CN107260142B - 利用惯性频率减少生理指标误差 - Google Patents

利用惯性频率减少生理指标误差 Download PDF

Info

Publication number
CN107260142B
CN107260142B CN201710569898.8A CN201710569898A CN107260142B CN 107260142 B CN107260142 B CN 107260142B CN 201710569898 A CN201710569898 A CN 201710569898A CN 107260142 B CN107260142 B CN 107260142B
Authority
CN
China
Prior art keywords
heart rate
rate
instantaneous heart
calculating
initial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710569898.8A
Other languages
English (en)
Other versions
CN107260142A (zh
Inventor
埃里克·道格拉斯·罗梅斯堡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yucca Magic Co ltd
Original Assignee
Valencell Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valencell Inc filed Critical Valencell Inc
Publication of CN107260142A publication Critical patent/CN107260142A/zh
Application granted granted Critical
Publication of CN107260142B publication Critical patent/CN107260142B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02405Determining heart rate variability
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/112Gait analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14542Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • A61B5/6815Ear
    • A61B5/6817Ear canal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • A61B5/721Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts using a separate sensor to detect motion or using motion information derived from signals other than the physiological signal to be measured
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/725Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/17Counting, e.g. counting periodical movements, revolutions or cycles, or including further data processing to determine distances or speed
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • A63B2230/04Measuring physiological parameters of the user heartbeat characteristics, e.g. ECG, blood pressure modulations

Abstract

利用惯性频率减少生理指标误差。在此公开的心率监视器在步进率近似于心率的时候,通过使用一个或多个滤波技术从测量的心率中去除步进率部分。通常,步进率与心率的差值是确定的,步进率根据该差值的函数从心率中过滤出来。

