CN107267847B - 一种抗高温氧化、耐碱蚀的铁基多孔材料及其制备方法 - Google Patents

一种抗高温氧化、耐碱蚀的铁基多孔材料及其制备方法 Download PDF

Info

Publication number
CN107267847B
CN107267847B CN201710448283.XA CN201710448283A CN107267847B CN 107267847 B CN107267847 B CN 107267847B CN 201710448283 A CN201710448283 A CN 201710448283A CN 107267847 B CN107267847 B CN 107267847B
Authority
CN
China
Prior art keywords
powder
temperature
resistance
mesh
porous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710448283.XA
Other languages
English (en)
Other versions
CN107267847A (zh
Inventor
吴靓
郭小花
肖逸锋
许艳飞
钱锦文
徐阳
李晓娜
曾灿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN201710448283.XA priority Critical patent/CN107267847B/zh
Publication of CN107267847A publication Critical patent/CN107267847A/zh
Application granted granted Critical
Publication of CN107267847B publication Critical patent/CN107267847B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种抗高温氧化、耐碱蚀的铁基多孔材料及其制备方法。本发明将Fe、Cr、Ni、Si高纯粉末按质量百分比为Cr 20~30%、Ni 15~25%、Si 2~10%、Fe为余量的比列混合均匀、干燥后,压制成型获得生坯,利用固相偏扩散的原理对生坯进行真空烧结反应合成Fe‑Cr‑Ni‑Si多孔材料。本发明制得的多孔材料孔隙丰富、均匀可控,制备工艺简单,具有优异的抗高温氧化、耐碱蚀性能,可应用于高温和碱蚀等过滤领域。

Description

一种抗高温氧化、耐碱蚀的铁基多孔材料及其制备方法
技术领域
本发明涉及一种多孔材料的制备方法,具体涉及通过粉末冶金法制备的多孔材料,特别是涉及一种抗高温氧化、耐碱蚀的铁基多孔材料的制备方法。
背景技术
烧结金属多孔材料是20世纪以来发展较快的一类具有特殊性能的功能材料,其特点是内部含有大量连通或半连通的孔隙;因其比表面积大可作为过滤材料,广泛应用于冶金机械、石油化工、能源环保、原子能等工业领域。其中,有些领域是高温和腐蚀环境,要求所用金属多孔材料具有高温抗氧化、抗腐蚀等性能。如专利公告CN103397243A表明Fe3Al金属间化合物虽然在高温下具有类似陶瓷的耐氧化、抗腐蚀性能,但存在高温脆性和可焊性较差的问题。近年来,Siemens Westinghouse公司发现宇航级Ni-Cr-Al-Fe合金材料在高温下具有突出的耐高温、抗氧化、耐腐蚀性能,特别是耐硫腐蚀性能和高温力学性能优于Fe3Al,如在850℃下Ni-Cr-Al-Fe多孔材料的屈服强度是多孔Fe3Al的10倍。同时,Ni-Cr-Al-Fe合金具有很好的焊接性能。但是,原料镍的成本较高,镍基的Ni-Cr-Al-Fe多孔材料的成本制约其推广应用。因此,为降低制备成本,开发一种抗氧化、耐腐蚀的铁基多孔高温材料代替镍基多孔材料很有必要。
铁基粉末冶金多孔材料因其强度、硬度高,耐高温、耐磨性好、价格便宜等优点,应用最为广泛。但是在一些性能要求较高的场合,铁基粉末冶金多孔材料无法满足使用要求,常在铁基体中添加一些合金元素来提高性能,如常用的合金元素有Ni、Si、Cr等。Ni的良好作用在于强化铁基粉末烧结体的同时,还具有提高铁基粉末烧结体塑性的特点,对铁基粉末冶金材料的强韧化非常有利。Cr的有利作用在于形成稳定的氧化膜而防止继续发生氧化,还在铁基粉末冶金多孔材料中起强化作用,对其强度和硬度十分有利。此外,Si是钢铁及有色合金中一种重要的合金元素,也是主要的提高耐蚀性能的元素之一。基于以上分析,在铁中加入Ni、Cr、Si元素可在其表面形成致密的氧化层,阻止内部金属的进一步氧化;而Cr元素的添加使得更多的Ni、Si形成氧化层,从而使得材料具有优异的抗高温氧化性能;同时,利用Ni、Si、Cr的偏扩散及Kirkendall效应,生成丰富的孔隙,并通过控制保温温度和时间达到孔结构可控的效果,得到Fe-Cr-Ni-Si抗高温氧化、耐碱蚀多孔材料。因此,利用偏扩散及Kirkendall效应原理制备Fe-Cr-Ni-Si多孔材料可有效地解决高温和碱蚀过滤环境中的氧化和腐蚀问题。
本发明提供一种抗高温氧化、耐碱蚀的铁基多孔材料的制备方法,在高温和碱蚀过滤领域中有着重要的应用价值及意义。
发明内容
本发明的目的在于提供一种具有丰富孔隙且孔径相对较大的抗高温氧化的粉末烧结金属多孔体的制备方法,本发明采用Fe、Cr、Ni、Si粉制成孔隙丰富的多孔材料,利用其优异的抗高温氧化和耐碱蚀性能,解决高温和碱蚀过滤环境中的氧化和腐蚀问题。
一种抗高温氧化、耐碱蚀铁基多孔材料的制备方法,它包括如下步骤:
(1)粉末配制:将粒径为200~350目的Fe、200~350目的Cr、200~350目的Ni、80~200目的Si四种高纯粉末按质量百分比为Cr 20~30%、Ni 15~25%、Si 2~10%、Fe为余量的比例配制;
(2)粉末处理:将配制好的粉末放在V型混粉机上匀速混合8-16h后,加入粉末总质量1-3%的硬脂酸,再在40-60℃普通干燥箱中干燥6-1h;
(3)压制成型:将混合均匀的粉料在50~200MPa的压力下保压30~120s后压制成型,得到生坯;
(4)生坯烧结:将步骤(3)所制生坯置于真空烧结炉中进行烧结,真空度为1x10-2~10-4Pa;烧结工艺为①5~10℃/min的升温速度从室温升至330~400℃,保温25~35min;②5~15℃/min的升温速度升温至600~700℃,保温30~40min;③1~10℃/min的升温速度升温至1100~1300℃并在该温度下保温2~4h;随炉冷却至室温,即得到所发明的抗高温氧化、耐碱蚀铁基多孔材料。
本发明的原理及有益效果在于:
(1)本发明所制得的Fe-Cr-Ni-Si多孔材料,充分利用压坯中粉末粒度之间的间隙孔和烧结过程中的反应造孔,所制得的孔结构尺寸均匀可控,孔隙丰富均匀,满足过滤材料的孔隙条件。
(2)所制得的Fe-Cr-Ni-Si多孔材料,力学性能优异,能够抵抗过滤过程中的各种外力作用,满足过滤材料的力学性能要求。
(3)本发明所使用的Fe、Cr、Ni、Si元素粉末来源广,能有效的控制材料成本。
(4)本发明提出的抗高温氧化、耐碱蚀的铁基多孔材料其烧结温度低,工艺简短可控,可批量化生产,制备成本低。
(5)所制得的Fe-Cr-Ni-Si多孔材料的抗高温氧化性能和抗腐蚀性能优异,在高温和碱蚀过滤过程中能够保持良好的孔隙结构和稳定性,符合实际工业应用的要求。
附图说明
图1为本发明实施例1中所制得的Fe-Cr-Ni-Si多孔材料的金相组织形貌。
图2为本发明实施例1中所制得的Fe-Cr-Ni-Si多孔材料强碱环境下腐蚀极化曲线。
具体实施方式
下面结合具体实施例对本发明作进一步的描述。
实施例1:
将Fe粉、Cr粉、Ni粉、Si粉四种高纯粉末按比例配好,其中Cr含量为30wt%,粉末粒径为250目;Ni含量为15wt%,粉末粒径为200目;Si含量为10wt%,粉末粒径为80目;余量为粉末粒径为250目的铁粉。将配制好的粉末放在V型混粉机上匀速混合10h后,加入粉末总质量1%的硬脂酸,再在40℃普通干燥箱中干燥8h,在150MPa的成型压力下保压60s,压制成型后得到压坯;将压坯置于真空烧结炉中进行烧结,真空度为10-3Pa,烧结工艺为:①烧结温度从室温升至330℃保温25min,升温速率控制在5℃/min;②将烧结温度升至600℃保温40min,升温速率控制在15℃/min;③将烧结温度升至1100℃保温240min,升温速率控制在10℃/min;烧结后随炉冷却即得到本发明的抗高温氧化、耐碱蚀铁基多孔材料。
用光学显微镜观察其断口金相组织,如图1所示在1100℃的最终烧结温度保温后,Fe-Cr-Ni-Si多孔材料孔隙比较丰富,孔径较大且分布均匀。用Archimedes的方法测定其开孔隙率为25~35%;最大孔径为40~60μm;在1000℃的空气中氧化,其高温氧化速率为Kp=5.45×10-5~1.07×10-5(h-1)。
图2所示为本实施例制备的Fe-Cr-Ni-Si多孔材料在6M KOH下的腐蚀极化曲线,可以看出,Fe-Cr-Ni-Si多孔材料有钝化现象,阳极电流较小,表现出优异的抗腐蚀性能。经过数据拟合得到Fe-Cr-Ni-Si多孔材料材料的腐蚀参数。Fe-Cr-Ni-Si多孔材料的自腐蚀电位为-0.64v,自腐蚀电流为4.7×10-5,腐蚀速率为0.67。
上述数据表明本发明的Fe-Cr-Ni-Si多孔材料具有优异的抗高温氧化、耐碱蚀性能。
实施例2:
将Fe粉、Cr粉、Ni粉、Si粉四种高纯粉末按比例配好,其中Cr含量为30wt%,粉末粒径为350目;Ni含量为15wt%,粉末粒径为350目;Si含量为10wt%,粉末粒径为200目;余量为粉末粒径为350目的铁粉。将配制好的粉末放在V型混粉机上匀速混合12h后,加入粉末总质量3%的硬脂酸,再在60℃普通干燥箱中干燥6h,在150MPa的成型压力下保压90s,压制成型后得到压坯;将压坯置于真空烧结炉中进行烧结,真空度为10-3Pa,烧结工艺为:①烧结温度从室温升至400℃保温25min,升温速率控制在10℃/min;②将烧结温度升至700℃保温40min,升温速率控制在15℃/min;③将烧结温度升至1300℃保温120min,升温速率控制在5℃/min;烧结后随炉冷却即得到本发明的抗高温氧化、耐碱蚀的铁基多孔材料。按照实施例1中的方法进行相同实验,得到与实施实例1中相似的结果。
实施例3:
将Fe粉、Cr粉、Ni粉、Si粉四种高纯粉末按比例配好,其中Cr含量为25wt%,粉末粒径为350目;Ni含量为20wt%,粉末粒径为350目;Si含量为5wt%,粉末粒径为200目;余量为粉末粒径为200目的铁粉。将配制好的粉末放在V型混粉机上匀速混合8h后,加入粉末总质量2%的硬脂酸,再在50℃普通干燥箱中干燥8h,在100MPa的成型压力下保压90s,压制成型后得到压坯;将压坯置于真空烧结炉中进行烧结,真空度为10-3Pa,烧结工艺为:①烧结温度从室温升至350℃保温25min,升温速率控制在10℃/min;②将烧结温度升至700℃保温40min,升温速率控制在10℃/min;③将烧结温度升至1200℃保温180min,升温速率控制在10℃/min;烧结后随炉冷却即得到本发明的抗高温氧化、耐碱蚀的铁基多孔材料。按照实施例1中的方法进行相同实验,得到与实施例1中相似的结果。
实施例4:
将Fe粉、Cr粉、Ni粉、Si粉四种高纯粉末按比例配好,其中Cr含量为30wt%,粉末粒径为200目;Ni含量为15wt%,粉末粒径为200目;Si含量为2wt%,粉末粒径为200目;余量为粉末粒径为300目的铁粉。将配制好的粉末放在V型混粉机上匀速混合12h后,加入粉末总质量1.5%的硬脂酸,再在45℃普通干燥箱中干燥10h,在100MPa的成型压力下保压100s,压制成型后得到压坯;将压坯置于真空烧结炉中进行烧结,真空度为10-3Pa,烧结工艺为:①烧结温度从室温升至330℃保温35min,升温速率控制在10℃/min;②将烧结温度升至700℃保温35min,升温速率控制在10℃/min;③将烧结温度升至1150℃保温200min,升温速率控制在8℃/min;烧结后随炉冷却即得到本发明的抗高温氧化、耐碱蚀的铁基多孔材料。按照实施例1中的方法进行相同实验,得到与实施例1中相似的结果。
实施例5:
将Fe粉、Cr粉、Ni粉、Si粉四种高纯粉末按比例配好,其中Cr含量为20wt%,粉末粒径为300目;Ni含量为25wt%,粉末粒径为300目;Si含量为5wt%,粉末粒径为150目;余量为粉末粒径为350目的铁粉。将配制好的粉末放在V型混粉机上匀速混合16h后,加入粉末总质量2.5%的硬脂酸,再在55℃普通干燥箱中干燥8h,在50MPa的成型压力下保压180s,压制成型后得到压坯;将压坯置于真空烧结炉中进行烧结,真空度为10-3Pa,烧结工艺为:①烧结温度从室温升至330℃保温25min,升温速率控制在5℃/min;②将烧结温度升至600℃保温40min,升温速率控制在8℃/min;③将烧结温度升至1250℃保温140min,升温速率控制在3℃/min;烧结后随炉冷却即得到本发明的抗高温氧化、耐碱蚀的铁基多孔材料。按照实施例1中的方法进行相同实验,得到与实施例1中相似的结果。
实施例6:
将Fe粉、Cr粉、Ni粉、Si粉四种高纯粉末按比例配好,其中Cr含量为22wt%,粉末粒径为200目;Ni含量为18wt%,粉末粒径为250目;Si含量为2wt%,粉末粒径为200目;余量为粉末粒径为300目的铁粉。将配制好的粉末放在V型混粉机上匀速混合8h后,加入粉末总质量1.8%的硬脂酸,再在40℃普通干燥箱中干燥10h,在100MPa的成型压力下保压180s,压制成型后得到压坯;将压坯置于真空烧结炉中进行烧结,真空度为10-3Pa,烧结工艺为:①烧结温度从室温升至400℃保温30min,升温速率控制在8℃/min;②将烧结温度升至700℃保温35min,升温速率控制在10℃/min;③将烧结温度升至1150℃保温220min,升温速率控制在5℃/min;烧结后随炉冷却即得到本发明的抗高温氧化、耐碱蚀的铁基多孔材料。按照实施例1中的方法进行相同实验,得到与实施例1中相似的结果。
实施例7:
将Fe粉、Cr粉、Ni粉、Si粉四种高纯粉末按比例配好,其中Cr含量为20wt%,粉末粒径为250目;Ni含量为15wt%,粉末粒径为300目;Si含量为10wt%,粉末粒径为150目;余量为粉末粒径为200目的铁粉。将配制好的粉末放在V型混粉机上匀速混合14h后,加入粉末总质量2.8%的硬脂酸,再在60℃普通干燥箱中干燥6h,在150MPa的成型压力下保压90s,压制成型后得到压坯;将压坯置于真空烧结炉中进行烧结,真空度为10-3Pa,烧结工艺为:①烧结温度从室温升至360℃保温35min,升温速率控制在10℃/min;②将烧结温度升至700℃保温40min,升温速率控制在12℃/min;③将烧结温度升至1300℃保温140min,升温速率控制在10℃/min;烧结后随炉冷却即得到本发明的抗高温氧化、耐碱蚀的铁基多孔材料。按照实施例1中的方法进行相同实验,得到与实施例1中相似的结果。
实施例8:
将Fe粉、Cr粉、Ni粉、Si粉四种高纯粉末按比例配好,其中Cr含量为25wt%,粉末粒径为300目;Ni含量为22wt%,粉末粒径为300目;Si含量为7wt%,粉末粒径为150目;余量为粉末粒径为250目的铁粉。将配制好的粉末放在V型混粉机上匀速混合10h后,加入粉末总质量2%的硬脂酸,再在45℃普通干燥箱中干燥10h,在150MPa的成型压力下保压90s,压制成型后得到压坯;将压坯置于真空烧结炉中进行烧结,真空度为10-3Pa,烧结工艺为:①烧结温度从室温升至350℃保温25min,升温速率控制在10℃/min;②将烧结温度升至700℃保温30min,升温速率控制在15℃/min;③将烧结温度升至1250℃保温160min,升温速率控制在7℃/min;烧结后随炉冷却即得到本发明的抗高温氧化、耐碱蚀的铁基多孔材料。按照实施例1中的方法进行相同实验,得到与实施例1中相似的结果。
以上所述仅是对本发明的较佳实施方式而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施方式所做的任何简单修改,等同变化与修饰,均属于本发明技术方案的范围内。

Claims (2)

1.一种抗高温氧化、耐碱蚀的铁基多孔材料,其制备方法包括如下步骤:
(1)粉末配制:将粒径为200~350目的Fe、200~350目的Cr、200~350目的Ni、80~200目的Si四种高纯粉末按质量百分比为Cr20~30%、Ni 15~25%、Si2~10%、Fe为余量的比例配制;
(2)粉末处理:将配制好的粉末放在V型混粉机上匀速混合8-16h后,加入粉末总质量1-3%的硬脂酸,再在40-60℃普通干燥箱中干燥6-10h;
(3)压制成型:将混合均匀的粉料在50~200MPa的压力下保压30~120s后压制成型,得到生坯;
(4)生坯烧结:将步骤(3)所制生坯置于真空烧结炉中进行烧结,真空度为1x10-2~10- 4Pa;烧结工艺为①5~10℃/min的升温速度从室温升至330~400℃,保温25~35min;②5~15℃/min的升温速度升温至600~700℃,保温30~40min;③ 1~10℃/min的升温速度升温至1100~1300℃并在该温度下保温2~4h;随炉冷却至室温,即得到抗高温氧化、耐碱蚀铁基多孔材料。
2.一种抗高温氧化、耐碱蚀的铁基多孔材料的制备方法,包括如下步骤:
(1)粉末配制:将粒径为200~350目的Fe、200~350目的Cr、200~350目的Ni、80~200目的Si四种高纯粉末按质量百分比为Cr20~30%、Ni 15~25%、Si2~10%、Fe为余量的比例配制;
(2)粉末处理:将配制好的粉末放在V型混粉机上匀速混合8-16h后,加入粉末总质量1-3%的硬脂酸,再在40-60℃普通干燥箱中干燥6-10h;
(3)压制成型:将混合均匀的粉料在50~200MPa的压力下保压30~120s后压制成型,得到生坯;
(4)生坯烧结:将步骤(3)所制生坯置于真空烧结炉中进行烧结,真空度为1x10-2~10- 4Pa;烧结工艺为①5~10℃/min的升温速度从室温升至330~400℃,保温25~35min;②5~15℃/min的升温速度升温至600~700℃,保温30~40min;③ 1~10℃/min的升温速度升温至1100~1300℃并在该温度下保温2~4h;随炉冷却至室温,即得到抗高温氧化、耐碱蚀铁基多孔材料。
CN201710448283.XA 2017-06-14 2017-06-14 一种抗高温氧化、耐碱蚀的铁基多孔材料及其制备方法 Active CN107267847B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710448283.XA CN107267847B (zh) 2017-06-14 2017-06-14 一种抗高温氧化、耐碱蚀的铁基多孔材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710448283.XA CN107267847B (zh) 2017-06-14 2017-06-14 一种抗高温氧化、耐碱蚀的铁基多孔材料及其制备方法

Publications (2)

Publication Number Publication Date
CN107267847A CN107267847A (zh) 2017-10-20
CN107267847B true CN107267847B (zh) 2019-08-27

Family

ID=60066330

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710448283.XA Active CN107267847B (zh) 2017-06-14 2017-06-14 一种抗高温氧化、耐碱蚀的铁基多孔材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107267847B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109175360B (zh) * 2018-11-13 2019-11-26 武汉理工大学 基于粉末烧结法原位实现高锰铝高强钢多孔化的制备工艺
CN109454231B (zh) * 2018-12-18 2021-02-05 湖北汽车工业学院 一种铁铝铜合金微孔过滤材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101213355A (zh) * 2005-07-01 2008-07-02 霍加纳斯股份有限公司 用于过滤器用途的不锈钢
CN105256164A (zh) * 2015-10-31 2016-01-20 湘潭大学 一种抗氯气腐蚀的粉末烧结金属多孔体的制备方法
CN106191505A (zh) * 2016-07-08 2016-12-07 湘潭大学 一种新型高温抗氧化多孔材料的制备方法
CN106735161A (zh) * 2015-11-19 2017-05-31 台耀科技股份有限公司 制备多孔球状铁基合金粉的方法、其粉末和烧结体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60032728T2 (de) * 1999-08-10 2007-04-26 NHK Spring Co., Ltd., Yokohama Kolben mit einem metallischen verbundwerkstoff
EP3352985A4 (en) * 2015-09-21 2019-07-31 The Nanosteel Company, Inc. INFILED SEPARATED IRON MATERIALS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101213355A (zh) * 2005-07-01 2008-07-02 霍加纳斯股份有限公司 用于过滤器用途的不锈钢
CN105256164A (zh) * 2015-10-31 2016-01-20 湘潭大学 一种抗氯气腐蚀的粉末烧结金属多孔体的制备方法
CN106735161A (zh) * 2015-11-19 2017-05-31 台耀科技股份有限公司 制备多孔球状铁基合金粉的方法、其粉末和烧结体
CN106191505A (zh) * 2016-07-08 2016-12-07 湘潭大学 一种新型高温抗氧化多孔材料的制备方法

Also Published As

Publication number Publication date
CN107267847A (zh) 2017-10-20

Similar Documents

Publication Publication Date Title
CN106191505B (zh) 一种高温抗氧化多孔材料的制备方法
CN107267847B (zh) 一种抗高温氧化、耐碱蚀的铁基多孔材料及其制备方法
JP2016186104A (ja) 金属粉末射出成形方法、熱処理方法、金属粉末、及び、製品
CN111304512A (zh) 一种中高熵合金材料、其制备方法及应用
WO2008002001A1 (en) Fabrication method of alloy parts by metal injection molding and the alloy parts
JP2017095792A (ja) 還元反応によって多孔球状鉄系合金粉を生成する方法及びその粉末と焼結体
CN109161776A (zh) 一种预合金化CrMoNbTiZr多孔高熵合金及其制备方法
CN108326289A (zh) 一种金刚石的改性方法及纳米金属粉改性金刚石
CN105931784B (zh) 一种耐腐蚀含铈稀土永磁材料及其制备方法
ATE287774T1 (de) Verfahren zur herstellung von metallischen pulvern, pulver so hergestellt und presslingen die diese pulver enthalten
CN109454231B (zh) 一种铁铝铜合金微孔过滤材料的制备方法
CN101108291A (zh) 一种FeAl金属间化合物过滤材料的制备方法
CN108085576A (zh) 一种钢结TiCN基硬质合金的制备方法
CN113652594B (zh) 一种难熔金属基合金及其制备方法
CN112222416A (zh) 一种高氮无磁无镍不锈钢超细粉末的制备方法及金属粉末
CN103131928B (zh) 一种具有微纳米结构的超细晶多孔铁合金的制备方法
CN115323234B (zh) 一种无磁低膨胀铬基合金材料的制备方法
JPS613865A (ja) 窒化チタン分散強化体
JP2006328520A (ja) 疲労限度比が高い焼結合金とその製造方法
JPS61127848A (ja) 焼結アルニコ磁石の製造方法
CN107695337B (zh) 烧结尺寸变化率小的零件用铁铜合金粉末及其制备方法
JPH01283340A (ja) 高密度高強度焼結体の製造法
CN1587428A (zh) 一种低成本的β型钛合金及制备方法
JPH01219102A (ja) 焼結添加用Fe−Ni−B合金粉末および焼結法
CN114242365A (zh) 一种耐高温高磁性能永磁材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant