CN107998907A - 一种氧化石墨烯(GO)稳定的Pickering乳液制备多孔聚赖氨酸膜的制备方法 - Google Patents

一种氧化石墨烯(GO)稳定的Pickering乳液制备多孔聚赖氨酸膜的制备方法 Download PDF

Info

Publication number
CN107998907A
CN107998907A CN201711362229.XA CN201711362229A CN107998907A CN 107998907 A CN107998907 A CN 107998907A CN 201711362229 A CN201711362229 A CN 201711362229A CN 107998907 A CN107998907 A CN 107998907A
Authority
CN
China
Prior art keywords
film
polylysine
prepare
preparation
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711362229.XA
Other languages
English (en)
Other versions
CN107998907B (zh
Inventor
罗静
陈亚鑫
从凯恩
姜林萍
魏玮
刘晓亚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201711362229.XA priority Critical patent/CN107998907B/zh
Publication of CN107998907A publication Critical patent/CN107998907A/zh
Application granted granted Critical
Publication of CN107998907B publication Critical patent/CN107998907B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0502Elimination by evaporation or heat degradation of a liquid phase the liquid phase being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/04Polyamides derived from alpha-amino carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种氧化石墨烯(GO)稳定的Pickering乳液制备聚赖氨酸多孔膜的制备方法,包括如下步骤:在去离子水中加入适量GO制得GO悬浮分散液,超声处理;将聚赖氨酸溶液加入到GO悬浮液中溶解,并加入苯甲酸酯类作为油相,超声处理;将样品置于水浴中之后浇注得到未交联的膜;将未交连的膜浸渍于含交联剂的溶液中一段时间使其交联,然用乙醇和去离子水进行清洗,最后将膜干燥,得到具有多孔结构的聚赖氨酸膜。该Pickering乳液制备聚赖氨酸多孔膜的制备工艺简单,绿色环保,对设备要求低,水溶液稳定性高,多孔结构均一,易规模化,在医药行业、废水处理、水体杀菌、食品防腐、催化、重金属离子的探测等领域有着广泛的应用前景。