Description

利用惯性频率减少生理指标误差
背景技术
个人健康监视器通过使用户监视在运动、田径运动训练、休息、日常生活活动、理疗等过程中的心率或者其它的生理信息从而为用户提供监测他们的整体健康和健身的能力。由于这些装置变得越来越小和越来越具有便携性,它们变得越来越流行。
心率监视器为个人健康监视器的一个例子。普通类型的心率监视器使用了胸带,该胸带包括用于从心脏检测肌肉动作电位的表面电极。因为该表面电极提供了相对的无噪声信号,使用了表面电极的监视器产生的信息是高度精确的。然而,大多数使用者发现胸带监视器不舒服和不方便。
另一种类型的心率监视器使用了设置在耳塞处的PPG传感器。耳朵是放置监视器的理想位置,因为耳朵处是一个相对静止的平台,不会妨碍人们的移动和视线。靠近耳朵的PPG传感器,例如,可获取下列位置的信息:内耳道和鼓膜(用于测量身体核心温度),肌肉组织(用于测量肌肉张力),耳廓和耳垂(用于监视血气等级),耳朵后面的区域(用于测量皮肤温度和皮肤电反应),以及颈内动脉(用于测量心肺功能)。耳朵还位于或者靠近身体暴露于感兴趣的环境中的呼吸毒素(挥发性有机化合物、污染等)的点,耳朵受到的噪声污染的点,眼睛受到的光照条件的点等。进一步地,因为耳道自然用于传输声能,耳朵是监视内部声音的良好位置,例如心跳、呼吸率、嘴的运动等。
PPG传感器测量相对的血流,通过使用红外光或者其它光源投射完全传输通过组织或者从组织反射回的光来测量相对的血流,该光随后被光电探测器检测到,并进行量化。例如,高的血流的流速将导致更多的光被血流散射,这将大大增加到达光电检测器的光强。通过处理光电检测器输出的信号,使用PPG传感器的监视器可测量血容量脉冲(每次心跳的血容量的相性变化),心率,心率变化,和其它的生理信息。
PPG传感器通常是很小的并且可被封装,因此它们不会有其它的传统健康传感器舒适性和/或便利性的问题。然而,PPG传感器比其它许多类型的传感器对于运动伪影噪声更加敏感,因此更容易出现精度问题。例如,用户的一个动作要素,比方说慢跑者的步进率,常常与心率要素同样强或比心率更强,这有可能使心率测量出错。美国7144375号专利公开了一种可行的解决这个问题的方案,该专利公开了利用加速计作为监视器,用于验证PPG传感器输出的可能步进率。当该步进率近似于心率时,’375号专利揭示了光谱转换步进率和心率波形,例如,通过采样窗口,分别由步进率和心率传感器提供步进率光谱和心率光谱。若该光谱转换操作采用6秒的窗口,转换操作的平均延迟为3秒。进行光谱转换后,’375号专利减除了该步进率光谱和心率光谱。’375号专利还保存了光谱减除的前十个峰值的记录,用于在确定心率和步进率是否跨接和确定哪个光谱峰值对应心率之前,执行各种统计学分析以达到理想的精确性。因此,’375号专利后续实施的转换操作会导致额外的潜在处理,例如需要10秒,而这是不合需要的。所以,有必要提供一种可选择的方案,使步进率近似于心率时,能提供精确的心率,且延迟较少。
发明内容
本发明公开的方案通过使用一个或多个滤波技术,在步进率与心率近似于的时候,去除测量的心率中的步进率。通常,步进率和心率的差值是确定的,步进率根据该差值从心率中过滤出来。
一个示例性的实施例中,步进处理器根据步进传感器提供的波形计算使用者的步进率,心率处理器根据心率传感器提供的波形计算使用者的第一心率。噪音处理器继而计算该步进率和心率的差值,根据该差值来计算使用者的第二心率,并输出该第二心率。例如,该噪音处理器可根据该差值对心率进行滤波。
更广义地,一种示例性的生理监护仪包括惯性传感器、惯性处理器、生理传感器、生理处理器和噪音处理器。该惯性处理器根据惯性传感器提供的惯性波形计算使用者的惯性频率。该生理处理器根据生理传感器提供的生理波形计算使用者的第一生理指标。该噪音处理器计算惯性频率和第一生理指标的差值,根据该差值计算使用者的第二心率,并输出该第二心率。
一种示例性的减少生理监护仪输出的数据的噪音的方法。为了这个目的,该方法包括根据惯性波形计算使用者的惯性频率,惯性波形由设于生理监护仪内的惯性传感器提供;和根据生理波形计算使用者的第一生理指标,生理波形由设于生理监护仪内的生理传感器提供。其后,该方法计算惯性频率和第一生理指标的差值;根据该差值计算第二生理指标;以及输出第二生理指标。
由于在此公开的方案只处理瞬时光谱转换数据,例如,瞬时步进率光谱和瞬时心率光谱,本发明从根本上消除了’375号专利中后续转换的延迟。因此,在此公开的方案相较于现有技术,足够精确而又没有延迟。
附图说明
图1示出了设置在耳塞上的示例性的心率监视器。
图2示出了设置在外壳内的示例性的生理监视系统的模块图。
图3示出了从生理指标中去除惯性频率的示例性的流程图。
图4示出了从生理指标中去除惯性频率的另一个示例性的流程图。
图5示出了图2所示的生理处理器的示例性的模块图。
图6A-6D示出了步进率光谱、心率光谱、结果差异光谱和估计心率的示例性的模拟结果视图。
图7示出了根据此处公开的方案估计的心率的示例性的模拟结果视图。
具体实施方式
本发明公开的过滤技术增加了处理数据,例如,生理传感器的心率数据,所得到的结果的精度。图1示出了设置在耳塞10上的示例性的监视系统12。耳塞10可包括与远程设备通信连接的有线或者无线耳塞,远程设备例如为音乐播放器、智能手机、个人数据助理等。监视系统12监视心率和/或其它生理指标,并且输出这些生理信息到用户和/或其它处理功能。而本发明公开的监视系统12为耳塞10的部分,应当理解监视系统12可设置在固定在用户身体上的任何设备上,例如,固定在耳朵、手指、趾、四肢(臂、腿、踝关节等)、腕、鼻等上的设备。在一些实施例中,该设备可包括补丁(patch),例如,绷带,用于将监视系统12连接到用户身体上的预期的位置。
图2示出了一个示例性的实施例中的示例性的监视系统12的模块图。监视系统12包括处理器100,处理器100连接到一个或多个生理传感器20、一个或多个惯性传感器30、输出界面40和存储器50。生理传感器20产生响应于用户生理状态的生理波形。惯性传感器30产生响应于用户动作的惯性波形。一个示例性的惯性传感器包括,但不只包括:加速计、视觉发射/探测对、视觉探测器、CCD摄像机、压电传感器、热敏传感器、或其他任何类型的能够获取动作信息的传感器。典型的视觉发射器包括一个或多个发光二极管、激光二极管、有机发光二极管、微型发光器、电磁发射器等等。在此公开的传感器并不只限于电磁光谱的视觉波长。在某些实施例中,用于更短或更长的波长的发射器和/或探测器也可以适用于电磁光谱中的更短或更长的波长。视觉探测器可包括光电探测器、电磁探测器和光电二极管等等。处理器100通过使用本发明公开的过滤技术以及存储在存储器50中的信息处理生理波形来高精度的确定心率和/或一个或者多个生理指标。输出界面40输出确定的生理指标。应当理解,输出界面可包括收发器,该收发器用于发送处理器100输出的数据到远程设备。可选地或者另外地,输出界面可提供输出数据到用户接口,例如,显示屏、数据库、另一处理器,和/或处理功能。
在示例性的实施例中,生理传感器20包括光电容积脉搏波(PPG)传感器,光电容积脉搏波响应于检测到的光强产生电生理波形。PPG传感器包括光强传感器,该光强传感器通常依赖于进入到血管中的光的光耦合。如在本发明所用的,术语“光耦合”指的是进入区域的激光与区域自身之间的作用或通信。例如,光耦合的一种形式是光导耳塞10内产生的激光与耳朵的血管之间的相互作用。待审的公开号为2010/0217102的美国专利申请中描述了光导耳塞,该专利在此援引且并入本案。在一个实施例中,激光与血管之间的相互作用可能涉及进入耳朵区域的激光与耳朵内的血管散射的激光,因此,散射光的强度与血管内的血流速度成正比。光耦合的另一种形式是由耳塞10内的光发射器产生的激光与耳塞10的光导区间相互作用形成的。
处理器100包括惯性处理器110、生理处理器120和噪音处理器140。惯性处理器110通过使用各种已知方法从惯性波形中获取确定的惯性频率I,例如步进率。该确定的惯性频率可包括真实的惯性频率和一个或多个该真实惯性频率的谐波,例如真实惯性频率的1/2x、3/2x和2x谐波。比方说,惯性处理器可光谱转换惯性波形以生成惯性光谱,并将惯性频率设置为该惯性光谱的最大的峰值的频率。还有其它可选择的方法可用于确定惯性频率。生理处理器120从生理波形中确定一个或多个生理指标H,例如心率,在此处进一步讨论。该确定的生理指标可能与根据一个或多个生理指标计算得出的生理估值相关。噪音处理器140对确定的指标滤波去除惯性频率,从而产生了较精确的滤波生理指标
Figure GDA0002643455900000051
为了简化,下述处理器100在由惯性传感器110确定的步进率近似于由生理处理器120确定的心率的时候,通过噪音处理器140使用一个或多个滤波技术从测量的心率中去除步进率。通常,步进率和心率的差值是确定的,步进率根据该差值从心率中过滤出来。然而,生理处理器120和处理器100可替代地或者另外地确定其它的生理指标,例如,呼吸速率、心率变异(HRV)、脉搏压、收缩压、舒张压、步率、氧气摄取(V02)、和R-R间隔(代表了ECG波形中的相继的R峰之间的间隔)、最大氧气摄取(最大V02)、燃烧的卡路里、创伤、心排血量和/或包括血红高蛋白氧气占据的结合点(SP02)的血分析物水平、高铁血红蛋白的百分比、羰基血红蛋白的百分比、和/或葡萄糖水平。替代地或者另外地,处理器100可确定或者过滤一个或者多个生理评估,例如,通风阈、乳酸阈、心肺状态、神经功能状态、有氧能力(最大V02)、和/或整体健康或健身。此外,处理器100也可有选择地从心率中去除其它惯性频率,例如有节奏的头部摆动和身体运动(如手臂运动、举重等)等等。
图3示出了示例性的方法200,该方法可由处理器100执行以计算输出心率。在处理器100接收到来自传感器20和传感器30(模块210)的惯性波形和生理波形后,惯性处理器110确定步进率I(模块220),生理处理器120确定心率的第一估值H(模块230)。噪音测量140根据步进率和心率的差值计算心率的修正估值
Figure GDA0002643455900000061
(模块240),并继而向输出界面40输出该修正心率估值
Figure GDA0002643455900000062
(模块290)。处理器100也可以在存储器50中存储该修正心率估值
Figure GDA0002643455900000063
使其可用于后续的计算。
图4出了示例性的方法240,该方法用于根据步进率和心率的差值计算修正估值
Figure GDA0002643455900000064
图4中的示例性的方法240包括多个步骤,其中第一步骤包括模块242,第二步骤包括模块244至模块248,第三步骤包括模块250,第四步骤包括模块260,第五步骤包括模块270,第六步骤包括模块280至284。然而,在某些示例性的实施例中也可以实施一个或多个上述步骤,在此进一步描述的,本发明也不要求每个步骤都按照图4所示的顺序进行实施。
第一步骤(模块242和模块243)包括初始化步骤,其中心率处理器120和/或噪音处理器140初始化和/或确定一个或多个变量,用于根据预设的值、存储于存储器中的值,以及测量到的信息(模块242和模块243),如瞬时心率Hinst、滤波心率Hfilt、锁定值Clk、第二(或输出)心率H等等来确定输出的心率。例如,为了确定Hinst,心率处理器120包括光谱转换器122(如图5所示),该光谱转换器122能将心率传感器20输出的生理波形光谱转换为生理光谱。例如,光谱转换器122能通过一个假设为6秒的采样窗口转换心率波形。这样的转换操作引起了大约为窗口时间的一半的延迟,例如3秒。心率处理器120将具有最大幅值的生理光谱的光谱峰值频率F1确定为初始瞬时心率Hinst,其中初始瞬时心率对应于第一心率(模块243)。心率处理器120还可进一步确定具有第二大幅值的生理光谱的光谱峰值的频率F2。可替代地或者额外地,滤波心率也可以被初始化,例如从存储器50中检索在先确定的滤波心率或将Hfilt设置为经验值,如83。此外,可以将Clk初始化为零,其中Clk代表如连续帧的数目,其中心率和步进率的差值满足已确定的阈值。噪音处理器140也可以确定初始第二(或输出)心率H,其中该第二心率代表噪音处理器140最终输出的心率。在某些情况下,处理器140可将该初始H设为经验值,如83。可替代地或额外地,噪音处理器140可以通过程序240经由第一次迭代后从上一帧对H和H的值进行初始化。
第二步骤(模块244至模块248)确定瞬时心率,该瞬时心率为初始瞬时心率和步进率的差值的函数,特别适用于以下场合,光谱的减少导致消除了主要用于确定瞬时心率的主要光谱峰值。尤其,该第二步骤通过确定初始瞬时心率Hinst是否落在交叉窗内,来确定惯性处理器110提供的步进率I是否近似于初始瞬时心率Hinst(模块244),并根据这个结果来调整瞬时心率。例如,噪音处理器140可以通过判断步进率I和初始Hinst的差值是否小于或等于阈值Tw,如Tw=8,来确定初始Hinst是否落在交叉窗内。在一个实施例中,噪音处理器140只在初始Hinst落在交叉窗内时,才调整该初始Hinst,其中该调整是基于两个或多个由光谱转换器122(模块248)提供的光谱峰值的频率的加权平均数进行的。例如,噪音处理器140能根据以下计算式计算权重w:
Figure GDA0002643455900000071
其中M1代表生理光谱的最大光谱峰值的量级,M2代表生理光谱第第二峰值的量级,如第二大光谱峰值。继而,噪音处理器140通过计算两个光谱峰值的频率的加权平均数来调整瞬时心率,例如根据下式:
Hinst=wF1+(1-w)F2 (2)
其中F1代表最大光谱峰值的频率(且响应初始瞬时心率),F2代表第二光谱峰值的频率。
在某些实施例中,第二步骤也可以随意决定生理光谱中的第二光谱峰值的频率F2是否落入交叉窗内,和在满足模块244的情况下,步进率I是否在初始Hinst和F2之间(模块246)。例如,噪音处理器140可以通过确定F2和I的差值是否小于或等于一个阈值,如8,来确定F2是否落在交叉窗内。此外,噪音处理器140可以根据sign(Hinst-I)≠sign(F2-I)确定I是否在F2和初始Hinst之间。无论如何,在本实施例中,噪音处理器140只在同时满足模块244和模块246的情况下,执行模块248的操作。
第三步骤(模块250)利用速率极限对瞬时心率进行滤波。更具体地,第三步骤将修正滤波心率Hfilt作为当前滤波心率Hfilt、根据第二步骤输出的瞬时心率Hinst和速率极限Δr进行计算。在本实施例中,心率处理器120还可进一步包括滤波器124,如图5所示。通常,Hinst和Hfilt可从存储器50中检索或由初始化模块242提供,比较Hinst和Hfilt之后,滤波器124根据比较结果,根据Hfilt、Hinst和速率极限Δr,计算修正滤波心率估值
Figure GDA0002643455900000081
其中Δr也可以从存储器50中检索。在一个示例性的实施例中,当Hinst≥Hfilt,滤波器124根据下式计算修正滤波估值
Figure GDA0002643455900000082
Figure GDA0002643455900000083
其中Δr+代表递增速率极限。然而,当Hinst<Hfilt时,滤波器124根据下式计算修正滤波估值
Figure GDA0002643455900000084
Figure GDA0002643455900000085
其中Δr-代表递减速率极限。如此处所用,速率极限代表心率变化的速率的极限。例如,速率极限可以代表每分钟心跳(BPM)的变化的速率,该心率在一个1秒的帧周期内。这样的速率极限可以凭经验确定,且通常是预设的。该速率极限也可以表现为任何帧长度时间内的速率变化,如BPM/s内的速率极限是帧周期长度(秒)的叠加。模块250的额外的实施细节可在同时申请的美国临时申请编号61/586,874,名称为“生理指标估值升降极限”(Physiological Metric Estimation Rise and Fall Limiting)的文件中找到,该文件整体在此援引且并入申请。
在第四步骤(模块260)中,噪音处理器140使滤波心率趋近与步进率以减少交叉时盲区造成的偏移。为达到该目的,噪音处理器140根据步进率和
Figure GDA0002643455900000086
的差值对修正滤波估值
Figure GDA0002643455900000087
进行进一步的调整。例如,噪音处理器140可以通过比较
Figure GDA0002643455900000088
和I的差值与一个阈值,确定模块250输出的修正滤波估值
Figure GDA0002643455900000089
是否落在交叉窗内,如abs(I-Hfilt)≤8。若
Figure GDA00026434559000000810
落在交叉窗内,噪音处理器140可根据步进率和
Figure GDA00026434559000000811
的差值对
Figure GDA00026434559000000812
进行进一步调整。例如,噪音处理器140可根据下式进一步调整
Figure GDA00026434559000000815
Figure GDA00026434559000000814
在第五步骤(模块270)中,当心率落在交叉窗内时,噪音处理器140计算连续帧的数目。为达到该目的,噪音处理器更新锁定值Clk,锁定值Clk为I和模块260输出的
Figure GDA00026434559000000915
的差值的函数,其中Clk可代表满足某阈值要求的
Figure GDA0002643455900000091
和I的差值的连续帧的数目。例如,当Clk与0比较相等(如Clk==0),且abs(Hfilt-I)<6时,噪音处理器140可设定Clk=1。然而,当Clk>0,且abs(Hfilt-I)>6时,噪音处理器140可设定Clk=0,而当Clk>0,且abs(Hfilt-I)≤6时,噪音处理器140可增加Clk,如设定Clk=Clk+1。
在第六步骤(模块280至模块284)中,噪音处理器140对在多个连续帧交叉的过程中产生的瞬时心率振荡进行滤波。例如,进一步过滤模块260输出的
Figure GDA0002643455900000092
Figure GDA0002643455900000093
响应于锁定值和阈值Tc的比较,以产生用于从输出界面40输出的第二(或输出)心率
Figure GDA0002643455900000094
例如,若Clk>Tc,可将该输出心率
Figure GDA0002643455900000095
作为的预先确定(或初始化)的输出心率H和
Figure GDA0002643455900000096
第一函数确定,如根据f1(H,Hfilt)(模块282)。在一个示例性的实施例中,第一函数包括:
Figure GDA0002643455900000097
其中H代表模块242中已初始化的第二心率,或预先确定的第二(或输出心率),该H可从存储器50中检索。然而,若Clk≤Tc,可将该输出心率
Figure GDA0002643455900000098
作为的预先确定(或初始化)的输出心率H和
Figure GDA0002643455900000099
第二函数确定,如根据f2(H,Hfilt)(模块284)在一个示例性的实施例中,第二函数包括:
Figure GDA00026434559000000910
并非图4所示的所有步骤都需要确定输出至输出界面40的
Figure GDA00026434559000000911
例如,示例性的实施例可利用以下方法计算输出心率:
·在第二步骤和第三步骤,其中输出心率包括图5中的滤波器124和图4中的模块250输出的滤波心率
Figure GDA00026434559000000912
·在第三步骤和第四步骤,其中输出心率包括图4中模块260输出的滤波心率
Figure GDA00026434559000000913
而输入心率包括,如来自图4中的模块242的初始瞬时心率Hinst和来自图4中的模块242或从存储器50中预设并检索的初始滤波心率Hfilt
·在第四步骤,其中输出心率包括图4中的模块260输出的滤波心率
Figure GDA00026434559000000914
而输入心率包括,如来自图4中的模块242或从存储器50中预设并检索的初始滤波心率Hfilt
·在第三、四、五和六步骤,其中输出心率包括
Figure GDA0002643455900000101
Figure GDA0002643455900000102
为图4中模块282和模块284之一的输出,输入心率包括来自图4中的模块242的初始瞬时心率Hinst和来自图4中的模块242或从存储器50中预设并检索的初始滤波心率Hfilt
·在第四、五和六步骤,其中输出心率包括
Figure GDA0002643455900000103
Figure GDA0002643455900000104
为图4中模块282和模块284之一的输出,输入心率包括来自图4中的模块242或从存储器50中预设并检索的初始滤波心率Hfilt
·在第五和第六步骤,其中输出心率包括
Figure GDA0002643455900000105
Figure GDA0002643455900000106
为图4中模块282和模块284之一的输出,输入心率包括从图4中的模块242获得的初始第二心率H和来自图4中的模块242或从存储器50中预设并检索的初始滤波心率Hfilt
·在第六步骤,其中输出心率包括
Figure GDA0002643455900000107
Figure GDA0002643455900000108
为图4中模块282和模块284之一的输出,输入心率包括从图4中的模块242获得的初始第二心率H和来自图4中的模块242或从存储器50中预设并检索的初始滤波心率Hfilt。在这种情况下,判断模块280不仅判断锁定值与阈值的比较,还要判断滤波心率是否落在交叉窗内,例如判断
Figure GDA0002643455900000109
和I的差值是否小于或等于阈值Tw
·在第三、五和六步骤,其中输出心率包括
Figure GDA00026434559000001010
Figure GDA00026434559000001011
为图4中模块282和模块284之一的输出,如来自图4中的模块242的初始瞬时心率Hinst和来自图4中的模块242或从存储器50中预设并检索的初始滤波心率Hfilt
其他未在此明确公开的组合也可以用于产生输出心率。
图6A-6D和图7进一步阐释了步进率对测量心率的影响,和本方案怎样解决这个问题。首先,图6A-6D模拟了在步进率与心率相近时所产生的问题。具体地,图6A示出了响应加速计的波形而产生的步进率光谱,而图6B出示了响应由PPG传感器输出的波形而产生的心率光谱,因此同时包括了步进率和心率元素。图6C出示了从图6B的心率光谱中去除图6A中的加速计光谱时,所产生的光谱。如图6C所示,当步进率与心率近似于时,例如在600秒和800秒之间,心率会衰弱。因此,单纯地光谱减除步进率部分,也会影响获得心率光谱后的测量过程。特别地,图6D出示了图6C的差值光谱的峰值频率在交叉窗中为何具有较大的振荡误差。
图7出示了在心率采用在此公开的技术进行估计的模拟结果,如图4所示的技术。如图7所示,交叉区附近的误差几乎消失,其结果提供了更精确的心率估值。
在此公开的方案提供了精确的心率估值,如图7中的模拟结果的示例所示,且不会像已知的现有技术那样引起延迟。特别地,由于在此公开的方案不需要通过多种预先缓冲的光谱或统计以探测初始跨接,这种处理往往导致不合需要的延迟,因此本方案相较于相关技术能避免延迟而不影响精确性。
本发明以PPG传感器为例进行描述,应当理解的是,传感器20可包括可产生生理波形的任何传感器,生理波形,例如,为脑电图(EEG)波形、和心电图(ECG)波形、射频(RF)波形、电光生理波形、热电波形、包括光声波形、机电生理波形,和/或电-核生理波形的电的光声波形。
当然,本发明可通过具体实施例之外的方式来实施,而不偏离本发明的实质特征。本发明实施例的各个方面应当理解为说明本发明而不是限制本发明,在本发明的权利要求内或其等效的范围内做出的任何改变都属于本发明的保护范围。

Claims (22)

1.一种用于提供用户的心率的心率监测器,所述心率监测器包括:
光电容积脉搏波传感器,所述光电容积脉搏波传感器配置来感测从所述用户的血管散射的光并且响应于所感测的光来提供光电容积脉搏波信息;
步进率传感器,所述步进率传感器配置来感测来自用户的运动并且响应于所感测的运动来提供运动信息;
至少一个处理器,所述至少一个处理器配置来:根据所述步进率传感器提供的运动信息确定用户的步进率,根据所述光电容积脉搏波传感器提供的光电容积脉搏波信息和所述步进率传感器提供的运动信息来计算初始瞬时心率,计算所述初始瞬时心率与所述步进率之间的差值,根据所述差值确定第二瞬时心率,并且根据所述第二瞬时心率和速率极限输出修正心率。
2.根据权利要求1所述的心率监测器,其特征在于,所述处理器还配置来当所述初始瞬时心率落在与所述步进率相关的交叉窗内时,根据所述光电容积脉搏波信息中的两个或以上的光谱峰值的频率的组合计算所述初始瞬时心率。
3.根据权利要求2所述的心率监测器,其特征在于,所述处理器还配置来当所述步进率落在至少两个光谱峰值的频率之间时,根据所述光电容积脉搏波信息的两个或以上的光谱峰值的频率的组合计算所述初始瞬时心率。
4.根据权利要求1所述的心率监测器,其特征在于,所述处理器还配置来,当光谱峰值的频率中的至少一个落在与所述步进率相关的交叉窗内时,根据所述光电容积脉搏波信息中的两个或以上的光谱峰值的频率的组合计算所述初始瞬时心率。
5.根据权利要求4所述的心率监测器,其特征在于,所述处理器配置来,当所述步进率落在至少两个光谱峰值的频率之间时,根据所述光电容积脉搏波信息中的两个或以上的光谱峰值的频率的组合计算所述初始瞬时心率。
6.根据权利要求1所述的心率监测器,其特征在于,所述处理器还配置来比较所述初始瞬时心率与当前滤波心率,所述处理器包括滤波器,所述滤波器用于:基于所述初始瞬时心率和所述当前滤波心率之间的比较,通过根据所述当前滤波心率和速率极限计算修正滤波心率,来修正所述初始瞬时心率,
若所述修正滤波心率落在与所述步进率相关的交叉窗内,根据所述修正滤波心率和所述步进率之间的差值计算所述第二瞬时心率;及
否则,设定所述第二瞬时心率使其与所述修正滤波心率相等。
7.根据权利要求6所述的心率监测器,其特征在于,所述处理器还配置来:根据所述第二瞬时心率是否落在与所述步进率相关的交叉窗内,更新锁定值,其中,通过选择对所述锁定值和阈值的比较进行响应的滤波器,并且通过根据所选的滤波器来计算所述第二瞬时心率,根据所述初始瞬时心率与所述步进率之间的差值来确定所述第二瞬时心率。
8.根据权利要求1所述的心率监测器,其特征在于,若所述初始瞬时心率落在与所述步进率相关的交叉窗内,所述处理器设定所述第二瞬时心率使其与所述初始瞬时心率相等。
9.根据权利要求8所述的心率监测器,其特征在于,所述处理器还配置为根据所述第二瞬时心率是否落在与所述步进率相关的交叉窗内,更新锁定值,其中,通过选择对所述锁定值和阈值的比较进行响应的滤波器,并且通过根据所选的滤波器计算所述第二瞬时心率,所述处理器根据所述步进率和所述初始瞬时心率之间的差值计算所述第二瞬时心率。
10.根据权利要求1所述的心率监测器,其特征在于,所述处理器还配置为根据所述初始瞬时心率是否落在与所述步进率相关的交叉窗内,更新锁定值,其中,通过选择对所述锁定值和阈值之间的比较进行响应的滤波器,并且通过根据所选的滤波器计算所述第二瞬时心率,所述处理器根据所述步进率和所述初始瞬时心率之间的差值计算所述第二瞬时心率。
11.根据权利要求1所述的心率监测器,其特征在于,通过选择对所述差值和阈值之间的比较进行响应的滤波器,并且通过根据所选的滤波器计算所述第二瞬时心率,所述处理器根据所述步进率和所述初始瞬时心率之间的差值计算所述第二瞬时心率。
12.一种用于提供用户的心率的方法,所述方法包括:
使用光电容积脉搏波传感器来感测从用户的血管散射的光,以确定光电容积脉搏波信息;
使用步进率传感器来感测来自用户的运动信息;
根据所述步进率传感器提供的运动信息确定用户的步进率;
根据所述光电容积脉搏波传感器提供的光电容积脉搏波信息和所述步进率传感器提供的运动信息来计算初始瞬时心率;
计算所述初始瞬时心率与所述步进率之间的差值;
根据所述差值确定第二瞬时心率;以及
根据所述第二瞬时心率和速率极限输出修正心率。
13.根据权利要求12所述的方法,其特征在于,所述计算初始瞬时心率的步骤还包括当所述初始瞬时心率落在与所述步进率相关的交叉窗内时,根据所述光电容积脉搏波信息的两个或以上的光谱峰值的频率的组合计算所述初始瞬时心率。
14.根据权利要求13所述的方法,其特征在于,所述根据所述组合计算所述初始瞬时心率的步骤还包括当所述步进率落在至少两个光谱峰值的频率之间时,根据所述光电容积脉搏波信息中的两个或以上的光谱峰值的频率的组合计算所述初始瞬时心率。
15.根据权利要求12所述的方法,其特征在于,所述计算初始瞬时心率的步骤包括当光谱峰值的频率中的至少一个落在与所述步进率相关的交叉窗内时,根据所述光电容积脉搏波信息中的两个或以上的光谱峰值的频率的组合计算所述初始瞬时心率。
16.根据权利要求15所述的方法,其特征在于,所述根据所述组合计算所述初始瞬时心率的步骤还包括当所述步进率落在至少两个光谱峰值的频率之间时,根据所述光电容积脉搏波信息中的两个或以上的光谱峰值的频率的组合计算所述初始瞬时心率。
17.根据权利要求12所述的方法,其特征在于,所述根据所述步进率与所述初始瞬时心率之间的差值计算第二瞬时心率的步骤包括:
将所述初始瞬时心率与当前滤波心率做比较;
基于所述初始瞬时心率和所述当前滤波心率之间的比较,通过根据所述当前滤波心率和速率极限计算修正滤波心率,来修正所述初始瞬时心率;
若所述修正滤波心率落在与所述步进率相关的交叉窗内,根据所述修正滤波心率和所述步进率之间的差值计算所述第二瞬时心率;及
否则,设定所述第二瞬时心率使其与所述修正滤波心率相等。
18.根据权利要求17所述的方法,其特征在于,所述方法还包括根据所述第二瞬时心率是否落在与所述步进率相关的交叉窗内,更新锁定值,其中所述根据所述步进率和所述初始瞬时心率之间的差值计算所述第二瞬时心率的步骤包括选择对所述锁定值和阈值之间的比较进行响应的滤波器,并进一步根据所选的滤波器计算所述第二瞬时心率。
19.根据权利要求12所述的方法,其特征在于,根据所述步进率和所述初始瞬时心率之间的差值计算所述第二瞬时心率的步骤包括:
若所述初始瞬时心率落在与所述步进率相关的交叉窗内,根据所述初始瞬时心率和所述步进率之间的差值计算所述第二瞬时心率;及
否则,设定所述第二瞬时心率使其与所述初始瞬时心率相等。
20.根据权利要求19所述的方法,其特征在于,所述方法还包括根据所述第二瞬时心率是否落在与所述步进率相关的交叉窗内,更新锁定值,其中所述根据所述步进率和所述初始瞬时心率之间的差值计算所述第二瞬时心率的步骤包括选择对所述锁定值和阈值之间的比较进行响应的滤波器,并进一步根据所选的滤波器计算所述第二瞬时心率。
21.根据权利要求12所述的方法,其特征在于,所述方法还包括根据所述初始瞬时心率是否落在与所述步进率相关的交叉窗内,更新锁定值,其中所述根据所述步进率和所述初始瞬时心率之间的差值计算所述第二瞬时心率的步骤包括选择对所述锁定值和阈值之间的比较进行响应的滤波器,并进一步根据所选的滤波器计算所述第二瞬时心率。
22.根据权利要求12所述的方法,其特征在于,所述根据所述步进率和所述初始瞬时心率之间的差值计算第二瞬时心率的步骤包括选择对所述差值和阈值之间的比较进行响应的滤波器,并进一步根据所选的滤波器计算所述第二瞬时心率。
CN201710569898.8A 2012-01-16 2012-12-24 利用惯性频率减少生理指标误差 Active CN107260142B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261586884P 2012-01-16 2012-01-16
US61/586,884 2012-01-16
CN201280071447.7A CN104203088B (zh) 2012-01-16 2012-12-24 利用惯性频率减少生理指标误差

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201280071447.7A Division CN104203088B (zh) 2012-01-16 2012-12-24 利用惯性频率减少生理指标误差

Publications (2)

Publication Number Publication Date
CN107260142A CN107260142A (zh) 2017-10-20
CN107260142B true CN107260142B (zh) 2020-10-20

Family

ID=47595025

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201710569898.8A Active CN107260142B (zh) 2012-01-16 2012-12-24 利用惯性频率减少生理指标误差
CN201280071447.7A Active CN104203088B (zh) 2012-01-16 2012-12-24 利用惯性频率减少生理指标误差

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201280071447.7A Active CN104203088B (zh) 2012-01-16 2012-12-24 利用惯性频率减少生理指标误差

Country Status (6)

Country Link
US (3) US10349844B2 (zh)
EP (1) EP2804526A1 (zh)
JP (1) JP6116017B2 (zh)
CN (2) CN107260142B (zh)
HK (1) HK1204252A1 (zh)
WO (1) WO2013109390A1 (zh)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8700111B2 (en) 2009-02-25 2014-04-15 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
US8788002B2 (en) 2009-02-25 2014-07-22 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
US9424246B2 (en) * 2009-03-30 2016-08-23 Touchtype Ltd. System and method for inputting text into electronic devices
US8888701B2 (en) 2011-01-27 2014-11-18 Valencell, Inc. Apparatus and methods for monitoring physiological data during environmental interference
WO2013016007A2 (en) 2011-07-25 2013-01-31 Valencell, Inc. Apparatus and methods for estimating time-state physiological parameters
EP3222210A1 (en) 2011-08-02 2017-09-27 Valencell, Inc. Systems and methods for variable filter adjustment by heart rate metric feedback
US10390762B2 (en) 2012-01-16 2019-08-27 Valencell, Inc. Physiological metric estimation rise and fall limiting
WO2014109982A2 (en) 2013-01-09 2014-07-17 Valencell Inc. Cadence detection based on inertial harmonics
US10856749B2 (en) 2013-01-28 2020-12-08 Valencell, Inc. Physiological monitoring devices having sensing elements decoupled from body motion
US20160029125A1 (en) * 2013-10-24 2016-01-28 JayBird LLC System and method for anticipating activity using earphones with biometric sensors
US20160051184A1 (en) * 2013-10-24 2016-02-25 JayBird LLC System and method for providing sleep recommendations using earbuds with biometric sensors
US20170049335A1 (en) * 2015-08-19 2017-02-23 Logitech Europe, S.A. Earphones with biometric sensors
US20160051185A1 (en) * 2013-10-24 2016-02-25 JayBird LLC System and method for creating a dynamic activity profile using earphones with biometric sensors
US20160022200A1 (en) * 2013-10-24 2016-01-28 JayBird LLC System and method for providing an intelligent goal recommendation for activity level using earphones with biometric sensors
EP3146896B1 (en) 2014-02-28 2020-04-01 Valencell, Inc. Method and apparatus for generating assessments using physical activity and biometric parameters
US10296707B2 (en) * 2014-04-10 2019-05-21 Siemens Healthcare Gmbh System and method for patient-specific image-based guidance of cardiac arrhythmia therapies
US10142722B2 (en) * 2014-05-20 2018-11-27 Bugatone Ltd. Aural measurements from earphone output speakers
DK3009070T3 (en) * 2014-07-24 2017-10-09 Goertek Inc METHOD OF DETECTING HEART RATE IN HEADPHONE AND HEADPHONE THAT CAN DETECT HEART RATE
US20160029898A1 (en) 2014-07-30 2016-02-04 Valencell, Inc. Physiological Monitoring Devices and Methods Using Optical Sensors
US10536768B2 (en) 2014-08-06 2020-01-14 Valencell, Inc. Optical physiological sensor modules with reduced signal noise
US9794653B2 (en) 2014-09-27 2017-10-17 Valencell, Inc. Methods and apparatus for improving signal quality in wearable biometric monitoring devices
CN105520726B (zh) * 2014-09-30 2019-07-30 原相科技股份有限公司 心跳检测模组及其检测、去噪方法
US10390764B2 (en) 2015-07-16 2019-08-27 Samsung Electronics Company, Ltd. Continuous stress measurement with built-in alarm fatigue reduction features
CN108348154A (zh) 2015-08-12 2018-07-31 瓦伦赛尔公司 用于经由光机械来检测运动的方法和设备
CN106551686B (zh) * 2015-09-29 2019-05-07 冯文强 一种动态心率测量方法、装置及智能手表
US10945618B2 (en) * 2015-10-23 2021-03-16 Valencell, Inc. Physiological monitoring devices and methods for noise reduction in physiological signals based on subject activity type
WO2017070463A1 (en) 2015-10-23 2017-04-27 Valencell, Inc. Physiological monitoring devices and methods that identify subject activity type
JP6642055B2 (ja) * 2016-02-02 2020-02-05 富士通株式会社 センサ情報処理装置、センサユニット、及び、センサ情報処理プログラム
CN105496473A (zh) * 2016-02-26 2016-04-20 四川大学华西医院 一种新型甲状腺穿刺活检装置
WO2018009736A1 (en) * 2016-07-08 2018-01-11 Valencell, Inc. Motion-dependent averaging for physiological metric estimating systems and methods
WO2018035160A1 (en) * 2016-08-15 2018-02-22 The Regents Of The University Of California Bio-sensing and eye-tracking system
WO2018147850A1 (en) * 2017-02-09 2018-08-16 Sony Mobile Communications Inc. System and method for controlling notifications in an electronic device according to user status
JP7108023B2 (ja) * 2017-09-01 2022-07-27 ソシエテ・デ・プロデュイ・ネスレ・エス・アー 心拍検出デバイス並びに関連するシステム及び方法
US11304616B2 (en) * 2018-09-03 2022-04-19 Lite-On Singapore Pte. Ltd. Heart rate detection system and wearable device using the same
US10860114B1 (en) 2019-06-20 2020-12-08 Bose Corporation Gesture control and pulse measurement through embedded films

Family Cites Families (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US586874A (en) 1897-07-20 Walter a
US3704706A (en) 1969-10-23 1972-12-05 Univ Drexel Heart rate and respiratory monitor
US3636617A (en) 1970-03-23 1972-01-25 Monsanto Co Method for fabricating monolithic light-emitting semiconductor diodes and arrays thereof
US4830014A (en) 1983-05-11 1989-05-16 Nellcor Incorporated Sensor having cutaneous conformance
US5139025A (en) 1983-10-14 1992-08-18 Somanetics Corporation Method and apparatus for in vivo optical spectroscopic examination
US4672976A (en) 1986-06-10 1987-06-16 Cherne Industries, Inc. Heart sound sensor
GB8719333D0 (en) 1987-08-14 1987-09-23 Swansea University College Of Motion artefact rejection system
US4952928A (en) 1988-08-29 1990-08-28 B. I. Incorporated Adaptable electronic monitoring and identification system
SE465551B (sv) 1990-02-16 1991-09-30 Aake Oeberg Anordning foer bestaemning av en maenniskas hjaert- och andningsfrekvens genom fotopletysmografisk maetning
US5243992A (en) 1990-03-30 1993-09-14 Colin Electronics Co., Ltd. Pulse rate sensor system
US6725072B2 (en) 1990-10-06 2004-04-20 Hema Metrics, Inc. Sensor for transcutaneous measurement of vascular access blood flow
EP0574509B1 (en) 1991-03-07 1999-09-15 Masimo Corporation Signal processing apparatus and method
US5226417A (en) 1991-03-11 1993-07-13 Nellcor, Inc. Apparatus for the detection of motion transients
ATE124225T1 (de) 1991-08-12 1995-07-15 Avl Medical Instr Ag Einrichtung zur messung mindestens einer gassättigung, insbesondere der sauerstoffsättigung von blut.
US5297548A (en) 1992-02-07 1994-03-29 Ohmeda Inc. Arterial blood monitoring probe
US6022748A (en) 1997-08-29 2000-02-08 Sandia Corporation - New Mexico Regents Of The University Of California Sol-gel matrices for direct colorimetric detection of analytes
US5494043A (en) 1993-05-04 1996-02-27 Vital Insite, Inc. Arterial sensor
US5503016A (en) 1994-02-01 1996-04-02 Ic Sensors, Inc. Vertically mounted accelerometer chip
US5575284A (en) 1994-04-01 1996-11-19 University Of South Florida Portable pulse oximeter
US5807267A (en) 1994-06-01 1998-09-15 Advanced Body Metrics Corporation Heart pulse monitor
JPH0880288A (ja) 1994-09-14 1996-03-26 Seiko Epson Corp 生体情報計測装置および脈波計測装置
US5448082A (en) 1994-09-27 1995-09-05 Opto Diode Corporation Light emitting diode for use as an efficient emitter or detector of light at a common wavelength and method for forming the same
US5673692A (en) 1995-02-03 1997-10-07 Biosignals Ltd. Co. Single site, multi-variable patient monitor
JP3605216B2 (ja) * 1995-02-20 2004-12-22 セイコーエプソン株式会社 脈拍計
US5853364A (en) 1995-08-07 1998-12-29 Nellcor Puritan Bennett, Inc. Method and apparatus for estimating physiological parameters using model-based adaptive filtering
DE19537646C2 (de) 1995-10-10 1998-09-17 Hewlett Packard Gmbh Verfahren und Vorrichtung zum Erkennen verfälschter Meßwerte in der Pulsoximetrie zur Messung der Sauerstoffsättigung
JPH09114955A (ja) 1995-10-18 1997-05-02 Seiko Epson Corp ピッチ計
DE69634242T2 (de) 1995-12-18 2005-06-30 Seiko Epson Corp. Vorrichtung zum feststellen des gesundheitszustandes und zum unterstützen von übungen
US5797841A (en) 1996-03-05 1998-08-25 Nellcor Puritan Bennett Incorporated Shunt barrier in pulse oximeter sensor
JP3564482B2 (ja) 1996-03-22 2004-09-08 セイコーエプソン株式会社 運動強度測定装置
EP1338241B1 (en) 1996-04-08 2009-07-08 Seiko Epson Corporation Exercise workout support device
US5853005A (en) 1996-05-02 1998-12-29 The United States Of America As Represented By The Secretary Of The Army Acoustic monitoring system
EP0934021A2 (en) 1996-10-24 1999-08-11 Massachusetts Institute Of Technology Patient monitoring finger ring sensor
US5817008A (en) 1996-10-31 1998-10-06 Spacelabs Medical, Inc. Conformal pulse oximetry sensor and monitor
US6198394B1 (en) 1996-12-05 2001-03-06 Stephen C. Jacobsen System for remote monitoring of personnel
JP3564255B2 (ja) 1997-03-17 2004-09-08 セイコーエプソン株式会社 脈拍計
US5954644A (en) 1997-03-24 1999-09-21 Ohmeda Inc. Method for ambient light subtraction in a photoplethysmographic measurement instrument
US6002952A (en) 1997-04-14 1999-12-14 Masimo Corporation Signal processing apparatus and method
US20020013538A1 (en) 1997-09-30 2002-01-31 David Teller Method and apparatus for health signs monitoring
USRE45616E1 (en) 1998-10-13 2015-07-21 Covidien Lp Multi-channel non-invasive tissue oximeter
US7991448B2 (en) 1998-10-15 2011-08-02 Philips Electronics North America Corporation Method, apparatus, and system for removing motion artifacts from measurements of bodily parameters
US6393311B1 (en) 1998-10-15 2002-05-21 Ntc Technology Inc. Method, apparatus and system for removing motion artifacts from measurements of bodily parameters
US6684090B2 (en) 1999-01-07 2004-01-27 Masimo Corporation Pulse oximetry data confidence indicator
WO2000044274A2 (en) 1999-01-29 2000-08-03 Pougatchev Vadim I Personal physiological monitor
US6267721B1 (en) 1999-06-18 2001-07-31 William F. Welles Method and apparatus for stress relief system
US6608562B1 (en) 1999-08-31 2003-08-19 Denso Corporation Vital signal detecting apparatus
US6527711B1 (en) 1999-10-18 2003-03-04 Bodymedia, Inc. Wearable human physiological data sensors and reporting system therefor
US6656151B1 (en) 2000-01-11 2003-12-02 Integrated Vascular Interventional Technologies, L.C. (Ivit, Lc) Vascular access devices and systems
US6443890B1 (en) 2000-03-01 2002-09-03 I-Medik, Inc. Wireless internet bio-telemetry monitoring system
WO2002013679A2 (en) 2000-08-11 2002-02-21 Healthetech, Inc. Achieving a relaxed state
IL138884A (en) 2000-10-05 2006-07-05 Conmed Corp Pulse oximeter and a method of its operation
JP2002197437A (ja) 2000-12-27 2002-07-12 Sony Corp 歩行検出システム、歩行検出装置、デバイス、歩行検出方法
WO2002051307A1 (en) 2000-12-27 2002-07-04 Medic4All Inc. System and method for automatic monitoring of the health of a user
US6898451B2 (en) 2001-03-21 2005-05-24 Minformed, L.L.C. Non-invasive blood analyte measuring system and method utilizing optical absorption
EP1297784B8 (en) 2001-09-28 2011-01-12 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Method and device for pulse rate detection
US6748254B2 (en) 2001-10-12 2004-06-08 Nellcor Puritan Bennett Incorporated Stacked adhesive optical sensor
DE60207183T2 (de) 2001-12-10 2006-08-10 Kabushiki Gaisha K-And-S Vorrichtung zur Beobachtung biologischer Daten
US6702752B2 (en) 2002-02-22 2004-03-09 Datex-Ohmeda, Inc. Monitoring respiration based on plethysmographic heart rate signal
JP3852352B2 (ja) 2002-03-14 2006-11-29 セイコーエプソン株式会社 生体活動計測装置
KR100455289B1 (ko) 2002-03-16 2004-11-08 삼성전자주식회사 빛을 이용한 진단방법 및 장치
US7188767B2 (en) 2002-03-18 2007-03-13 Precision Dynamics Corporation Physical condition or environmental threat detection appliance system
US6850788B2 (en) 2002-03-25 2005-02-01 Masimo Corporation Physiological measurement communications adapter
KR100462182B1 (ko) * 2002-04-15 2004-12-16 삼성전자주식회사 Ppg 기반의 심박 검출 장치 및 방법
US8849379B2 (en) 2002-04-22 2014-09-30 Geelux Holdings, Ltd. Apparatus and method for measuring biologic parameters
US6995665B2 (en) 2002-05-17 2006-02-07 Fireeye Development Incorporated System and method for identifying, monitoring and evaluating equipment, environmental and physiological conditions
FR2840794B1 (fr) 2002-06-18 2005-04-15 Suisse Electronique Microtech Equipement portable destine a la mesure et/ou la surveillance de la frequence cardiaque
US6997879B1 (en) 2002-07-09 2006-02-14 Pacesetter, Inc. Methods and devices for reduction of motion-induced noise in optical vascular plethysmography
US6745061B1 (en) 2002-08-21 2004-06-01 Datex-Ohmeda, Inc. Disposable oximetry sensor
US7020508B2 (en) 2002-08-22 2006-03-28 Bodymedia, Inc. Apparatus for detecting human physiological and contextual information
JP3755501B2 (ja) 2002-09-06 2006-03-15 セイコーエプソン株式会社 脈拍計、脈拍計の制御方法、時計型情報機器、制御プログラムおよび記録媒体
US7341559B2 (en) 2002-09-14 2008-03-11 Masimo Corporation Pulse oximetry ear sensor
US7024234B2 (en) 2002-09-20 2006-04-04 Lyle Aaron Margulies Method and apparatus for monitoring the autonomic nervous system
KR20040032451A (ko) * 2002-10-09 2004-04-17 삼성전자주식회사 생체신호 기반의 건강 관리 기능을 갖는 모바일 기기 및이를 이용한 건강 관리 방법
US7190986B1 (en) 2002-10-18 2007-03-13 Nellcor Puritan Bennett Inc. Non-adhesive oximeter sensor for sensitive skin
JP3801163B2 (ja) 2003-03-07 2006-07-26 セイコーエプソン株式会社 体動検出装置、ピッチ計、歩数計、腕時計型情報処理装置、制御方法及び制御プログラム
JP3726832B2 (ja) 2003-03-19 2005-12-14 セイコーエプソン株式会社 脈拍計、腕時計型情報機器、制御プログラムおよび記録媒体
JP2004358271A (ja) * 2003-03-19 2004-12-24 Seiko Epson Corp 血管模擬センサ、脈拍計および生体情報計測装置
JP3815448B2 (ja) 2003-03-19 2006-08-30 セイコーエプソン株式会社 情報収集装置および脈拍計
KR100571811B1 (ko) 2003-05-09 2006-04-17 삼성전자주식회사 귀속형 생체 신호 측정 장치
US20050007582A1 (en) 2003-07-07 2005-01-13 Lumidigm, Inc. Methods and apparatus for collection of optical reference measurements for monolithic sensors
KR100675555B1 (ko) 2003-07-07 2007-01-29 유선국 맥박 산소포화도 측정 장치 및 방법
WO2005010568A2 (en) 2003-07-21 2005-02-03 The Titan Corporation Optical vital signs monitor
JP2005040261A (ja) 2003-07-25 2005-02-17 Waatekkusu:Kk 脈波センサ
US8192376B2 (en) 2003-08-18 2012-06-05 Cardiac Pacemakers, Inc. Sleep state classification
US7107088B2 (en) 2003-08-25 2006-09-12 Sarnoff Corporation Pulse oximetry methods and apparatus for use within an auditory canal
WO2005020841A2 (en) 2003-08-25 2005-03-10 Sarnoff Corporation Monitoring using signals detected from auditory canal
AU2003272294A1 (en) 2003-09-09 2005-04-27 Emcore Corporation Photodetector/optical fiber apparatus with enhanced optical coupling efficiency and method for forming the same
CN102415880B (zh) 2003-10-09 2014-05-07 日本电信电话株式会社 生物体信息检测电路和生物体信息测量装置
US8403865B2 (en) 2004-02-05 2013-03-26 Earlysense Ltd. Prediction and monitoring of clinical episodes
US20050209516A1 (en) 2004-03-22 2005-09-22 Jacob Fraden Vital signs probe
EP2574275A3 (en) 2004-03-22 2013-06-26 BodyMedia, Inc. Non-Invasive Temperature Monitoring Device
JP4476664B2 (ja) 2004-03-26 2010-06-09 セイコーインスツル株式会社 生体情報計測装置
US7355284B2 (en) 2004-03-29 2008-04-08 Cree, Inc. Semiconductor light emitting devices including flexible film having therein an optical element
US7993381B2 (en) 2004-04-01 2011-08-09 Mac Beam, Inc. Method and apparatus for treating the body
CA2574759A1 (en) 2004-06-18 2006-01-26 Vivometrics, Inc. Systems and methods for real-time physiological monitoring
WO2006033104A1 (en) 2004-09-22 2006-03-30 Shalon Ventures Research, Llc Systems and methods for monitoring and modifying behavior
US7993276B2 (en) 2004-10-15 2011-08-09 Pulse Tracer, Inc. Motion cancellation of optical input signals for physiological pulse measurement
US20060178588A1 (en) * 2005-01-03 2006-08-10 Lee Brody System and method for isolating effects of basal autonomic nervous system activity on heart rate variability
US20060178586A1 (en) 2005-02-07 2006-08-10 Dobak John D Iii Devices and methods for accelerometer-based characterization of cardiac function and identification of LV target pacing zones
US7393327B2 (en) 2005-06-29 2008-07-01 Fukuda Denshi Co., Ltd. Blood pressure monitoring apparatus
EP1903929A1 (en) 2005-06-30 2008-04-02 Koninklijke Philips Electronics N.V. Device providing spot-check of vital signs using an in-the-ear probe
WO2007013054A1 (en) 2005-07-28 2007-02-01 Boris Schwartz Ear-mounted biosensor
US20070027367A1 (en) 2005-08-01 2007-02-01 Microsoft Corporation Mobile, personal, and non-intrusive health monitoring and analysis system
JP2007054471A (ja) 2005-08-26 2007-03-08 Nippon Koden Corp 脈拍数測定装置及び脈拍数測定方法
US8897864B2 (en) 2005-09-15 2014-11-25 Citizen Holdings Co., Ltd. Heart rate meter and method for removing noise of heart beat waveform
US20070116314A1 (en) 2005-10-11 2007-05-24 Morning Pride Manufacturing, L.L.C. Facemask-earpiece combination
US7378954B2 (en) 2005-10-21 2008-05-27 Barry Myron Wendt Safety indicator and method
WO2007064984A2 (en) 2005-11-29 2007-06-07 Masimo Corporation Optical sensor including disposable and reusable elements
US20070197881A1 (en) 2006-02-22 2007-08-23 Wolf James L Wireless Health Monitor Device and System with Cognition
JP4967368B2 (ja) 2006-02-22 2012-07-04 ソニー株式会社 体動検出装置、体動検出方法および体動検出プログラム
US8308641B2 (en) * 2006-02-28 2012-11-13 Koninklijke Philips Electronics N.V. Biometric monitor with electronics disposed on or in a neck collar
US8055469B2 (en) 2006-03-03 2011-11-08 Garmin Switzerland Gmbh Method and apparatus for determining the attachment position of a motion sensing apparatus
GB0607270D0 (en) 2006-04-11 2006-05-17 Univ Nottingham The pulsing blood supply
US7539533B2 (en) 2006-05-16 2009-05-26 Bao Tran Mesh network monitoring appliance
US20080076972A1 (en) 2006-09-21 2008-03-27 Apple Inc. Integrated sensors for tracking performance metrics
US8068891B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
CA2665556A1 (en) 2006-10-04 2008-04-17 Welch Allyn, Inc. Dynamic medical object information base
US20080132798A1 (en) 2006-11-30 2008-06-05 Motorola, Inc Wireless headsets and wireless communication networks for heart rate monitoring
US8652040B2 (en) 2006-12-19 2014-02-18 Valencell, Inc. Telemetric apparatus for health and environmental monitoring
US20080154098A1 (en) 2006-12-20 2008-06-26 Margaret Morris Apparatus for monitoring physiological, activity, and environmental data
KR20080069851A (ko) 2007-01-24 2008-07-29 삼성전자주식회사 생체 신호 측정 센서 장치 및 상기 센서 장치를 구비한헤드셋 장치 및 팬던트 장치
US9044136B2 (en) 2007-02-16 2015-06-02 Cim Technology Inc. Wearable mini-size intelligent healthcare system
US20090010461A1 (en) 2007-07-02 2009-01-08 Gunnar Klinghult Headset assembly for a portable mobile communications device
WO2009003212A1 (en) * 2007-07-02 2009-01-08 Atcor Medical Pty Ltd A step rate optimization device
US7914420B2 (en) * 2007-07-18 2011-03-29 Brunswick Corporation Sensing applications for exercise machines
EP2182839B1 (en) 2007-07-20 2011-10-26 Bmeye B.V. A cuff for determining a physiological parameter
US20090105556A1 (en) 2007-09-28 2009-04-23 Tiax Llc Measurement of physiological signals
US8655004B2 (en) 2007-10-16 2014-02-18 Apple Inc. Sports monitoring system for headphones, earbuds and/or headsets
US8251903B2 (en) 2007-10-25 2012-08-28 Valencell, Inc. Noninvasive physiological analysis using excitation-sensor modules and related devices and methods
CN101980659B (zh) 2008-03-31 2012-08-29 夏普株式会社 体动测定装置、体动测定装置的控制方法
US20090281435A1 (en) 2008-05-07 2009-11-12 Motorola, Inc. Method and apparatus for robust heart rate sensing
US8996332B2 (en) * 2008-06-24 2015-03-31 Dp Technologies, Inc. Program setting adjustments based on activity identification
US8700111B2 (en) 2009-02-25 2014-04-15 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
EP2229880A1 (en) * 2009-03-18 2010-09-22 CSEM Centre Suisse d'Electronique et de Microtechnique SA Headband integrated monitoring unit using an accelerometer
TWI449514B (zh) * 2009-04-28 2014-08-21 私立中原大學 Measurement of arrhythmia
ES2703605T3 (es) * 2009-09-03 2019-03-11 Csem Ct Suisse Delectronique Microtechnique Sa Rech Developpement Dispositivo de monitoreo y método para estimar la concentración de constituyentes sanguíneos para tejidos con baja perfusión
JP4877395B2 (ja) 2010-01-19 2012-02-15 セイコーエプソン株式会社 歩幅推測方法及び歩幅推測装置
US20120303319A1 (en) 2010-02-02 2012-11-29 Nokia Corporation Pedometer device and step detection method
AU2011219093A1 (en) 2010-02-24 2012-10-18 Performance Lab Technologies Limited Classification system and method
JP2012008637A (ja) 2010-06-22 2012-01-12 Yamaha Corp 歩数計、およびプログラム
KR20120020051A (ko) 2010-08-27 2012-03-07 야마하 가부시키가이샤 보수 계측 장치, 샘플링 장치 및 파형 분석 장치
US9167991B2 (en) * 2010-09-30 2015-10-27 Fitbit, Inc. Portable monitoring devices and methods of operating same
US9717412B2 (en) * 2010-11-05 2017-08-01 Gary And Mary West Health Institute Wireless fetal monitoring system
US8888701B2 (en) 2011-01-27 2014-11-18 Valencell, Inc. Apparatus and methods for monitoring physiological data during environmental interference
US9446287B2 (en) 2011-07-01 2016-09-20 Nike, Inc. Sensor-based athletic activity measurements
EP2755551B1 (en) 2011-09-16 2016-08-17 Koninklijke Philips N.V. Device and method for estimating the heart rate during motion
US20130178958A1 (en) * 2012-01-09 2013-07-11 Garmin Switzerland Gmbh Method and system for determining user performance characteristics
US10390762B2 (en) 2012-01-16 2019-08-27 Valencell, Inc. Physiological metric estimation rise and fall limiting
US9005129B2 (en) 2012-06-22 2015-04-14 Fitbit, Inc. Wearable heart rate monitor
WO2014109982A2 (en) 2013-01-09 2014-07-17 Valencell Inc. Cadence detection based on inertial harmonics

