高湿环境下阻氧性较差。由于两者性能正好互补,将两者混合是获得综合性能较为优异的生物可降解材料简单易行的方法。
不过聚乙烯醇的加工性能较差,往往在未达到熔融状态时就已经降解,无法满足熔融共混的条件,而用溶液共混时,聚乙烯醇与聚己内酯之间热力学的不相容,使得它们的共混材料相畴较大且界面粘结松散,反而无法体现各自的优势性能。
Pickering乳液是近些年比较热门的研究方向,它是用固体颗粒代替传统的表面活性剂从而稳定不相容两相界面。相比于传统的乳液,Pickering乳液具有无毒、稳定性、刺激响应性等明显优势。
发明内容
本发明的目的就在于克服两种聚合物热力学上不相容带来的宏观相分离的缺陷,提出一种生物可降解高分子复合薄膜的制备方法。
本发明技术方案是:将聚乙烯醇溶于水后与纤维素纳米晶、聚己内酯的三氯甲烷溶液混合,经乳化分散制备成Pickering乳液,然后涂抹于玻璃板上,再经真空干燥,得生物可降解高分子薄膜。
本发明使用第三组分——生物可降解的纳米颗粒纤维素纳米晶作为固体乳化剂,利用乳化分散的方法,将不相容的聚己内酯与聚乙烯醇两相制备成Pickering乳液,经真空干燥制成膜,通过纤维素纳米晶的加入有效改善聚乙烯醇/聚己内酯体系的相界面粘结,从而实现两组分间性能互补,获得性能优异的生物可降解高分子薄膜材料,并保持了材料的生物可降解性。
本发明的优点在于利用简便易行的乳液法将聚己内酯和聚乙烯醇溶液混合,并采用生物型颗粒纤维素纳米晶来稳定两相界面,由此即可利用稳定颗粒的加入量来控制所得材料的相畴的大小,从而控制材料的性能。本发明一方面在无需复杂的加工工艺,另一方面仅需简单稳定颗粒加入量即可实现对生物可降解及生物相容的聚乙烯醇/聚己内酯薄膜形态的有效控制。
聚乙烯醇是一种水溶性的高分子,因而先溶于水配置成水溶液。聚己内酯不溶于水,但溶于三氯甲烷后即形成油溶液。本发明先将聚乙烯醇溶于水后与其它组分再混合成为不相容的水/油乳液体系。
进一步地,本发明优先选用聚己内酯的数均分子量为40,000~60,000,熔点为50~70℃。本发明优先选用该聚己内酯可以适当改善聚乙烯醇的强度,并减慢其降解速度,提高聚乙烯醇其在环境中的稳定性,此种聚己内酯在三氯甲烷中溶解后,油溶液的粘度与聚乙烯醇水溶液相匹配,可以在复合薄膜中形成较为均一的分散相,并且在其潜在的应用方面可以提供较好的力学性能。
本发明优先选用聚乙烯醇的分子量为250,000~290,000,选用该聚乙烯醇在制备乳液的过程中产生的气泡较少,有利于均一薄膜的形成。
所述聚乙烯醇与聚己内酯、纤维素纳米晶的投料质量比为8∶2∶1~2。纤维素的用量控制是必要的。作为稳定颗粒的纤维素纳米晶,用量过少对聚乙烯醇和聚己内酯界面之间的稳定作用不大;而用量过多纤维素会在一相产生过度的絮凝现象,从而不能很好的覆盖在液滴表面,反而不利于复合薄膜的形成。
所述聚乙烯醇溶于水后形成的聚乙烯醇水溶液的浓度为0.1g/mL。此浓度是根据成膜过程中样品的流延性确定的。若溶液溶度过低,所形成的乳液过稀,无法成膜;若溶液浓度过高,所制备出的乳液过于粘稠,不易于均匀涂抹于玻璃板,从而无法得到厚度均一的薄膜。
所述聚己内酯的三氯甲烷溶液中聚己内酯浓度为0.1g/mL。此浓度是根据成膜过程中样品的流延性确定的。若溶液溶度过低,所形成的乳液过稀,无法成膜;若溶液浓度过高,所制备出的乳液过于粘稠,不易于均匀涂抹于玻璃板,从而无法得到厚度均一的薄膜。