Description

一种氧化石墨烯(GO)稳定的Pickering乳液制备多孔聚赖氨 酸膜的制备方法
【技术领域】
本发明涉及多孔聚赖氨酸膜的制备领域,特别涉及一种氧化石墨烯(GO)稳定的Pickering乳液制备多孔聚赖氨酸膜的制备方法。
【背景技术】
聚合物膜在水分离和过滤工业中起着至关重要的作用。然而,其制备过程用到大量的有毒有机溶剂,且有机溶剂的后处理十分昂贵。由于生物基聚合物的可再生性,生物基聚合物可以用来替代石油基聚合物。但从生物基聚合物制备多孔膜仍有许多缺点需要克服:(1)与石油基聚合物相比,大多数生物基聚合物是水溶性的;因此,为了在含水条件下的应用,使其能够在水中保持结构稳定十分必要。(2)制备过程中的温度变化会引起其构象的强烈改变(例如物理凝胶化,淀粉糊化和老化)进而限制了其使用范围。由于这些特定的性质,利用普通的方法直接使生物基聚合物具有多孔结构不会使其具有很好的综合性能。
聚赖氨酸是一种阳离子聚合多肽,作为一种天然的营养型生物防腐剂,聚赖氨酸不仅具有抑菌效果好、抑菌谱广,对酵母菌、霉菌、革兰氏阳性革兰氏阴性菌、噬菌体都有良好的抑制作用,而且还具有耐高温、对人体无毒副作用等特点。这种结构复杂的生物基聚合物由于具有胶凝和变形性质而广泛用于食品和制药工业。而对于气体和水处理,必须在聚赖氨酸膜上形成对吸收和扩散十分重要的选择性致密层结构,即在聚赖氨酸膜中引入流体渗透所需的受控多孔结构。
氧化石墨烯(GO)由二维纳米片组成,由石墨氧化剥落制得。GO是两亲性的,其中可电离的羧酸根,羟基使其具有亲水性,而其中的碳骨架使其具有疏水性。GO的高表面积也有助于通过降低界面能量来稳定乳液。GO与芳香族溶剂存在较强的π-π相互作用,所以相比于脂肪族溶剂GO对芳族溶剂具有更高的亲和力。因此,GO是稳定芳香族溶剂/聚赖氨酸乳液的最佳乳化剂之一。目前,GO已经被广泛用于稳定Pickering乳液。
目前,多孔聚合物薄膜主要通过诱导聚合物溶液分离成两相来制备。通过调节热力学参数(例如溶解度参数,温度)使聚合物溶液的自由能最小化从而使聚合物溶液产生相分离;富含聚合物的相在相分离后快速固化并形成膜的基质,而不含聚合物的相则使膜具有多孔结构。但是许多结晶的、带有强氢键作用的聚合物在室温下的溶解度差,难有合适的溶剂,故不能用传统的溶剂诱导相分离的方法制备膜;同时该方法需要使用大量的有机溶剂,而且残留在膜中的有机溶剂影响膜的性能,造成溶剂浪费,因此需要一种更为环保有效的方法。利用乳液法制备具有多孔结构的薄膜是目前的新兴方法,但对于聚赖氨酸乳液其自身容易聚结,从而使得液滴的粒径分布较宽。同时利用表面活性剂稳定的聚赖氨酸乳液,聚赖氨酸不容易形成小液滴;此外,非离子表面活性剂在稳定聚赖氨酸乳液方面效率低下。因此,控制孔径大小及其分布并且保持多孔结构对于制造多孔聚赖氨酸膜是至关重要的。
因此,综上所述,目前仍然缺乏一种既高效又经济的制备多孔聚赖氨酸膜的方法。
【发明内容】
鉴于此,申请人发明了一种氧化石墨烯(GO)稳定的Pickering乳液制备多孔聚赖氨酸膜的制备方法,经二醛交联而制备的膜多孔形态稳定,并且不溶于水。该制备方法工艺简单,绿色环保,对设备要求低,水溶液稳定性高,多孔结构均一,易规模化,在废水处理、气体分离、食品乳化、催化、重金属离子的探测等领域有着广泛的应用前景。
一种氧化石墨烯(GO)稳定的Pickering乳液制备多孔聚赖氨酸膜的制备方法,其特征在于包括下面步骤:
步骤一:在去离子水中加入适量的GO,制得浓度为1-10g.L-1的GO悬浮分散液,超声处理10-60min;将5-45%W/V的聚赖氨酸溶液在25-50℃下加入到GO悬浮液中溶解,加入苯甲酸酯类作为油相,油水体积比(O/W)为0.2-0.8,超声处理5-20min,放置在35-65℃的水浴中0.5~2h后浇注成膜,然后在35-65℃下放置2-4天后得到未交联的膜;GO与聚赖氨酸的质量比为1:1000-100:1000。
步骤二:将未交连的膜浸渍于乙醇为溶剂的0.5-5wt%二醛溶液中,35-65℃下在二醛溶液中保持2-8h,使膜发生交联;交联后的膜用乙醇和去离子水进行清洗,直至上层清液澄清透明;然后将膜再次干燥,得到具有多孔结构的聚赖氨酸膜。
所述的苯甲酸酯类为苯甲酸甲酯、苯甲酸乙酯、苯甲酸丙酯、苯甲酸丁酯中的一种或任意几种的混合物。
所述的二醛交联剂为乙二醛、丙二醛、丁二醛、戊二醛中的一种或任意几种的混合物。
本发明提供的氧化石墨烯(GO)稳定的Pickering乳液制备多孔聚赖氨酸膜基于Pickering乳液的制备。Pickering乳液是通过吸附在油/水界面的固体纳米颗粒来稳定乳液,而不是有机表面活性剂。固体颗粒稳定必然能够使乳液滴的聚结大幅降低,同时纳米粒子的使用可以控制孔隙分布并为膜添加新的性能,在医药行业、废水处理、水体杀菌、食品防腐、催化、重金属离子的探测等领域有着广泛的应用前景。
与现有技术相比,本发明具有如下优点:
(1)利用Pickering乳液法制备多孔聚赖氨酸膜,以水为分散剂避免了有毒试剂或溶剂的使用,制备过程绿色环保。
(2)Pickering乳液法制备多孔聚赖氨酸膜的制备条件温和,工艺简单,便于操作,原料成本低廉易得,适合大规模生产。
(3)Pickering乳液法制备的多孔聚赖氨酸膜在水中具有高度的稳定性,所得到的多孔结构均一,且交连后不影响其多孔结构。
(4)Pickering乳液法制备的多孔聚赖氨酸膜具有很好的水分离和过滤效果,并且多孔结构可调控。
【具体实施方式】
下面通过实施例,对本发明进行进一步的说明。
实施例1
在去离子水中加入适量的GO,制得浓度为2g.L-1的GO悬浮分散液,并超声处理10min;将10%W/V的聚赖氨酸溶液在30℃下加入到GO悬浮液中溶解,加入苯甲酸乙酯作为油相,油水体积比(O/W)为0.25,超声处理5min,放置在40℃的水浴中0.5h后浇注成膜,然后在40℃下放置2天后得到未交联的膜。
将未交连的膜浸渍于乙醇为溶剂的1wt%乙二醛溶液中,40℃下在乙二醛溶液中保持3h交联;交联后的膜用乙醇和去离子水进行清洗,直至上层清液澄清透明;然后将膜再次干燥,得到具有多孔结构的聚赖氨酸膜。
实施例2
在去离子水中加入适量的GO,制得浓度为4g.L-1的GO悬浮分散液,并超声处理30min;将25%W/V的聚赖氨酸溶液在40℃下加入到GO悬浮液中溶解,加入苯甲酸丙酯作为油相,油水体积比(O/W)为0.5,超声处理10min,放置在50℃的水浴中1h后浇注成膜,然后在50℃下放置3天后得到未交联的膜。
将未交连的膜浸渍于乙醇为溶剂的2.5wt%丙二醛溶液中,50℃下在丙二醛溶液中保持5h交联;交联后的膜用乙醇和去离子水进行清洗,直至上层清液澄清透明;然后将膜再次干燥,得到具有多孔结构的聚赖氨酸膜。
实施例3
在去离子水中加入适量的GO,制得浓度为8g.L-1的GO悬浮分散液,并超声处理60min;将40%W/V的聚赖氨酸溶液在50℃下加入到GO悬浮液中溶解,加入苯甲酸丁酯作为油相,油水体积比(O/W)为0.75,超声处理15min,放置在60℃的水浴中1.5h后浇注成膜,然后在60℃下放置4天后得到未交联的膜。
将未交连的膜浸渍于乙醇为溶剂的4wt%戊二醛溶液中,60℃下在戊二醛溶液中保持7h交联;交联后的膜用乙醇和去离子水进行清洗,直至上层清液澄清透明;然后将膜再次干燥,得到具有多孔结构的聚赖氨酸膜。

Claims (3)

1.一种氧化石墨烯(GO)稳定的Pickering乳液制备多孔聚赖氨酸膜的制备方法,其特征在于包括下面步骤:
步骤一:在去离子水中加入适量的GO,制得浓度为1-10g.L-1的GO悬浮分散液,超声处理10-60min;将5-45%W/V的聚赖氨酸溶液在25-50℃下加入到GO悬浮液中溶解,加入苯甲酸酯类作为油相,油水体积比(O/W)为0.2-0.8,超声处理5-20min,放置在35-65℃的水浴中0.5~2h后浇注成膜,然后在35-65℃下放置2-4天后得到未交联的膜;GO与聚赖氨酸的质量比为1:1000-100:1000。
步骤二:将未交连的膜浸渍于乙醇为溶剂的0.5-5wt%二醛溶液中,35-65℃下在二醛溶液中保持2-8h,使膜发生交联;交联后的膜用乙醇和去离子水进行清洗,直至上层清液澄清透明;然后将膜再次干燥,得到具有多孔结构的聚赖氨酸膜。
2.所述的苯甲酸酯类为苯甲酸甲酯、苯甲酸乙酯、苯甲酸丙酯、苯甲酸丁酯中的一种或任意几种的混合物。
3.所述的二醛交联剂为乙二醛、丙二醛、丁二醛、戊二醛中的一种或任意几种的混合物。
CN201711362229.XA 2017-12-18 2017-12-18 一种氧化石墨烯(GO)稳定的Pickering乳液制备多孔聚赖氨酸膜的制备方法 Active CN107998907B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711362229.XA CN107998907B (zh) 2017-12-18 2017-12-18 一种氧化石墨烯(GO)稳定的Pickering乳液制备多孔聚赖氨酸膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711362229.XA CN107998907B (zh) 2017-12-18 2017-12-18 一种氧化石墨烯(GO)稳定的Pickering乳液制备多孔聚赖氨酸膜的制备方法

Publications (2)

Publication Number Publication Date
CN107998907A true CN107998907A (zh) 2018-05-08
CN107998907B CN107998907B (zh) 2020-09-01

Family

ID=62059715

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711362229.XA Active CN107998907B (zh) 2017-12-18 2017-12-18 一种氧化石墨烯(GO)稳定的Pickering乳液制备多孔聚赖氨酸膜的制备方法

Country Status (1)

Country Link
CN (1) CN107998907B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105960276A (zh) * 2013-12-10 2016-09-21 南卡罗来纳大学 用于水处理的超薄石墨烯基膜及其形成方法和用途
CA3002130A1 (en) * 2015-10-15 2017-04-20 Ephyla Sas Phyllosilicate compositions and uses thereof for skin cell regeneration
WO2017115034A1 (fr) * 2015-12-28 2017-07-06 Capsulae Microcapsule comprenant une membrane issue d'une microencapsulation par coacervation complexe, et procédé d'obtention
CN107286546A (zh) * 2017-07-31 2017-10-24 扬州大学 一种生物可降解高分子薄膜的制备方法
WO2017192476A1 (en) * 2016-05-03 2017-11-09 Api Intellectual Property Holdings, Llc Nanocellulose-reinforced corrugated medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105960276A (zh) * 2013-12-10 2016-09-21 南卡罗来纳大学 用于水处理的超薄石墨烯基膜及其形成方法和用途
CA3002130A1 (en) * 2015-10-15 2017-04-20 Ephyla Sas Phyllosilicate compositions and uses thereof for skin cell regeneration
WO2017115034A1 (fr) * 2015-12-28 2017-07-06 Capsulae Microcapsule comprenant une membrane issue d'une microencapsulation par coacervation complexe, et procédé d'obtention
WO2017192476A1 (en) * 2016-05-03 2017-11-09 Api Intellectual Property Holdings, Llc Nanocellulose-reinforced corrugated medium
CN107286546A (zh) * 2017-07-31 2017-10-24 扬州大学 一种生物可降解高分子薄膜的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘浩: "《基于壳聚糖的新型Pickering乳液及相应功能材料的制备和应用》", 《中国博士学位论文全文数据库工程科技I辑》 *
朱婉萍等: "《甲壳素及其衍生物的研究与应用》", 30 November 2014, 杭州:浙江大学出版社 *

Also Published As

Publication number Publication date
CN107998907B (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
CN108014658A (zh) 一种氧化石墨烯(GO)稳定的Pickering乳液制备多孔明胶膜的制备方法
CN107383115B (zh) 提取植物花色苷的方法
CN103450487B (zh) 一种亲疏水性可调的纳米SiO2粉体
CN111514829B (zh) 连续制备不同脱乙酰度甲壳素/壳聚糖微球材料的方法
Yang et al. Facile one-pot approach to the synthesis of spherical mesoporous silica nanoflowers with hierarchical pore structure
Ma et al. Development of nitrogen-enriched carbonaceous material coated titania nanotubes array as a fiber coating for solid-phase microextraction of ultraviolet filters in environmental water
CN110639444B (zh) 一种基于微流控技术制备芳香植物油微胶囊的方法
CN106582316A (zh) 一种醇化GO‑SiO2颗粒改性平板复合正渗透膜制备方法
CN107998907A (zh) 一种氧化石墨烯(GO)稳定的Pickering乳液制备多孔聚赖氨酸膜的制备方法
CN105085149B (zh) 高纯有机溶剂环己烷的提纯方法
CN111468050A (zh) 一种基于微流控技术制备复合精油微粒的方法
Lie et al. Molecularly imprinted mesoporous silica: Potential of the materials, synthesis and application in the active compound separation from natural product
Huang et al. Effect of the polar modifiers on supercritical extraction efficiency for template removal from hexagonal mesoporous silica materials: solubility parameter and polarity considerations
Mortazavi et al. Synthesis of mesoporous silica and modified as a drug delivery system of ibuprofen
CN104551011B (zh) 一种银纳米棒的制备方法
EP1852445A1 (de) Verfahren zum Entfernen von Lösungsmitteln aus Perlpolymerisaten
CN107892757A (zh) 一种氧化石墨烯(GO)稳定的Pickering乳液制备多孔壳聚糖膜的制备方法
JP2021031649A (ja) エチレン−ビニルアルコール共重合体の多孔質体の製造方法
CN111115729A (zh) 一种工业废水处理管式膜过滤层用复合材料
CN107486025A (zh) 一种改性活性碳纤维复合聚醚砜超滤膜的制备方法及其所得超滤膜和应用
CN113045794A (zh) 一种从杜仲叶中提取绿原酸用大孔吸附树脂及其合成方法
CN113277945A (zh) 一种聚甘油脂肪酸酯及其制备方法
KR101668998B1 (ko) 이온성액체와 수압을 이용한 다공성 고분자 필름의 제조 방법 및 상기 방법에 의해 제조된 다공성 고분자 필름을 포함하는 분리막
Yan et al. Emulsions stabilized by a CO2-switchable surfactant based on rigid rosin with or without charged nanoparticles
CN111849358A (zh) 一种环保负离子沸石面涂剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant