CN107268087A - 一种降低金刚线切割的多晶硅片反射率的金属催化制绒方法 - Google Patents

一种降低金刚线切割的多晶硅片反射率的金属催化制绒方法 Download PDF

Info

Publication number
CN107268087A
CN107268087A CN201710492688.3A CN201710492688A CN107268087A CN 107268087 A CN107268087 A CN 107268087A CN 201710492688 A CN201710492688 A CN 201710492688A CN 107268087 A CN107268087 A CN 107268087A
Authority
CN
China
Prior art keywords
polysilicon chip
buddha
wire cutting
warrior attendant
attendant wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710492688.3A
Other languages
English (en)
Inventor
管自生
侯成成
张源
张一源
沈志妹
刘娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANJING NAXIN NEW MATERIAL Co Ltd
Original Assignee
NANJING NAXIN NEW MATERIAL Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANJING NAXIN NEW MATERIAL Co Ltd filed Critical NANJING NAXIN NEW MATERIAL Co Ltd
Priority to CN201710492688.3A priority Critical patent/CN107268087A/zh
Publication of CN107268087A publication Critical patent/CN107268087A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/10Etching in solutions or melts

Abstract

一种降低金刚线切割的多晶硅片反射率的金属催化制绒方法。具体步骤:将金刚线切割的多晶硅片浸入碱性溶液中处理,蚀刻去除硅片表面的机械损伤层;将经处理后的多晶硅片采用金属催化、化学刻蚀经镀银挖孔一体化处理后在多晶硅片表面形成纳米多孔硅结构;将经过第二步处理过的多晶硅片浸入第二混合液中进行制绒处理,使得硅片表面形成蜂窝状形貌的绒面结构;将上步处理过的多硅晶片置于碱性混合溶液中进行碱洗加脱银;将处理后的多晶硅片依次用酸混合溶液去离子水清洗,最后烘干即可。本发明方法能够消除金刚线切割痕迹,可以有效的将多晶硅制绒表面反射率降低至15%,且与常规制绒工艺具有良好的兼容性,提高太阳能电池的转换效率。

Description

一种降低金刚线切割的多晶硅片反射率的金属催化制绒方法
技术领域
本发明属于多晶硅太阳能电池的制造领域,具体涉及一种降低金刚线切割的多晶硅片反射率的金属催化制绒方法。
背景技术
随着工业化经济的快速发展,生态环境的恶化,传统不可再生能源如煤、石油、天然气等面临着日益衰竭的危机,寻找新型可再生能源迫在眉睫。其中太阳能因其取之不尽、用之不竭成为替代传统石化能源的新型能源。太阳能光伏发电是利用光能转化为电能,光伏组件具有绿色环保、使用寿命长、成本低、高效便利等特点,成为世界普遍关注的焦点并成为重点发展的新兴产业。
目前光伏使用的晶体硅片切割方式主要有砂浆多线切割技术和金刚石线切割技术。其中采用砂浆多线切割的硅片表面主要以脆性破碎断裂形貌为主,表面损伤层较均匀,厚度约为10-11μm,表面存在不规则凹坑,本身缺陷分布均匀性好且表面无明显线痕,采用常规的HF-HNO3-H2O酸性体系制绒可以得到整面腐蚀均匀的绒面。不同于单晶硅利用碱性溶液对硅片不同晶向进行各向异性刻蚀,该酸性溶液能够对硅片表面的各种缺陷进行各向同性腐蚀,来降低硅片表面的反射率。反应原理是利用硝酸的氧化性将硅氧化成二氧化硅:Si+4HNO3=SiO2+4NO2+2H2O,然后氢氟酸能够与二氧化硅继续反应进行蚀刻形成蠕虫状凹坑结构:SiO2+6HF=H2SiF6+2H2O。采用常用的酸制绒方法可在硅片表面上形成有效的绒面结构,但砂浆多线切割技术存在切割工艺效率低、加工成本高、切割后废砂浆的排放污染等问题。相比之下,金刚石线切割(简称金刚线切割)技术具有切割时间短、材料损耗低、硅片加工成本低廉、环境污染小等特点,受到越来越多厂家的关注。金刚线切割的硅片表面同时存在脆性破碎断裂区域(占比小,以小深孔损伤为主)和塑性磨削区域(占比大),表面损伤层较浅,厚度约为5~6μm,表面密布周期性的微米尺度切割划痕并且表面缺陷分布不均匀。采用HF-HNO3-H2O酸性体系制绒时,脆性破碎断裂区域经酸制绒形成蠕虫状凹坑结构;而塑性磨削区域却形成很浅的近似圆形的凹坑,反射率高,同时凹坑沿切割方向排列。常规的酸制绒工序处理金刚线切割多晶硅片形成的绒面非常不规则且较浅,还可见明显的线痕纹理,制得的绒面的反射率高达28~30%远远高于正常硅片水平,其电池转化效率也比较低,这也是金刚线切割多晶硅电池行业一直希望解决难题。
对于金刚石线切割多晶硅太阳能电池,减少晶硅绒面对入射太阳光的反射率,增加光吸收利用率,对于提高晶体硅太阳能电池效率有重要影响。目前针对晶硅绒面结构的制备主要有机械开槽法、反应离子蚀刻法(RIE)和化学蚀刻法三种,机械开槽和反应离子蚀刻不适合大面积商业化生产。例如专利号201410694985.2,公开的一种RIE制绒的多晶硅太阳电池的制备方法,其特征在于采用SF6/O2/Cl2混合气体等离子体干法刻蚀去除多晶硅片的前表面损伤层,然后进行RIE制绒在硅片前表面形成纳米绒面。用该方法制得的多晶硅绒面片具有较低的反射率,为进一步提高光电转换效率奠定了必要的基础,但是该方法制备工艺复杂,设备及损耗成本昂贵同时在处理过程中会排放出硫化物、卤素化合物等,特别是Cl2,该气体存在剧毒,会对环境造成污染。
专利号为201610310040.5公开的一种金刚线切割的多晶硅片的制绒方法,采用HF-HNO3-H2O两步制绒法工艺,先利用传统的HF-HNO3-H2O制绒体系在金刚线切割多晶硅表面蚀刻出微米级的较大虫洞结构,然后利用H2O2-HF-H2O体系再蚀刻出更小尺寸的微洞结构,通过两步酸性降低了硅片表面的反射率,但该制绒工艺无法得到整面腐蚀均匀的绒面结构,且绒面表面微米级的虫洞结构上蚀刻更小尺寸的微洞结构也会造成硅片表面形成过多的复合中心,这对提高电池的光电性能是不利的。
近年来也有厂家尝试用金属离子辅助刻蚀多晶硅的湿化学方法降低金刚线切割的多晶硅片的反射率,例如在申请号为201410652553.5中,在传统HF-HNO3-H2O酸性体系制绒后形成微米绒面,然后在微米绒面上沉积金属纳米颗粒,接着将其置于刻蚀溶液中进行刻蚀获得具有微纳复合绒面结构的多晶硅片,金属催化化学刻蚀采用两步法先在绒面上沉积一层银再置于刻蚀溶液中进行刻蚀,制得的绒面表面积和均匀性有待提升,且在传统生产线的基础上增加较多的制绒工艺步骤,且银离子的浓度较高给外围污水及废气处理增加负担。
因此,有必要能开发一种能够改善金刚线切割多晶硅片绒面均匀性、降低表面反射率、步骤简单且能够有效保证制绒效果的方法,且使后续电池制作工序能够正常进行。
发明内容
针对现有技术的不足,本发明的目的在于提供一种降低金刚线切割的多晶硅片反射率的金属催化制绒方法,该方法能够在清除硅晶片表面的损伤,同时消除金刚线切割痕迹,降低了多晶硅制绒表面反射率,且与常规制绒工艺具有良好的兼容性,提高太阳能电池的转换效率。
为解决现有技术问题,本发明采取的技术方案为:
一种降低金刚线切割的多晶硅片反射率的金属催化制绒方法,包括以下步骤:第一步,将金刚线切割的多晶硅片浸入碱性溶液中处理,蚀刻去除硅片表面的机械损伤层;第二步,将经步骤1处理后的多晶硅片置于第一混合液中黑硅处理,所述第一混合液为氢氟酸、双氧水、金属盐、添加剂和去离子水的混合溶液,即采用金属催化、化学刻蚀经镀银挖孔一体化处理后在多晶硅片表面形成纳米多孔硅结构;第三步,将经过第二步处理过的多晶硅片浸入第二混合液中进行制绒处理,所述第二混合液为氢氟酸和硝酸的混合溶液,使得纳米孔洞的孔径达到500-800nm,使得硅片表面形成蜂窝状形貌的绒面结构;第四步,将经步骤3处理过的多硅晶片置于氢氧化钠、氨水和双氧水的碱性混合溶液中进行碱洗加脱银;第五步,将第四步处理后的多晶硅片用酸混合溶液清洗后,再用去离子水清洗,最后烘干即得多晶硅绒面片。
作为改进的是,第一步中所述碱性溶液为氢氧化钾溶液、氢氧化钠溶液、氨水或四甲基氢氧化铵中一种或多种。
进一步改进的是,第一步中所述碱性溶液的质量分数为5-10%,处理温度为50-70℃,处理时间为3-5min。
作为改进的是,第二步中第一混合液中氢氟酸的质量分数为20-50%,双氧水的质量份数为20-55%。
作为改进的是,第二步中所述金属盐为硝酸铜、硝酸银、硝酸钯、氯化铜、氯金酸、氯铂酸、铬酸钾或硫酸镍中一种或几种混合,金属盐的摩尔浓度为1×10-6-5×10-2mol/L。
作为改进的是,第二步中所述添加剂为甲醇、乙醇、聚乙二醇、甲酸、多元脂肪醇酸、维生素C、柠檬酸、葡萄糖、甲胺或乙二胺中的一种或几种混合,添加剂的浓度为1×10-4-5×10-2mol/L。
作为改进的是,第二步中黑硅预处理的温度为10-50℃,时间为1-5min。
作为改进的是,第三步中第二混合液中氢氟酸浓度为1.5-5mol/L,硝酸浓度为4-7mol/L;制绒处理的温度为10-30℃,时间为1-5min。
作为改进的是,第四步中所用的碱性混合溶液中氢氧化钠的质量分数为3-10%,氨水的浓度为0.3-0.7mol/L,双氧水的浓度为0.3-0.7mol/L;碱洗的温度为0-25℃,时间为2-5min。
作为改进的是,第五步中酸混合溶液由氢氟酸和盐酸混合而成,所述氢氟酸的浓度为1.5-5.0mol/L,盐酸的浓度可为3.0-6.0mol/L,酸混合液清洗条件为10-50℃,清洗30~120s;去离子水清洗80s,清洗温度为60℃;烘干时间为120s,烘干温度为70℃。
有益效果
与现有技术相比,本发明采用金属辅助催化黑硅制绒方法工艺简单,成本较低,利用金属催化化学刻蚀法在多晶硅表面进行镀银挖孔一体化处理制备出纳米多孔硅结构,增大硅片表面反应活性。经过制绒后的多晶硅片表面形成均匀的蜂窝状绒面结构,绒面结构均匀无色差、具有较低的反射率,并且与常规制绒工艺具有较好的兼容性,适合于工业化推广应用。具体表现为:
第一,金刚线切割的多晶硅片浸入碱性溶液进行碱初抛取出硅片表面的机械损伤层后,用氢氟酸、双氧水、金属盐、添加剂和去离子水的混合溶液中进行黑硅预处理,经金属辅助催化、化学刻蚀经镀银挖孔一体化处理后在硅片表面形成纳米多孔硅结构,该混合液对多晶硅片进行镀银挖孔采用一步法进行,工艺简便,同时加入添加剂可控制镀银挖孔速率最终形成具有多孔纳米硅结构;第二,进行镀银挖孔一体化处理后,采用氢氟酸和硝酸的混合溶液对多晶硅片进行扩孔制绒形成均匀的蜂窝状绒面结构,使纳米孔洞的孔径达到500-800nm。同时该绒面结构具有较低的反射率,反射率控制在15%-18%左右,并且与常规制绒工艺具有较好的兼容性;第三,本发明采用一步法经碱洗加脱银去除多晶硅片表面的多孔硅及残留的酸性制绒液,同时去除表面残留的金属颗粒,避免在硅片表面形成较多的复合中心。采用金属辅助催化黑硅制绒方法制得的电池光电转换效率比经过常规制酸绒工艺得到的电池效率高0.4~0.6%。
附图说明
图1为金刚线切割的多晶硅片的SEM图;
图2为本发明实施例1金刚线切割的多晶硅片经金属催化、化学刻蚀经镀银挖孔一体化处理后的多晶硅表面的SEM图;
图3为实施例1制绒处理后的多晶硅片的宏观照片;
图4为实施例1制绒处理后的多晶硅片的SEM图;
图5为实施例2所得的多晶硅片的SEM图;
图6为利用实施例2多晶硅片制成电池片的实物图。
具体实施方式
下面结合附图和实施例对本发明的技术方案作进一步说明。以下实施例仅用于更加清楚地说明本发明的技术方案,但不因此限制本发明的保护范围。
实施例1
一种降低金刚线切割的多晶硅片反射率的金属催化制绒方法,包括如下步骤:
第一步,将金刚线切割多晶硅片浸入NaOH溶液中进行处理,去除硅片表面的机械损伤层,将硅片取出浸入水溶液中进行清洗,其中,NaOH溶液浓度为6%,处理温度为55℃,碱处理的时间为4min。
第二步,将去除机械损伤层的多晶硅片置于氢氟酸、双氧水、金属盐、添加剂和去离子水的混合溶液中进行黑硅处理,即采用金属催化、化学刻蚀经镀银挖孔一体化处理后。所述的氢氟酸的质量分数为28%,双氧水的质量分数为45%。硝酸银的摩尔浓度为2×10- 5mol/L,添加剂的浓度为2×10-3mol/L,反应温度为30℃,反应时间为2min。
第三步,将经金属催化、化学刻蚀经镀银挖孔一体化处理后的多晶硅片过沉积金属颗粒的多晶硅片用去离子水清洗后,浸入氢氟酸和硝酸的混合溶液中对硅片表面进行制绒,其中氢氟酸的浓度为2mol/L,硝酸的浓度为5mol/L,处理温度为10℃,处理时间为4min。
第四步,将经过制绒后的硅片置于氢氧化钠、氨水和双氧水的碱性混合溶液中进行碱洗加脱银,其中氢氧化钠的浓度为5%,氨水的浓度为0.4mol/L,双氧水的浓度为0.5mol/L,碱洗温度为10℃,清洗时间3min。
第五步,对第四步的多晶硅片依次用氢氟酸和盐酸混合溶液和去离子水清洗并烘干硅片,即制得多晶硅绒面片,其中氢氟酸溶液的浓度为2mol/L,盐酸的浓度为3mol/L,其清洗时间为80s,清洗温度25℃;去离子水清洗时间为80s,清洗温度60℃,烘干时间为120s,烘干温度为70℃。
实施例2
一种降低金刚线切割的多晶硅片反射率的金属催化制绒方法,包括如下步骤:
第一步,将金刚线切割多晶硅片浸入NaOH溶液中进行处理,去除硅片表面的机械损伤层,将硅片取出浸入水溶液中进行清洗,其中,NaOH溶液浓度为8%,处理温度为60℃,碱处理的时间为3min。
第二步,将去除机械损伤层的多晶硅片置于氢氟酸、双氧水、金属盐、添加剂和去离子水的混合溶液中进行黑硅预处理,采用金属催化、化学刻蚀经镀银挖孔一体化处理后。所述的氢氟酸的质量分数为30%,双氧水的质量分数为30%。硝酸银的摩尔浓度为4×10- 2mol/L,添加剂的浓度为5×10-4mol/L,反应温度为25℃℃,反应时间为3min。
第三步,将经金属催化、化学刻蚀经镀银挖孔一体化预处理后的多晶硅片过沉积金属颗粒的多晶硅片用去离子水清洗后,浸入氢氟酸和硝酸的混合溶液中对硅片表面进行制绒,其中氢氟酸的浓度为2.5mol/L,硝酸的浓度为3mol/L,处理温度为20℃,处理时间为3min。
第四步,将经过制绒后的硅片置于氢氧化钠、氨水和双氧水的碱性混合溶液中进行碱洗加脱银,其中氢氧化钠的浓度为7%,氨水的浓度为0.3mol/L,双氧水的浓度为0.6mol/L,碱洗温度为20℃,清洗时间4min。
第五步,对第四步的多晶硅片依次用氢氟酸和盐酸混合溶液和去离子水清洗并烘干硅片,即制得多晶硅绒面片,其中氢氟酸溶液的浓度为2mol/L,盐酸的浓度为5mol/L,清洗时间为80s,清洗温度25℃;去离子水清洗时间为80s,清洗温度60℃,烘干时间为120s,烘干温度为70℃。
实施例3
将实施例1、实施例2和对比例1所得的多晶硅绒面片,分别进行如下处理:
(1)将硅片放入管式扩散炉中作扩散处理;
(2)对扩散后的硅片进行边缘刻蚀及去磷硅玻璃处理;
(3)将经过步骤(2)处理后的正面用管式PECVD的方法沉积氮化硅减反射膜83nm;
(4)在背面印刷背电极及铝背场,在硅片的前表面印刷栅线;
(5)烧结,测试电池片的电性能。
对上述三个不同电池片进行反射率及电性能检测,获得的结果如表1和表2所示。
对比例1
为了突出本发明的制绒工艺的效果,作为对比,采用常规制绒工艺进行处理,常规的酸制绒,是指金刚线切割的多晶硅片用碱处理后去除机械损伤层后直接进行混合酸制绒。
表1为不同制绒硅片的反射率表
表2不同电池片的性能表
本发明通过采用金属催化镀银挖孔一体化处理后在经过常规混酸溶液对金刚线切割的多晶硅片进行制绒,能够有效去除硅片表面的切割纹,绒面表面形成均匀的蜂窝状绒面结构纳米孔洞的孔径达到500-800nm。同时该绒面结构具有较低的反射率,反射率能够控制在15%-18%左右,比经常规制绒工艺处理的绒面反射率低7%-10%左右,从而有效提高电池短路电流,提升电池效率高达19.08%,并且与常规制绒工艺具有较好的兼容性。

Claims (10)

1.一种降低金刚线切割的多晶硅片反射率的金属催化制绒方法,其特征在于,包括以下步骤:第一步,将金刚线切割的多晶硅片浸入碱性溶液中处理,蚀刻去除硅片表面的机械损伤层;第二步,将经第一步处理后的多晶硅片置于第一混合液中黑硅处理,所述第一混合液为氢氟酸、双氧水、金属盐、添加剂和去离子水的混合溶液,即采用金属催化、化学刻蚀经镀银挖孔一体化处理后在多晶硅片表面形成纳米多孔硅结构;第三步,将经过第二步处理过的多晶硅片浸入第二混合液中进行制绒处理,所述第二混合液为氢氟酸和硝酸的混合溶液,使得纳米孔洞的孔径达到500-800nm,使得硅片表面形成蜂窝状形貌的绒面结构;第四步,将经第三步处理过的多硅晶片置于氢氧化钠、氨水和双氧水的碱性混合溶液中进行碱洗加脱银;第五步,将第四步处理后的多晶硅片用酸混合溶液清洗后,再用去离子水清洗,最后烘干即得多晶硅绒面片。
2.根据权利要求1所述的一种降低金刚线切割的多晶硅片反射率的金属催化制绒方法,其特征在于,第一步中所述碱性溶液为氢氧化钾溶液、氢氧化钠溶液、氨水或四甲基氢氧化铵中一种或多种。
3.根据权利要求1所述的一种降低金刚线切割的多晶硅片反射率的金属催化制绒方法,其特征在于,第一步中所述碱性溶液的质量分数为5-10%,处理温度为50-70℃,处理时间为3-5min。
4.根据权利要求1所述的一种降低金刚线切割的多晶硅片反射率的金属催化制绒方法,其特征在于,第二步中第一混合液中氢氟酸的质量分数为20-50%,双氧水的质量份数为20-55%。
5.根据权利要求1所述的一种降低金刚线切割的多晶硅片反射率的金属催化制绒方法,其特征在于,第二步中所述金属盐为硝酸铜、硝酸银、硝酸钯、氯化铜、氯金酸、氯铂酸、铬酸钾或硫酸镍中一种或几种混合,金属盐的摩尔浓度为1×10-6-5×10-2mol/L。
6.根据权利要求1所述的一种降低金刚线切割的多晶硅片反射率的金属催化制绒方法,其特征在于,第二步中所述添加剂为甲醇、乙醇、聚乙二醇、甲酸、多元脂肪醇酸、维生素C、柠檬酸、葡萄糖、甲胺或乙二胺中的一种或几种混合,添加剂的浓度为1×10-4-5×10- 2mol/L。
7.根据权利要求1所述的一种降低金刚线切割的多晶硅片反射率的金属催化制绒方法,其特征在于,第二步中黑硅处理的温度为10-50℃,时间为1-5min。
8.根据权利要求1所述的一种降低金刚线切割的多晶硅片反射率的金属催化制绒方法,其特征在于,第三步中第二混合液中氢氟酸浓度为1.5-5mol/L,硝酸浓度为4-7mol/L;制绒处理的温度为10-30℃,时间为1-5min。
9.根据权利要求1所述的一种降低金刚线切割的多晶硅片反射率的金属催化制绒方法,其特征在于,第四步中所用的碱性混合溶液中氢氧化钠的质量分数为3-10%,氨水的浓度为0.3-0.7mol/L,双氧水的浓度为0.3-0.7mol/L;碱洗的温度为0-25℃,时间为2-5min。
10.根据权利要求1所述的一种降低金刚线切割的多晶硅片反射率的金属催化制绒方法,其特征在于,第五步中酸混合溶液由氢氟酸和盐酸混合而成,所述氢氟酸的浓度为1.5-5.0mol/L,盐酸的浓度可为3.0-6.0mol/L,酸混合液清洗条件为10-50℃,清洗30~120s;去离子水清洗80s,清洗温度为60℃;烘干时间为120s,烘干温度为70℃。
CN201710492688.3A 2017-06-23 2017-06-23 一种降低金刚线切割的多晶硅片反射率的金属催化制绒方法 Pending CN107268087A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710492688.3A CN107268087A (zh) 2017-06-23 2017-06-23 一种降低金刚线切割的多晶硅片反射率的金属催化制绒方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710492688.3A CN107268087A (zh) 2017-06-23 2017-06-23 一种降低金刚线切割的多晶硅片反射率的金属催化制绒方法

Publications (1)

Publication Number Publication Date
CN107268087A true CN107268087A (zh) 2017-10-20

Family

ID=60069349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710492688.3A Pending CN107268087A (zh) 2017-06-23 2017-06-23 一种降低金刚线切割的多晶硅片反射率的金属催化制绒方法

Country Status (1)

Country Link
CN (1) CN107268087A (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107742662A (zh) * 2017-10-25 2018-02-27 江西瑞晶太阳能科技有限公司 一种蜂窝状湿法黑硅绒面结构及其制备方法以及黑硅电池及其制备方法
CN107805845A (zh) * 2017-10-23 2018-03-16 常州时创能源科技有限公司 多晶黑硅的扩孔工艺
CN108179478A (zh) * 2017-12-27 2018-06-19 无锡尚德太阳能电力有限公司 金属催化化学腐蚀法单面制备多晶黑硅绒面的方法
CN108365022A (zh) * 2018-01-30 2018-08-03 无锡尚德太阳能电力有限公司 选择性发射极黑硅多晶perc电池结构的制备方法
CN108847432A (zh) * 2018-06-22 2018-11-20 东方日升(洛阳)新能源有限公司 一种用于多晶硅金刚线切片的制绒工艺
CN108963031A (zh) * 2018-06-25 2018-12-07 东方日升新能源股份有限公司 一种解决金刚线湿法刻蚀黑硅电池片el不良的方法
CN109273558A (zh) * 2018-08-27 2019-01-25 横店集团东磁股份有限公司 一种高转换效率的链式湿法黑硅电池片的制备方法
CN109285898A (zh) * 2018-10-16 2019-01-29 江西展宇新能源股份有限公司 一种黑硅绒面结构的制备方法
CN109554762A (zh) * 2018-12-18 2019-04-02 武汉风帆电化科技股份有限公司 一种多晶硅蚀刻液添加剂及其应用
CN109713086A (zh) * 2018-12-19 2019-05-03 北京合德丰材料科技有限公司 一种非金属黑硅制绒液以及利用该制绒液进行制绒的方法
CN109943888A (zh) * 2019-03-06 2019-06-28 东华大学 一种降低多晶黑硅制绒后绒面差异的挖孔酸液添加剂及其应用
CN110444630A (zh) * 2018-05-04 2019-11-12 南京航空航天大学 一种室温快速减薄与制绒晶硅的方法
CN110644049A (zh) * 2018-06-26 2020-01-03 上海硅洋新能源科技有限公司 金刚线多晶硅片制绒添加剂及金刚线多晶硅片制绒刻蚀液
CN110911527A (zh) * 2019-11-28 2020-03-24 南京纳鑫新材料有限公司 一种稳定性高的多晶湿法黑硅制绒工艺
CN111041562A (zh) * 2019-12-12 2020-04-21 南京纳鑫新材料有限公司 一种金刚线切割单晶硅片的倒金字塔结构制绒方法
CN112582620A (zh) * 2020-12-14 2021-03-30 陕西科技大学 一种碳包覆硅纳米颗粒材料及其制备方法和应用
CN114551644A (zh) * 2022-02-22 2022-05-27 江西中弘晶能科技有限公司 一种提升高效电池片转换效率的表面微米-纳米复合结构的设计
CN114792740A (zh) * 2022-03-25 2022-07-26 安徽华晟新能源科技有限公司 半导体衬底层的制备方法及太阳能电池的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102296369A (zh) * 2011-09-13 2011-12-28 江阴鑫辉太阳能有限公司 一种多晶硅酸法制绒工艺
CN105810761A (zh) * 2016-04-29 2016-07-27 南京工业大学 一种金刚线切割多晶硅片的制绒方法
CN105826410A (zh) * 2016-05-10 2016-08-03 上海交通大学 一种消除金刚线切割痕迹的多晶硅制绒方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102296369A (zh) * 2011-09-13 2011-12-28 江阴鑫辉太阳能有限公司 一种多晶硅酸法制绒工艺
CN105810761A (zh) * 2016-04-29 2016-07-27 南京工业大学 一种金刚线切割多晶硅片的制绒方法
CN105826410A (zh) * 2016-05-10 2016-08-03 上海交通大学 一种消除金刚线切割痕迹的多晶硅制绒方法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107805845A (zh) * 2017-10-23 2018-03-16 常州时创能源科技有限公司 多晶黑硅的扩孔工艺
CN107805845B (zh) * 2017-10-23 2020-06-09 常州时创能源股份有限公司 多晶黑硅的扩孔工艺
CN107742662A (zh) * 2017-10-25 2018-02-27 江西瑞晶太阳能科技有限公司 一种蜂窝状湿法黑硅绒面结构及其制备方法以及黑硅电池及其制备方法
CN108179478A (zh) * 2017-12-27 2018-06-19 无锡尚德太阳能电力有限公司 金属催化化学腐蚀法单面制备多晶黑硅绒面的方法
CN108365022A (zh) * 2018-01-30 2018-08-03 无锡尚德太阳能电力有限公司 选择性发射极黑硅多晶perc电池结构的制备方法
CN110444630A (zh) * 2018-05-04 2019-11-12 南京航空航天大学 一种室温快速减薄与制绒晶硅的方法
CN110444630B (zh) * 2018-05-04 2022-10-04 南京航空航天大学 一种室温快速减薄与制绒晶硅的方法
CN108847432A (zh) * 2018-06-22 2018-11-20 东方日升(洛阳)新能源有限公司 一种用于多晶硅金刚线切片的制绒工艺
CN108963031A (zh) * 2018-06-25 2018-12-07 东方日升新能源股份有限公司 一种解决金刚线湿法刻蚀黑硅电池片el不良的方法
CN110644049A (zh) * 2018-06-26 2020-01-03 上海硅洋新能源科技有限公司 金刚线多晶硅片制绒添加剂及金刚线多晶硅片制绒刻蚀液
CN109273558A (zh) * 2018-08-27 2019-01-25 横店集团东磁股份有限公司 一种高转换效率的链式湿法黑硅电池片的制备方法
CN109273558B (zh) * 2018-08-27 2020-08-11 横店集团东磁股份有限公司 一种高转换效率的链式湿法黑硅电池片的制备方法
CN109285898A (zh) * 2018-10-16 2019-01-29 江西展宇新能源股份有限公司 一种黑硅绒面结构的制备方法
CN109554762A (zh) * 2018-12-18 2019-04-02 武汉风帆电化科技股份有限公司 一种多晶硅蚀刻液添加剂及其应用
CN109713086A (zh) * 2018-12-19 2019-05-03 北京合德丰材料科技有限公司 一种非金属黑硅制绒液以及利用该制绒液进行制绒的方法
CN109713086B (zh) * 2018-12-19 2020-09-11 北京合德丰材料科技有限公司 一种非金属黑硅制绒液以及利用该制绒液进行制绒的方法
CN109943888A (zh) * 2019-03-06 2019-06-28 东华大学 一种降低多晶黑硅制绒后绒面差异的挖孔酸液添加剂及其应用
CN110911527A (zh) * 2019-11-28 2020-03-24 南京纳鑫新材料有限公司 一种稳定性高的多晶湿法黑硅制绒工艺
CN111041562A (zh) * 2019-12-12 2020-04-21 南京纳鑫新材料有限公司 一种金刚线切割单晶硅片的倒金字塔结构制绒方法
CN112582620A (zh) * 2020-12-14 2021-03-30 陕西科技大学 一种碳包覆硅纳米颗粒材料及其制备方法和应用
CN114551644A (zh) * 2022-02-22 2022-05-27 江西中弘晶能科技有限公司 一种提升高效电池片转换效率的表面微米-纳米复合结构的设计
CN114792740A (zh) * 2022-03-25 2022-07-26 安徽华晟新能源科技有限公司 半导体衬底层的制备方法及太阳能电池的制备方法

Similar Documents

Publication Publication Date Title
CN107268087A (zh) 一种降低金刚线切割的多晶硅片反射率的金属催化制绒方法
TWI669830B (zh) 一種局部背接觸太陽能電池的製造方法
CN100583465C (zh) 磁场下制备硅太阳能电池绒面的方法
CN105070792B (zh) 一种基于溶液法的多晶太阳电池的制备方法
CN102181935B (zh) 一种制作单晶硅绒面的方法及腐蚀液
CN103996746B (zh) 一种可量产的perl晶体硅太阳电池的制作方法
CN106229386B (zh) 一种银铜双金属mace法制备黑硅结构的方法
CN109713053A (zh) 一种mwt太阳能电池的制备方法
CN109192809B (zh) 一种全背电极电池及其高效陷光和选择性掺杂制造方法
CN106098810B (zh) 一种晶体硅太阳能电池绒面结构的制备方法
CN103938276A (zh) 一种单晶硅片制绒添加剂、制绒液及对应的制绒方法
CN106024988A (zh) 一步法湿法黑硅制备以及表面处理方法
CN101872806A (zh) 太阳电池硅片的制绒方法及制造太阳电池的方法
CN106098840A (zh) 一种湿法黑硅制备方法
CN102593263A (zh) N型晶体硅背发射结太阳能电池的制备方法及腐蚀液
CN101582467A (zh) 一种晶体硅太阳能电池刻槽埋栅的方法
CN102270702A (zh) 一种制绒白斑单晶硅片的返工工艺
CN106340446B (zh) 一种湿法去除金刚石线切割多晶硅片表面线痕的方法
CN113410319A (zh) 一种常温制绒方法、及其制绒而成的硅片、太阳能电池片及其制备方法
CN104966762A (zh) 晶体硅太阳能电池绒面结构的制备方法
CN102637768A (zh) 一种发射极卷包晶体硅太阳能电池的制备方法
CN105957921B (zh) 一种利用印刷技术制备n型硅ibc太阳电池的方法
CN107316917A (zh) 一种制备低反射率的单晶硅绒面结构的方法
CN112701184A (zh) 一种晶硅电池绒面的制作方法
CN102337595B (zh) 一种小绒面单晶硅太阳电池制绒促进剂及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171020

RJ01 Rejection of invention patent application after publication