CN107285766B - 一种高电致应变无铅陶瓷纤维及其制备方法 - Google Patents

一种高电致应变无铅陶瓷纤维及其制备方法 Download PDF

Info

Publication number
CN107285766B
CN107285766B CN201710297189.9A CN201710297189A CN107285766B CN 107285766 B CN107285766 B CN 107285766B CN 201710297189 A CN201710297189 A CN 201710297189A CN 107285766 B CN107285766 B CN 107285766B
Authority
CN
China
Prior art keywords
ceramic
fiber
source
xbct
bzt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710297189.9A
Other languages
English (en)
Other versions
CN107285766A (zh
Inventor
周静
吴成龙
陈文�
沈杰
张华章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanya Science and Education Innovation Park of Wuhan University of Technology
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201710297189.9A priority Critical patent/CN107285766B/zh
Publication of CN107285766A publication Critical patent/CN107285766A/zh
Application granted granted Critical
Publication of CN107285766B publication Critical patent/CN107285766B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/22Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/6225Fibres based on zirconium oxide, e.g. zirconates such as PZT
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • C04B2235/3274Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于功能材料领域,具体涉及一种高电致应变无铅陶瓷纤维及其制备方法。所述制备方法为:采用水热合成法制备铁酸铋前驱体;取钡源、钙源、钛源、锆源化合物及铁酸铋前驱体,球磨后烘干、预烧结、二次球磨制成(1‑x)BZT‑xBCT‑yBF陶瓷粉体;将陶瓷粉体加入到聚乙烯醇溶液中,经造、烧结后,制得陶瓷块体;采用机械切割法将陶瓷块体切割成陶瓷纤维。本发明制备所得(1‑x)BZT‑xBCT‑yBF陶瓷纤具有维致密度高、压电性能高、电致应变大、介损低、灵敏度高等优点,能极大拓展压电纤维在能量采集、结构驱动、水声换能、超声以及无损探测等领域的应用。

Description

一种高电致应变无铅陶瓷纤维及其制备方法
技术领域
本发明属于功能材料领域,具体涉及一种高电致应变无铅陶瓷纤维及其制备方法。
背景技术
压电纤维是1-3结构压电复合材料和压电纤维复合材料(Macro-fiberComposite,MFC)中的功能相,是复合材料压电性能的主要来源。压电陶瓷纤维具有轴向维度小尺寸,使其较普通块体材料具有了更好的柔韧性,同时其大长径比特点则可增大特定方向的应变和应力。压电纤维复合材料的研究目前备受关注,而压电纤维作为其功能相增强了材料的各向异性,使材料表现出优良的纵向驱动性能。在实际应用中,压电陶瓷纤维材料已被用来制作大尺寸的传感器和驱动器等智能结构,例如可以将压电陶瓷纤维与聚合物制成复合材料,应用于航空、航天系统,巧妙地利用其逆压电效应,通过电驱动复合材料,抑制系统因工作而产生的振动,改善系统的稳定性和可靠性。因此开发不同体系的压电陶瓷纤维,是目前各高性能压电陶瓷体系功能和应用领域拓展的趋势,也是传感器、驱动器、微纳机电系统等下游产业发展的迫切需求。
目前,应用最为广泛的压电材料是PZT、PMNT(Pb(Mg1/3Nb2/3)O3-PbTiO3)和PZNT(Pb(Z n1/3Nb2/3)O3-PbTiO3)等铅系复合钙钛矿型弛豫铁电体。但是此类体系材料铅的含量超过60%,在生产、使用和废弃等过程中会给人类健康和生态环境带来严重的危害。随着社会可持续发展观念的深入和人们对自然生存环境的关注,各国都把实现社会可持续发展提高到关系国家命运的战略地位。在这样形势下,压电陶瓷无铅化已经成为全球压电铁电材料领域备受关注的一个方向和必然的发展趋势。
而(1-x)BZT-xBCT是目前研究广泛,压电性能最好的一种无铅体系。在最佳组分时,最高压电常数可达620pC/N。(1-x)BZT-xBCT具有高压电性能的原因类似于铅基压电材料,通过调节组分构成,可以在三方相、四方相共存的准同型相界附近获得高压电性。
(1-x)BZT-xBCT体系压电陶瓷电致应变大是其重要的一个优点,Liu和Ren等研究的(1-x)BZT-xBCT陶瓷片的电致应变与PZT-5H等PZT体系相比具有更大应变值,突出其大应变特性是不可小觑的一个优点。Li F等人对(1-x)BZT-xBCT的电致伸缩系数Q33作了研究,得出(1-x)BZT-xBCT的Q33大概是Pb(Zr,Ti)O3基陶瓷的两倍。以上研究表明,美国普渡大学Matthias C.Ehmke等针对应用电场下Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3大应变效应做了相关研究,结果表明,对该体系大应变的贡献主要是晶格应变和铁弹性应变,且相组成对应变有一定影响,四方相(T)的形成对该体系铁弹性应变的贡献更大。鉴于(1-x)BZT-xBCT的大应变特性,Li J等人测得3kV/mm下0.5BZT-0.5BCT压电陶瓷块的应变均大于0.1%,所得应变值大于同电场下PMN陶瓷的应变。以上的研究均关于(1-x)BZT-xBCT的应变性能,LiuWenfeng、Li F等人主要将(1-x)BZT-xBCT陶瓷片的应变性能和铅基压电材料比较,以突出其不仅压电性好,而且应变性能优异的特性;Matthias C.Ehmke、Li J等人在得知(1-x)BZT-xBCT具有大应变特性的基础上对应变进行表征并对影响应变机理进行研究,前人只针对(1-x)BZT-xBCT体系陶瓷片的应变性能进行了深入探讨,有关纤维的研究并未涉及,如果将(1-x)BZT-xBCT陶瓷制成纤维,不仅顺应无铅化发展趋势,还比其陶瓷块体更能充分发挥陶瓷纤维大应变的优势。
目前,制备压电纤维的方法主要有:溶胶-凝胶法、悬浮瓷粉纺丝法、塑性聚合物法、机械切割法等。溶胶-凝胶法的优点是能够制备连续、直径较小的凝胶纤维,但缺点是纤维的致密性和均匀性都较低,并且拉丝过程中容易造成大小不均匀导致纤维形状难以控制;悬浮瓷粉纺丝法的优点是可制备连续纤维,但缺点是热解、烧结时有机物的挥发易使纤维产生微孔,且制备的纤维容易相互粘连,很难制备直径较小的纤维;塑性聚合物法的优点是烧结后得到的纤维收缩小、结构致密,压电活性高,纤维形状容易控制,但缺点是在高温条件下烧结难以得到一致性、均匀性较好的陶瓷纤维;机械切割法是利用很薄的刀片采用外圆切割,将陶瓷薄板机械切割成压电纤维,其优点是可以得到大小均匀、致密度好、具有高长径比的压电纤维,适用于稳定性差,烧结温度高的压电纤维的制备。采用以上方法制备压电陶瓷纤维的研究,已有大量报道。如Bowen等采用注射成型法制备了功能相(PZT)直径为1.15mm的陶瓷纤维;英国伯明翰大学的Su等采用净成型塑性聚合物方法制备了尺寸为10~150μm的锆钛酸铅压电纤维;武汉理工大学唐耀波等通过塑性聚合物方法制备KNBT压电纤维。