所述乳化分散的温度条件为40℃。在此乳化分散温度下,可加快氯仿的挥发,避免了后期薄膜制备过程中分散相溶剂挥发而导致的相分离现象。
所述真空干燥温度为40℃。由于聚己内酯的熔融温度为50℃~70℃,选择40℃真空干燥,可以在避免聚己内酯不熔融的情况下,保证最快的烘干速度,薄膜内部两相形态不会受到影响。
附图说明
图1是实施例1取得乳液产品的光学显微镜照片。
图2是实施例2取得乳液产品的光学显微镜照片。
图3是对比例1取得产品烘干后的扫描电镜图片。
图4是对比例2取得产品烘干后的扫描电镜图片。
图5是实施例2取得产品烘干后的扫描电镜图片。
图6是实施例3取得产品烘干后的扫描电镜图片。
具体实施方式
原料说明:以下各例中,聚己内酯的数均分子量为40,000~60,000,熔点为50~70℃。聚乙烯醇的分子量为250,000~290,000。
实施例1:
取20g聚己内酯溶于三氯甲烷中,制得浓度为0.1g/mL的聚己内酯三氯甲烷溶液。
将聚乙烯醇80g加入到水中,80℃下溶解制备成浓度为0.1g/mL的聚乙烯醇水溶液,随后加入纤维素纳米晶10g混匀,再加入以上聚己内酯三氯甲烷溶液,在40℃、10000转/分钟的转子转速下乳化处理3分钟,取得制备成Pickering乳液。
将Pickering乳液涂抹于玻璃板上,于40℃真空干燥,得薄膜。
实施例2:
取20g聚己内酯溶于三氯甲烷中,制得浓度为0.1g/mL的聚己内酯三氯甲烷溶液。
将聚乙烯醇80g加入到水中,80℃下溶解制备成浓度为0.1g/mL的聚乙烯醇水溶液,随后加入纤维素纳米晶20g混匀,再加入以上聚己内酯三氯甲烷溶液,在40℃、10000转/分钟的转子转速下乳化处理3分钟,取得制备成Pickering乳液。
将Pickering乳液涂抹于玻璃板上,于40℃真空干燥,得薄膜。
对比例1:
将聚乙烯醇20g、聚己内酯80g加入到甲酸中,在室温、10000转/分钟的转子转速下乳化混合10分钟后,涂抹于玻璃板上,烘干得薄膜。
对比例2:
取20g聚己内酯溶于三氯甲烷中,制得浓度为0.1g/mL的聚己内酯三氯甲烷溶液。
将聚乙烯醇80g加入到水中,80℃下溶解制备成浓度为0.1g/mL的聚乙烯醇水溶液,随后加入纤维素纳米晶30g混匀,再加入以上聚己内酯三氯甲烷溶液,在40℃、10000转/分钟的转子转速下乳化处理3分钟,取得制备成Pickering乳液。
将Pickering乳液涂抹于玻璃板上,于40℃真空干燥,得薄膜。
分析:
图1、2分别是实施例1、2取得乳液产品常温下于可见光模式的光学显微镜照片。由图中可见,通过改变纤维素纳米晶的含量,可以很好的改变PCL/PVA体系中液滴的大小。
图3,4,5,6分别是对比例1,2及实施例1,2的扫描电镜照片。从图3中可以看出,对比例1由溶液法直接混合制得的薄膜分散相分布十分不均一,且分散相与连续相之间粘结并不紧密。而加入了纤维素纳米晶体作为稳定颗粒后乳液的图4和图5十分稳定,且分散小均一,液滴粒径小与界面的结合也较为紧密,这样可以更好的发挥两相结合的优势。但图4中加入了过量纤维素纳米晶后的对比例2,因为过度的絮凝作用,反而不利于均一液滴的产生,从而影响了材料性能。