Also Published As

Publication number Publication date
JP2015506746A (ja) 2015-03-05
JP6116017B2 (ja) 2017-04-19
CN104203088B (zh) 2017-09-22
US20150018636A1 (en) 2015-01-15
HK1204252A1 (zh) 2015-11-13
CN104203088A (zh) 2014-12-10
US20190029530A1 (en) 2019-01-31
US10542896B2 (en) 2020-01-28
WO2013109390A1 (en) 2013-07-25
US20200085314A1 (en) 2020-03-19
US10631740B2 (en) 2020-04-28
CN107260142A (zh) 2017-10-20
US10349844B2 (en) 2019-07-16
EP2804526A1 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
CN107260142B (zh) 利用惯性频率减少生理指标误差
US11350884B2 (en) Physiological metric estimation rise and fall limiting
US10856813B2 (en) Method and apparatus for generating assessments using physical activity and biometric parameters
US10413233B2 (en) Monitoring of sleep phenomena
CN106999065B (zh) 使用加速度测量术的可穿戴疼痛监测器
US20140288447A1 (en) Ear-related devices implementing sensors to acquire physiological characteristics
US11771375B2 (en) Respiration rate detection device and breath detection device adopting motion denoising
US10966662B2 (en) Motion-dependent averaging for physiological metric estimating systems and methods
Poh et al. Heartphones: Sensor earphones and mobile application for non-obtrusive health monitoring
JP2009072417A (ja) 生体情報処理装置及び方法
WO2013165740A1 (en) Systems and methods for identifying portions of a physilogical signal usable for determining physiiological information
KR20130010207A (ko) 무구속 무자각 생체신호 획득을 통한 워치타입 건강상태 분석시스템
CN110292372B (zh) 检测装置
CN110811582A (zh) 心率检测方法、装置和设备
US10327649B1 (en) Non-invasive wearable blood pressure monitoring system
JP6716888B2 (ja) 呼吸解析装置、呼吸解析方法及びプログラム

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1250210

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230116

Address after: Delaware

Patentee after: Yucca Magic Co.,Ltd.

Address before: Rowley, North Carolina

Patentee before: VALENCELL, Inc.