对于(1-x)BZT-xBCT体系压电陶瓷虽然压电性能好和具有大电致应变特性,但是其烧结温度高(1450~1550℃),陶瓷致密性难以控制,若采用溶胶凝胶法、悬浮粉纺丝法和塑性聚合物法,获得的纤维素坯烧结时均匀性和一致性难以保证,并且纤维比表面积较大,在埋烧时表面易沾杂质,难以处理,直接烧结的(1-x)BZT-xBCT体系因致密度低,脆性大难以满足机械切割法加工要求,故(1-x)BZT-xBCT体系的压电纤维还未见报道。
发明内容
本发明针对现有技术的不足,目的在于提供一种高电致应变无铅陶瓷纤维及其制备方法。
为实现上述发明目的,本发明采用的技术方案为:
一种高电致应变无铅陶瓷纤维的制备方法,包括如下步骤:
(1)以铋源、铁源化合物为原料,采用水热合成法制备铁酸铋前驱体;
(2)取钡源、钙源、钛源、锆源化合物及铁酸铋前驱体,混合、球磨后再烘干,然后进行预烧结,所得产物经二次球磨制成(1-x)BZT-xBCT-yBF陶瓷粉体;
(3)将步骤(2)所得(1-x)BZT-xBCT-yBF陶瓷粉体加入到聚乙烯醇溶液中,经造粒、成型、排胶,再进行烧结后,制得(1-x)BZT-xBCT-yBF陶瓷块体;
(4)采用机械切割法将步骤(3)所得(1-x)BZT-xBCT-yBF陶瓷块体切割成具有一定截面和长径比的(1-x)BZT-xBCT-yBF陶瓷纤维。
上述方案中,步骤(1)所述铋源为Bi(NO3)3·5H2O,铁源化合物为Fe(NO3)3·9H2O,铋源和铁源化合物的摩尔比为:1:1。
上述方案中,步骤(1)所述水热合成的反应温度为160℃~200℃,反应时间为36h~48h。
上述方案中,步骤(2)所述的钡源为碳酸钡,钙源为碳酸钙,钛源为氧化钛,锆源化合物为氧化锆,所述钡源、钙源、钛源、锆源化合物和铁酸铋前驱体的摩尔比为(1-0.3x):0.3x:(0.8+0.2x):0.2(1-x):y,其中x=0.4~0.6,y=0.2%。
上述方案中,步骤(2)所述预烧结的温度为1100~1150℃,时间为2h。
上述方案中,步骤(3)所述烧结的温度为1300℃~1350℃,时间为4h~8h。
上述方案中,步骤(3)所述聚乙烯醇溶液的浓度为2.5~5wt%,所述陶瓷粉体和聚乙烯醇溶液的质量体积比为1g:0.2~0.4mL。
上述方案中,步骤(4)所述机械切割法的具体操作过程为:将陶瓷块体固定在切割机上后,沿纤维径向以一截面设计边长为间距进行切割,将陶瓷块体以纤维轴向为轴旋转90°,再以另一截面设计边长为间距进行切割,所得压电纤维为矩形实心纤维,纤维截面为方形,其长径比可调,截面尺寸可调,且纤维粗细均匀。
上述方案中,步骤(4)所述(1-x)BZT-xBCT-yBF陶瓷纤维的截面尺寸为300×300μm,所述(1-x)BZT-xBCT-yBF陶瓷纤维长径比为10~20。
本发明中,所述(1-x)BZT-xBCT的相图与铅基体系相似,都存在一个C-R-T三重临界点。其中三方相(R)和四方相(T)共存形成准同型相界(MPB),在MPB处能量非均匀分布,导致各向异性几乎消失,在外部应力和电场下极易进行极化转变。因此,在MPB附近具有很高的压电性能。本发明通过BiFeO3改性的方法可以实现调整相组成在三方、四方共存的相界处,Ba2+、Ti4+、Zr4+、Bi3+和Fe3+离子半径分别是
Figure GDA0002261046790000041
Figure GDA0002261046790000042
从容忍因子关系来看,Bi3+、Fe3+可以发生A、B取代,且Bi3+、Fe3+是常见的促烧剂,可以起到促进传质作用,从而促进陶瓷致密化,改善压电性。因此,本发明选用BiFeO3促进BCZT系压电陶瓷烧结,提高致密度,Bi元素在元素周期表上与Pb相邻,具有相同的电子分布、相近的离子半径和分子量,在对铅基压电陶瓷的广泛研究中,认为Pb的6S2孤对电子是铅基压电陶瓷高压电活性的起源,由于Bi具有与铅相似的孤对电子特性,所以,引入BiFeO3促进BCZT陶瓷烧结致密化同时能保持高压电性能。
本发明的有益效果:
(1)本发明通过引入铁酸铋前驱体改性固相反应,克服了烧结致密化困难的问题,在低温烧结条件下得到的铁酸铋改性锆钛酸钡钙陶瓷纤维致密度高,单根纤维之间一致性好,具有可重复性,晶粒大小均匀适中,晶相只有钙钛矿相,无杂相;
(2)本发明制备所得(1-x)BZT-xBCT-yBF陶瓷纤维的电致应变性能较好,灵敏度高,压电性能好,压电常数d33>360pC/N;介电铁电性能良好,介电常数ε33可达20000,介损低,介电损耗基本能控制在0.02以下;机电耦合系数、机械平品质因素较高;
(3)相比于PZT系列陶瓷纤维,本发明所述(1-x)BZT-xBCT-yBF陶瓷纤维无铅环保,压电性能好;与其他无铅系例如KNBT压电纤维相比,(1-x)BZT-xBCT-yBF陶瓷纤维具有压电性能高、电致应变大、介损低、灵敏度高等优点,能极大拓展压电纤维在能量采集、结构驱动、水声换能、超声以及无损探测等领域的应用。
附图说明
图1为本发明实施例1制得的(1-x)BZT-xBCT-yBF陶瓷块、x=0.40~0.60的XRD图谱。
图2为本发明实施例1制得的(1-x)BZT-xBCT-yBF陶瓷块、x=0.40~0.60的P-E曲线图谱。
图3为本发明实施例1制得的(1-x)BZT-xBCT-yBF陶瓷块、x=0.40~0.60的S-E曲线图谱、Smax与组分关系图谱。
图4为本发明实施例1制得的(1-x)BZT-xBCT-yBF陶瓷块的密度曲线(a)、压电常数d33/机械品质因子Qm/机电耦合系数Kp(b)、介电常数εr(c)曲线图。
图5为本发明实施例2制得的(1-x)BZT-xBCT-yBF陶瓷纤维、x=0.40,y=0.2%的S-E曲线图谱、Smax和位移量与组分关系图谱。
图6为本发明实施例3制得的(1-x)BZT-xBCT-yBF陶瓷纤维、x=0.50,y=0.2%,烧结温度1500℃的纤维SEM图。
图7为本发明实施例3制得的(1-x)BZT-xBCT-yBF陶瓷纤维、x=0.50,y=0.2%的纤维S-E曲线图谱、Smax与组分关系图谱。
图8为本发明实施例4制得的(1-x)BZT-xBCT-yBF陶瓷纤维、x=0.60,y=0.2%的纤维S-E曲线图谱、Smax与组分关系图谱。
图9为本发明实施例5制得的(1-x)BZT-xBCT-yBF陶瓷纤维在不同电场下的S-E曲线图谱、Smax-E图谱。
图10为本发明制备所得(1-x)BZT-xBCT-yBF陶瓷片和陶瓷纤维的实物图。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
实施例1
一种高电致应变无铅陶瓷块体的制备方法,包括如下步骤:
(1)以铋源、铁源化合物为原料,采用水热合成法制备铁酸铋前驱体:首先将Fe(NO3)3·9H2O和Bi(NO3)3·5H2O按照摩尔比为1:1溶于一定量浓度为10Vt%(体积浓度)的稀硝酸中;然后用NaOH饱和溶液进行滴定共沉淀,当红色沉淀沉淀完全(溶液pH值接近10时滴定结束);将红色沉淀用去离子水充分洗涤,直至洗出来溶液为中性;再将红色沉淀溶于一定量浓度为1.5mol/L的NaOH溶液,充分搅拌之后加入少量浓度为30Vt%的H2O2,再转移至反应釜中180℃水热反应36h~48h,反应结束即得水热产物BiFeO3前驱体;
(2)将分析纯BaCO3、CaCO3、TiO2、ZrO2及铁酸铋前驱体按照比例(1-0.3x):0.3x:(0.8+0.2x):0.2(1-x):y混合适量酒精于球磨罐中,其中x分别取0.4、0.45、0.5和0.6,y取0.2%,球磨20h后在1150℃下预烧2h,得到的产物二次球磨24h后制成均过200目筛的0.6Ba(Zr0.2Ti0.8)O3-0.4(Ba0.7Ca0.3)TiO3-0.2%BiFeO3、0.55Ba(Zr0.2Ti0.8)O3-0.45(Ba0.7Ca0.3)TiO3-0.2%BiFeO3、0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3-0.2%BiFeO3、0.4Ba(Zr0.2Ti0.8)O3-0.6(Ba0.7Ca0.3)TiO3-0.2%BiFe O3陶瓷粉体;
(3)将所述的陶瓷粉体加2.5%聚乙烯醇水溶液(质量体积浓度为1g:40ml),造粒,再将所述陶瓷颗粒用干压压片机在200MPa的压力下压成陶瓷坯体;
(4)将所述均压坯体在800℃排胶后烧结,烧结温度为1350℃,保温4h,随后随炉冷却,即制得0.6Ba(Zr0.2Ti0.8)O3-0.4(Ba0.7Ca0.3)TiO3-0.2%BiFeO3、0.55Ba(Zr0.2Ti0.8)O3-0.45(Ba0.7Ca0.3)TiO3-0.2%BiFeO3、0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3-0.2%BiFeO3、0.4Ba(Zr0.2Ti0.8)O3-0.6(B a0.7Ca0.3)TiO3-0.2%BiFeO3压电陶瓷块体;
将陶瓷块体用细砂纸打磨,两表面镀上银电极,制成直径1cm厚度1mm的压电陶瓷片,并对0.6Ba(Zr0.2Ti0.8)O3-0.4(Ba0.7Ca0.3)TiO3-0.2%BiFeO3、0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3-0.2%BiFeO3、0.4Ba(Zr0.2Ti0.8)O3-0.6(Ba0.7Ca0.3)TiO3-0.2%BiFeO3压电陶瓷的铁电、应变性能进行表征。
图1是(1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3-0.2%BiFeO3(x=0.40~0.60)的XRD图谱,由图中可以看出,所产生的晶相中只有钙钛矿相,没有其它杂相生成,Ca2+、Zr4+已经扩散到BaTiO3中形成稳定固溶体;峰(111)的位置偏移,随x增加,2θ变大,分析原因:由于半径较小Ca2+的增加,半径较大Zr4+减少,导致晶格收缩。
图2是(1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3-0.2%BiFeO3(x=0.40~0.60)的P-E图谱,图中可得,陶瓷具有较好的铁电性,剩余极化值Pr和最大极化值Pmax随着BCT的含量增加先升高后下降,在组分为0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3-0.2%BiFeO3的陶瓷获得最大剩余极化值Pr=10.28μC/cm2,最大极化值Pmax=18.92μC/cm2
图3是(1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3-0.2%BiFeO3(x=0.40,0.5,0.60)的压电陶瓷片S-E曲线,测试电场为3kV/mm,图中可得,该体系陶瓷具有较大应变,所产生应变均达到每毫米0.1%以上。
图4为本发明实施例1制得的(1-x)BZT-xBCT-yBF陶瓷块的密度曲线、压电常数d33、机械品质因子Qm、机电耦合系数Kp、介电常数εr曲线图,图4说明了:所制备的(1-x)BZT-xBCT-yBF陶瓷块的灵敏度高,压电性能好,压电常数d33>360pC/N;介电铁电性能良好,介电常数ε33可达20000,介损低,介电损耗基本能控制在0.02以下;机电耦合系数、机械平品质因素较高。
实施例2
一种高电致应变无铅陶瓷纤维的制备方法,包括如下步骤:将实施例1制得的0.6Ba(Zr0.2Ti0.8)O3-0.4(Ba0.7Ca0.3)TiO3-0.2%BiFeO3陶瓷块体制成陶瓷纤维,其陶瓷块体必须满足结构致密、均匀性良好、块体力学性能较优的要求,纤维制备过程采用机械切割法,纤维截面为300×300μm的正方形,纤维长度分别为3mm、4mm、5mm、6mm。
将所述的陶瓷纤维两端镀上电极,其操作是将纤维两端点上免烧银浆,于80℃烘箱烘干15~20min,仅需要在纤维截面上镀上银即可,纤维侧面粘上银较多时会影响应变性能;将所述陶瓷纤维进行应变性能测试,陶瓷纤维装在特定夹具上,夹具必须满足能真实反映纤维应变性能,测试时纤维于硅油中,加1.5kV/mm的电场,即3mm、4mm、5mm、6mm的陶瓷纤维测试所加电压分别是4.5kV、6.0kV、7.5kV、9.0kV。所得不同长度陶瓷纤维以及陶瓷块体应变性能进行比较。
图5是0.6Ba(Zr0.2Ti0.8)O3-0.4(Ba0.7Ca0.3)TiO3-0.2%BiFeO3陶瓷纤维和陶瓷块体应变性能图谱,图5(a)、(b)中可得,同电场1.5kV/mm下,所有纤维应变均大于陶瓷块体的应变,可见纤维化可以增加应变性能;纤维不同长径比之间应变比较,长径比大的纤维应变大,说明适当增加纤维长径比可以获得较大应变。图(c)表示不同长度纤维在同电场下的位移量,纤维越长,位移量越大。
实施例3
一种高电致应变无铅陶瓷纤维的制备方法,包括如下步骤:将上述制得的0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3-0.2%BiFeO3陶瓷块体制成陶瓷纤维,其陶瓷必须满足结构致密、均匀性良好、块体力学性能较优的要求,纤维制备过程采用机械切割法,纤维截面为300×300μm的正方形,纤维长度分别为3mm、4mm、5mm、6mm。
将所述的陶瓷纤维两端镀上电极,其操作是将纤维两端点上免烧银浆,于80℃烘箱烘干15~20min,仅需要在纤维截面上镀上银即可,纤维侧面粘上银较多时会影响应变性能;将所述陶瓷纤维进行应变性能测试,陶瓷纤维装在特定夹具上,夹具必须满足能真实反映纤维应变性能,测试时纤维于硅油中,加1.5kV/mm的电场,即3mm、4mm、5mm、6mm的陶瓷纤维测试所加电压是4.5kV、6.0kV、7.5kV、9.0kV。所得不同长度陶瓷纤维以及陶瓷块体应变性能进行比较。
图6是(1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3-0.2%BiFeO3(x=0.50)的SEM图,图(a)是放大倍数低的SEM图,图(b)是放大倍数高的SEM图,图(a)纤维截面图可以看出,所切割的纤维确实是300×300μm较规则;图(b)中可看出,该种体系陶瓷显微结构致密,孔洞很少,晶体颗粒尺寸较大,说明机械切割法制得的纤维结构均匀性、致密性得到了保证。
图7是0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3-0.2%BiFeO3陶瓷纤维和陶瓷块体应变性能图谱,测试电场1.5kV/mm,图(a)、(b)可得,所有陶瓷纤维应变均大于陶瓷块体的应变,可见纤维化可以增加应变性能;图(c)表示不同长度纤维在同电场下的位移量,纤维越长,位移量越大,说明适当增加纤维长径比,纤维的力学性能对于电场的响应会更明显。
实施例4
一种高电致应变无铅陶瓷纤维的制备方法,包括如下步骤:将实施例1制得的0.4Ba(Zr0.2Ti0.8)O3-0.6(Ba0.7Ca0.3)TiO3-0.2%BiFeO3陶瓷制成陶瓷纤维,其陶瓷必须满足结构致密、均匀性良好、块体力学性能较优的要求,纤维制备过程采用机械切割法,纤维截面为300×300μm的正方形,纤维长度分别为3mm、4mm、5mm、6mm。
将所述的陶瓷纤维两端镀上电极,其操作是将纤维两端点上免烧银浆,于80℃烘箱烘干15~20min,仅需要在纤维截面上镀上银即可,纤维侧面粘上银较多时会影响应变性能。将所述陶瓷纤维进行应变性能测试,陶瓷纤维装在特定夹具上,夹具必须满足能真实反映纤维应变性能,测试时纤维于硅油中,加1.5kV/mm的电场,即3mm、4mm、5mm、6mm的陶瓷纤维测试所加电压是4.5kV、6.0kV、7.5kV、9.0kV。所得不同长度陶瓷纤维以及陶瓷块体应变性能进行比较。
图8是0.4Ba(Zr0.2Ti0.8)O3-0.6(Ba0.7Ca0.3)TiO3-0.2%BiFeO3陶瓷纤维和陶瓷块体应变性能图谱,测试电场1.5kV/mm,与以上结果类似,图8的(a)、(b)显示纤维化之后,应变性能明显变大,特别是当纤维长度为6mm时,其应变比陶瓷片应变的两倍还大。同时,图(c)显示,随纤维长度增加,同电场下产生非常可观的位移增量。
实施例5
一种高电致应变无铅陶瓷纤维的制备方法,包括如下步骤:将实施例1制得的0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3-0.2%BiFeO3陶瓷采用机械切割法切成截面为300×300μm、长度为5mm的陶瓷纤维。
将所述的陶瓷纤维两端镀上电极,其操作是将纤维两端点上免烧银浆,于80℃烘箱烘干15~20min,仅需要在纤维截面上镀上银即可,纤维侧面粘上银较多时会影响应变性能;将所述陶瓷纤维进行应变性能测试,陶瓷纤维装在特定夹具上,改变测试电场,分别设置电场为0.5kV/mm、0.8kV/mm、1.0kV/mm、1.2kV/mm、1.5kV/mm,对特定长度的纤维应变场至应变性能进行表征。
图9是长度为5mm的0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3-0.2%BiFeO3陶瓷纤维在不同电场下测得的S-E曲线,图中可得,随电场0.5~1.5kV/mm变化,应变逐渐增大;图(b)的Smax-E显示,Smax基本随电场呈线性增加,说明影响纤维应变的除了长径比之外,还与电场有关,一定程度上增加电场有利于应变增加。
显然,上述实施例仅仅是为清楚地说明所作的实例,而并非对实施方式的限制。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而因此所引申的显而易见的变化或变动仍处于本发明创造的保护范围之内。

Claims (9)

1.一种高电致应变无铅陶瓷纤维的制备方法,其特征在于,包括如下步骤:
(1)以铋源、铁源化合物为原料,采用水热合成法制备铁酸铋前驱体;
(2)取钡源、钙源、钛源、锆源化合物及铁酸铋前驱体,混合、球磨后再烘干,然后进行预烧结,所得产物经二次球磨制成(1-x)BZT-xBCT-yBF陶瓷粉体;
(3)将步骤(2)所得(1-x)BZT-xBCT-yBF陶瓷粉体加入到聚乙烯醇溶液中,经造粒、成型、排胶,再进行烧结后,制得(1-x)BZT-xBCT-yBF陶瓷块体;
(4)采用机械切割法将步骤(3)所得(1-x)BZT-xBCT-yBF陶瓷块体切割成具有一定截面和长径比的(1-x)BZT-xBCT-yBF陶瓷纤维。
2.根据权利要求1所述的高电致应变无铅陶瓷纤维的制备方法,其特征在于,步骤(1)所述铋源为Bi(NO3)3·5H2O,所述铁源化合物为Fe(NO3)3·9H2O,所述铋源和所述铁源化合物的摩尔比为1:1。
3.根据权利要求1所述的高电致应变无铅陶瓷纤维的制备方法,其特征在于,步骤(1)所述水热合成的反应温度为160℃~200℃,反应时间为36h~48h。
4.根据权利要求1所述的高电致应变无铅陶瓷纤维的制备方法,其特征在于,步骤(2)所述的钡源为碳酸钡,所述钙源为碳酸钙,所述钛源为氧化钛,所述锆源化合物为氧化锆,所述钡源、钙源、钛源、锆源化合物和铁酸铋前驱体的摩尔比为(1-0.3x):0.3x:(0.8+0.2x):0.2(1-x):y,其中x=0.4~0.6,y=0.2。
5.根据权利要求1所述的高电致应变无铅陶瓷纤维的制备方法,其特征在于,步骤(2)所述预烧结的温度为1100~1150℃,时间为2h。
6.根据权利要求1所述的高电致应变无铅陶瓷纤维的制备方法,其特征在于,步骤(3)所述烧结的温度为1300℃~1350℃,时间为4h~8h。
7.根据权利要求1所述的高电致应变无铅陶瓷纤维的制备方法,其特征在于,步骤(3)所述聚乙烯醇溶液的浓度为2.5~5wt%,所述陶瓷粉体和聚乙烯醇溶液的质量体积比为1g:0.2~0.4mL。
8.根据权利要求1所述的高电致应变无铅陶瓷纤维的制备方法,其特征在于,步骤(4)所述机械切割法的具体操作过程为:将陶瓷块体固定在切割机上后,沿纤维径向以一截面设计边长为间距进行切割,将陶瓷块体以纤维轴向为轴旋转90°,再以另一截面设计边长为间距进行切割,所得压电纤维为矩形实心纤维,纤维截面为方形,其长径比可调,截面尺寸可调,且纤维粗细均匀。
9.根据权利要求1所述的高电致应变无铅陶瓷纤维的制备方法,其特征在于,步骤(4)所述(1-x)BZT-xBCT-yBF陶瓷纤维的截面尺寸为300×300μm,所述(1-x)BZT-xBCT-yBF陶瓷纤维长径比为10~20。
CN201710297189.9A 2017-04-28 2017-04-28 一种高电致应变无铅陶瓷纤维及其制备方法 Active CN107285766B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710297189.9A CN107285766B (zh) 2017-04-28 2017-04-28 一种高电致应变无铅陶瓷纤维及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710297189.9A CN107285766B (zh) 2017-04-28 2017-04-28 一种高电致应变无铅陶瓷纤维及其制备方法

Publications (2)

Publication Number Publication Date
CN107285766A CN107285766A (zh) 2017-10-24
CN107285766B true CN107285766B (zh) 2020-05-05

Family

ID=60095161

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710297189.9A Active CN107285766B (zh) 2017-04-28 2017-04-28 一种高电致应变无铅陶瓷纤维及其制备方法

Country Status (1)

Country Link
CN (1) CN107285766B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102249659A (zh) * 2011-06-16 2011-11-23 桂林电子科技大学 一种高居里温度铁酸铋基无铅压电陶瓷及其制备方法
CN103641470A (zh) * 2013-11-20 2014-03-19 陕西科技大学 一种Ba0.9Ca0.1Ti0.9Zr0.1O3 纳米无铅压电陶瓷的制备方法
CN104003705A (zh) * 2014-05-15 2014-08-27 河海大学 一种烧结多铁性铁酸铋基电子功能陶瓷的方法
CN104496466A (zh) * 2014-12-15 2015-04-08 陕西科技大学 一种高固溶度弛豫型纳米无铅压电陶瓷及其制备方法
CN105130419A (zh) * 2015-08-26 2015-12-09 同济大学 一种高电致应变无铅压电陶瓷材料及其制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9164121B2 (en) * 2012-11-07 2015-10-20 Empire Technology Development Llc Motion sensing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102249659A (zh) * 2011-06-16 2011-11-23 桂林电子科技大学 一种高居里温度铁酸铋基无铅压电陶瓷及其制备方法
CN103641470A (zh) * 2013-11-20 2014-03-19 陕西科技大学 一种Ba0.9Ca0.1Ti0.9Zr0.1O3 纳米无铅压电陶瓷的制备方法
CN104003705A (zh) * 2014-05-15 2014-08-27 河海大学 一种烧结多铁性铁酸铋基电子功能陶瓷的方法
CN104496466A (zh) * 2014-12-15 2015-04-08 陕西科技大学 一种高固溶度弛豫型纳米无铅压电陶瓷及其制备方法
CN105130419A (zh) * 2015-08-26 2015-12-09 同济大学 一种高电致应变无铅压电陶瓷材料及其制备方法与应用

Also Published As

Publication number Publication date
CN107285766A (zh) 2017-10-24

Similar Documents

Publication Publication Date Title
CN106554202B (zh) 一种铋层状结构钛酸铋钠高温压电陶瓷材料及其制备方法
KR100790407B1 (ko) 무연 압전 세라믹스 조성물 및 그의 제조방법
CN116573936B (zh) 一种阴离子改性的压电陶瓷及其制备方法
CN106220169A (zh) 改性铌镍酸铅‑锆钛酸铅压电陶瓷及其制备方法
JP2008258183A (ja) 製法及び応用を含む圧電セラミック材料
Mirzaei et al. Effect of Nb doping on sintering and dielectric properties of PZT ceramics
CN107032790B (zh) 一种应用于能量收集器件的高机电转换复相压电陶瓷材料及制备方法
CN104844202A (zh) 一种锰锑酸铅掺杂的铌镍-锆钛酸铅压电陶瓷
KR101333793B1 (ko) 비스무스계 압전 세라믹스 및 그 제조방법
KR101635939B1 (ko) 비스무스계 무연 압전 세라믹스 및 이를 포함하는 액추에이터
CN104230333B (zh) 一种高温压电陶瓷材料及其制备方法
CN107285766B (zh) 一种高电致应变无铅陶瓷纤维及其制备方法
KR20110115300A (ko) 기계적 품질계수가 우수한 무연 압전 세라믹 조성물
KR102023888B1 (ko) 전계유기 변형특성이 우수한 저온소결 무연 압전 세라믹스의 제조방법
CN112759390A (zh) 一种具有高kp值的PSN-PZT压电陶瓷及其制备方法
Zhao et al. Improved Piezoelectricity in (K 0.44 Na 0.52 Li 0.04)(Nb 0.91 Ta 0.05 Sb 0.04) O 3-x Bi 0.25 Na 0.25 NbO 3 Lead-Free Piezoelectric Ceramics
CN102432285B (zh) 钛镍酸铋-钛锌酸铋-钛酸铅三元系高温压电陶瓷及其制备方法
Li et al. Phase Structures and Piezoelectric Properties of (K, Na, Li)(Nb, Sb) O 3-(Bi, Ag) ZrO 3 Lead-Free Ceramics
KR20220169975A (ko) 배향 무연 압전 세라믹 조성물 및 이의 제조방법
KR100816039B1 (ko) Bnbt계 압전 세라믹 및 그 제조 방법
Tunkasiri Properties of PZT ceramics prepared from aqueous solutions
CN105645957A (zh) 一种高机电耦合性能锆钛酸铅细晶压电陶瓷及其制备方法
JPH11100265A (ja) 圧電磁器組成物
CN103435344A (zh) 一种高频陶瓷滤波器用压电陶瓷材料
CN116751057B (zh) 一种具有超高电致应变和逆压电系数的压电陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240118

Address after: 572024 Building 9, UFIDA Industrial Park, yazhouwan science and Technology City, Yazhou District, Sanya City, Hainan Province

Patentee after: Sanya science and Education Innovation Park Wuhan University of Technology

Address before: 430070 Hubei Province, Wuhan city Hongshan District Luoshi Road No. 122

Patentee before: WUHAN University OF TECHNOLOGY