Claims (8)

1.一种生物可降解高分子薄膜的制备方法,其特征在于:将聚乙烯醇溶于水后与纤维素纳米晶、聚己内酯的三氯甲烷溶液混合,经乳化分散制备成Pickering乳液,然后涂抹于玻璃板上,再经真空干燥,得生物可降解高分子薄膜。
2.根据权利要求1所述生物可降解薄膜的制备方法,其特征在于所述聚己内酯的数均分子量为40,000~60,000,熔点为50~70℃。
3.根据权利要求1所述生物可降解薄膜的制备方法,其特征在于所述聚乙烯醇的分子量为250,000~290,000。
4.根据权利要求1或2或3所述生物可降解薄膜的制备方法,其特征在于所述聚乙烯醇与聚己内酯、纤维素纳米晶的投料质量比为8∶2∶1~2。
5.根据权利要求4所述生物可降解薄膜的制备方法,其特征在于所述聚乙烯醇溶于水后形成的聚乙烯醇水溶液的浓度为0.1g/mL。
6.根据权利要求4所述生物可降解薄膜的制备方法,其特征在于所述聚己内酯的三氯甲烷溶液中聚己内酯浓度为0.1g/mL。
7.根据权利要求1所述生物可降解薄膜的制备方法,其特征在于所述乳化分散的温度条件为40℃。
8.根据权利要求1所述生物可降解薄膜的制备方法,其特征在于所述真空干燥温度为40℃。
CN201710636226.4A 2017-07-31 2017-07-31 一种生物可降解高分子薄膜的制备方法 Active CN107286546B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710636226.4A CN107286546B (zh) 2017-07-31 2017-07-31 一种生物可降解高分子薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710636226.4A CN107286546B (zh) 2017-07-31 2017-07-31 一种生物可降解高分子薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN107286546A true CN107286546A (zh) 2017-10-24
CN107286546B CN107286546B (zh) 2019-08-16

Family

ID=60103697

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710636226.4A Active CN107286546B (zh) 2017-07-31 2017-07-31 一种生物可降解高分子薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN107286546B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107998907A (zh) * 2017-12-18 2018-05-08 江南大学 一种氧化石墨烯(GO)稳定的Pickering乳液制备多孔聚赖氨酸膜的制备方法
CN114129325A (zh) * 2021-12-02 2022-03-04 杭州糖吉医疗科技有限公司 可降解自密封阀及其制备方法、胃内植入球囊及其制备方法
CN114752077A (zh) * 2022-04-11 2022-07-15 扬州大学 双组份各向异性水凝胶的制备方法
CN115385653A (zh) * 2022-05-07 2022-11-25 华南理工大学 一种造纸脱墨污泥基凝胶材料及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008058297A2 (en) * 2006-11-10 2008-05-15 Harvard University Non-spherical particles
JP2014024818A (ja) * 2012-07-30 2014-02-06 Josho Gakuen ゲル体の製造方法
CN103665398A (zh) * 2013-12-15 2014-03-26 桂林理工大学 可完全生物降解和生物相容的复合微球的制备方法
CN104927169A (zh) * 2015-06-28 2015-09-23 青岛宇星智能科技开发有限公司 一种改进的可降解的农用地膜
WO2016174414A1 (en) * 2015-04-30 2016-11-03 Johnson Matthey Public Limited Company Oil field chemical delivery fluids, methods for their use in the targeted delivery of oil field chemicals to subterranean hydrocarbon reservoirs and methods for tracing fluid flow
CN106084701A (zh) * 2016-08-25 2016-11-09 芜湖市天雄新材料科技有限公司 一种可降解塑料及其制备方法
CN106117592A (zh) * 2016-07-21 2016-11-16 桂林理工大学 一种纳米纤维素/聚合物复合气凝胶的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008058297A2 (en) * 2006-11-10 2008-05-15 Harvard University Non-spherical particles
JP2014024818A (ja) * 2012-07-30 2014-02-06 Josho Gakuen ゲル体の製造方法
CN103665398A (zh) * 2013-12-15 2014-03-26 桂林理工大学 可完全生物降解和生物相容的复合微球的制备方法
WO2016174414A1 (en) * 2015-04-30 2016-11-03 Johnson Matthey Public Limited Company Oil field chemical delivery fluids, methods for their use in the targeted delivery of oil field chemicals to subterranean hydrocarbon reservoirs and methods for tracing fluid flow
CN104927169A (zh) * 2015-06-28 2015-09-23 青岛宇星智能科技开发有限公司 一种改进的可降解的农用地膜
CN106117592A (zh) * 2016-07-21 2016-11-16 桂林理工大学 一种纳米纤维素/聚合物复合气凝胶的制备方法
CN106084701A (zh) * 2016-08-25 2016-11-09 芜湖市天雄新材料科技有限公司 一种可降解塑料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAO-YANG MI ET.AL: "Poly(ε-caprolactone)(PCL)/cellulose nano-crystal(CNC) nanacomposites and foams", 《CELLULOSE》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107998907A (zh) * 2017-12-18 2018-05-08 江南大学 一种氧化石墨烯(GO)稳定的Pickering乳液制备多孔聚赖氨酸膜的制备方法
CN107998907B (zh) * 2017-12-18 2020-09-01 江南大学 一种氧化石墨烯(GO)稳定的Pickering乳液制备多孔聚赖氨酸膜的制备方法
CN114129325A (zh) * 2021-12-02 2022-03-04 杭州糖吉医疗科技有限公司 可降解自密封阀及其制备方法、胃内植入球囊及其制备方法
CN114752077A (zh) * 2022-04-11 2022-07-15 扬州大学 双组份各向异性水凝胶的制备方法
CN114752077B (zh) * 2022-04-11 2024-02-13 扬州大学 双组份各向异性水凝胶的制备方法
CN115385653A (zh) * 2022-05-07 2022-11-25 华南理工大学 一种造纸脱墨污泥基凝胶材料及其制备方法与应用

Also Published As

Publication number Publication date
CN107286546B (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
CN107286546B (zh) 一种生物可降解高分子薄膜的制备方法
CN104684633B (zh) 微多孔膜及其制造方法
CN104611783B (zh) 一种静电纺丝制备纳米纤维的方法及其得到的纳米纤维和纳米纤维的应用
DE112004001096T5 (de) Polyelektrolyttinte
CN104624129B (zh) 基于离子液体型表面活性剂微乳液体系淀粉纳米微球的制备方法
CN106149203A (zh) 一种载药纳米纤维膜及其应用
WO2017022750A1 (ja) 人工血管、人工血管の製造方法、及び、多孔質組織再生基材の製造方法
CN110157170B (zh) 一种聚乳酸/纳米纤维素/羟基磷灰石复合材料及其制备
Bier et al. Investigation of eco-friendly casein fibre production methods
Peng et al. The development of fibers that mimic the core–sheath and spindle‐knot morphology of artificial silk using microfluidic devices
DE102006046358B3 (de) Verfahren zur Herstellung von funktionellen cellulosischen Formkörpern
CN102973983B (zh) 一种水溶性致孔剂、多孔支架及其制备方法
CN102936795A (zh) 一种载药纳米纤维膜及其制备方法
CN104120500A (zh) 一种鱼胶原/介孔生物玻璃复合纳米纤维膜及其制备方法
CN104624130A (zh) 一种制备再生甲壳素微球的方法
Gao et al. Investigation of microporous composite scaffolds fabricated by embedding sacrificial polyethylene glycol microspheres in nanofibrous membrane
CN104874018A (zh) 一种聚己内酯-胶原-丝蛋白纳米三维多孔支架及制备方法
CN105968384A (zh) 一种非晶丝素蛋白纳米纤维溶液及其制备方法
EP1658395B1 (de) Verfahren zur herstellung von formkörpern mit thermoregulativen eigenschaften
Iijima et al. Selective fabrication of hollow and solid polysaccharide composite fibers using a microfluidic device by controlling polyion complex formation
CN106267336B (zh) 一种骨修复材料及其制备方法
CN107163261B (zh) 一种丝素蛋白乳状液滴及其制备方法
CN108553689A (zh) 一种具有纳米纤维微结构的丝素多孔微球及其制备方法
Ouiyangkul et al. Development and characterization of 3D bioprintable and mechanically reinforced hydrogel based on gellan gum/methylcellulose/cellulose nanocrystals
CN105727364B (zh) 一种纳微米多尺度聚乳酸三维支架及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant