CN107227466A - 一种氯氧铜除氯提铜的方法 - Google Patents

一种氯氧铜除氯提铜的方法 Download PDF

Info

Publication number
CN107227466A
CN107227466A CN201710495358.XA CN201710495358A CN107227466A CN 107227466 A CN107227466 A CN 107227466A CN 201710495358 A CN201710495358 A CN 201710495358A CN 107227466 A CN107227466 A CN 107227466A
Authority
CN
China
Prior art keywords
stage
copper
water
chlorine oxygen
washing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710495358.XA
Other languages
English (en)
Inventor
蒋兆慧
覃小龙
陈兰
谭代娣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengzhou City Jingui Silver Co Ltd
Original Assignee
Chengzhou City Jingui Silver Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengzhou City Jingui Silver Co Ltd filed Critical Chengzhou City Jingui Silver Co Ltd
Priority to CN201710495358.XA priority Critical patent/CN107227466A/zh
Publication of CN107227466A publication Critical patent/CN107227466A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/12Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • C22B15/0067Leaching or slurrying with acids or salts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

本发明公开了一种氯氧铜除氯提铜的方法,属于有色金属湿法冶金技术领域。该工艺包括如下步骤:第一阶段:(1)向氯氧铜物料中加入第一洗液,反应后得碱洗液和碱洗渣;(2)采用第二洗液洗涤步骤(1)得到的碱洗渣,得水洗液和水洗渣;(3)向步骤(2)得到的水洗渣中加入酸液,反应后得浸出渣和浸出液;(4)步骤(3)得到的浸出液旋流电积,得阴极铜和电积液。该方法将氯氧铜物料与氢氧化钠或碱洗液反应,氯元素反应形成氯化钠溶于水中而除去,并将得到的碱洗渣进行水洗,洗掉了碱洗渣中夹带的氯化钠,相当于进一步除去了氯氧铜物料中含有的氯元素,从而消除了氯元素对后续旋流电积工艺及设备的影响,流程简单,生产成本低。

Description

一种氯氧铜除氯提铜的方法
技术领域
本发明涉及有色金属湿法冶金技术领域,特别是指一种氯氧铜除氯提铜的方法。
背景技术
在采用氯氧铜物料旋流电积提铜的过程中,由于氯氧铜物料中含有一定量的氯元素,并且氯元素主要以SbO2Cl形式存在,氯氧铜物料浸出铜时,氯元素以离子状态存在于电解溶液中,在后续旋流电积过程中,氯离子将不断富集,导致电解溶液中氯离子含量不断上升,影响电流效率,腐蚀电解极板,因此,旋流电积前需要严格控制电解液中氯离子浓度。
目前,从电解液中除去氯的方法主要有硫酸银沉淀法、铜渣除氯法、离子交换法等。硫酸银沉淀法除氯效果好,但银盐价格昂贵,银再生率比较低,不适合工业化生产。氯化亚铜沉淀法现在在工业生产中广泛应用,氯化亚铜经再生处理后可循环利用,但该方法处理周期较长,而且除氯后液需锌粉除铜处理。离子交换设备较为简单,操作方便,但除氯效果差。因此开发一种用于旋流电解提取铜的氯氧铜除氯工艺具有重要的现实意义。
发明内容
有鉴于此,本发明的目的在于提出一种氯氧铜除氯提铜的方法,该方法流程简单、所需设备少、生产成本低、综合回收程度高、不产生废气,具有显著的经济效益及一定的应用前景。
基于上述目的本发明提供的一种氯氧铜除氯提铜的方法,包括如下步骤:
第一阶段:(1)向氯氧铜物料中加入第一洗液,反应后得碱洗液和碱洗渣;
(2)采用第二洗液洗涤步骤(1)得到的碱洗渣,得水洗液和水洗渣;
(3)向步骤(2)得到的水洗渣中加入酸液,反应后得浸出渣和浸出液;
(4)步骤(3)得到的浸出液旋流电积,得阴极铜和电积液;
第二阶段:将第一阶段步骤(1)产生的碱洗液作为第二阶段步骤(1)中的第一洗液,将第一阶段步骤(2)产生的水洗液作为第二阶段步骤(2)中的第二洗液,将第一阶段步骤(4)产生的电积液作为第二阶段步骤(3)中的酸液,其余操作同第一阶段;
后续阶段循环第二阶段,当步骤(1)产生的碱洗液中和/或步骤(2)产生的水洗液饱和时,循环第一阶段。
优选地,所述第一阶段步骤(1)中的第一洗液为氢氧化钠,氢氧化钠浓度为0.5~1mol/L,氢氧化钠与氯氧铜物料的液固质量比为(2~3):1;反应温度为70~90℃,反应时间为40~60min。
优选地,除第一阶段外,步骤(1)中的第一洗液为上一阶段步骤(1)中产生的碱洗液,碱洗液与氯氧铜物料的液固质量比为(2~3):1,反应温度为70~90℃,反应时间为40~60min。
优选地,所述第一阶段步骤(2)中的第二洗液为水,水与碱洗渣的液固质量比为(2~3):1;洗涤温度为70~90℃,洗涤时间为30~60min。
优选地,除第一阶段外,步骤(2)中的第二洗液为上一阶段步骤(2)中产生的水洗液,水洗液与碱洗渣的液固质量比为(2~3):1;洗涤温度为70~90℃,洗涤时间为30~60min。
优选地,所述第一阶段步骤(3)中的酸液为硫酸,硫酸浓度为1~1.5mol/L,硫酸与水洗渣的液固质量比为(1.5~2):1,反应时间为1~2h。
优选地,除第一阶段外,步骤(3)中的酸液为上一阶段步骤(4)中产生的电积液,电积液与水洗渣的液固质量比为(1.5~2):1,反应时间为1~2h。
氯氧铜物料与氢氧化钠或碱洗液反应后,氯元素形成氯化钠溶于水中而除去,铜等有价金属继续留在碱洗渣中,将碱洗渣进行水洗,进一步洗掉了碱洗渣中夹带的氯化钠,氯元素的去除率达到99%以上,消除了氯元素对后续的旋流电积工艺及设备的影响;该过程中涉及的主要反应如下:
SbO2Cl+NaOH+H2O=NaSbO3·3H2O↓+NaCl。
第一阶段步骤(1)中采用氢氧化钠作为第一洗液,第一阶段步骤(2)中水为第二洗液,第一阶段步骤(3)中采用硫酸作为酸液;将第一阶段步骤(1)产生的碱洗液作为第二阶段步骤(1)中的第一洗液,将第一阶段步骤(2)产生的水洗液作为第二阶段步骤(2)中的第二洗液,将第一阶段步骤(4)产生的电积液作为第二阶段步骤(3)中的酸液,其余操作同第一阶段;后续阶段循环第二阶段;当步骤(1)产生的碱洗液中和/或步骤(2)产生的水洗液中氯化钠浓度达到饱和时,将碱洗液和/或水洗液浓缩结晶收集氯化钠;将下一批氯氧铜物料除氯提铜时循环第一阶段,然后再次进行氯氧铜物料除氯提铜时循环第二阶段。
除第一阶段外,步骤(1)中的第一洗液为上一阶段步骤(1)中产生的碱洗液,碱洗液与氯氧铜物料的反应温度控制为70~90℃,反应时间控制为40~60min;步骤(1)中产生的碱洗液与0.5~1mol/L的氢氧化钠具有相同的碱度,因此可以代替氢氧化钠用作下一阶段步骤(1)中的第一洗液。
除第一阶段外,步骤(2)中的第二洗液为上一阶段步骤(2)中产生的水洗液,水洗液洗涤碱洗渣的温度控制为70~90℃,洗涤时间控制为30~60min,步骤(2)中产生的水洗液几乎接近于水,因此可以代替水用作下一阶段步骤(2)中的第二洗液。
第一阶段步骤(3)中采用硫酸作为酸液,硫酸浓度范围控制为1~1.5mol/L,硫酸与水洗渣的反应时间控制为1~2h;因为当硫酸度低于1mol/L或者反应时间少于1h时,铜离子浸出不完全,当硫酸浓度高于1.5mol/L或者反应时间高于2h时,浪费资源,增加成本。
除第一阶段外,步骤(3)中采用上一阶段步骤(4)中产生的电积液作为酸液,电积液与水洗渣的反应时间范围控制为1~2h;步骤(4)中产生的电积液与浓度为1~1.5mol/L的硫酸具有相同的酸度,因此可以代替硫酸用作下一阶段步骤(3)中的酸液浸出水洗渣。
氯氧铜物料的主要成分为铜(40~60%)、氯(12~20%)和铅(1~5%)。由于氯元素含量较高,在不除去氯元素而直接进行旋流电积提取铜时,氯元素对后续旋流电积工艺及设备均具有很大影响,降低铜的提取效率并造成设备腐蚀,缩短设备使用寿命,提高生产成本。
从上面所述可以看出,本发明的优点和有益效果是:
(1)本发明提供的氯氧铜除氯提铜的方法,首先将氯氧铜物料与氢氧化钠或碱洗液反应,氯元素反应形成氯化钠溶于水中而除去,并将得到的碱洗渣进行水洗,洗掉了碱洗渣中夹带的氯化钠,相当于进一步除去了氯氧铜物料中含有的氯元素,从而消除了氯元素对后续旋流电积工艺及设备的影响;氯元素除去后,免除了氯元素对旋流电积设备的腐蚀,延长了设备的使用寿命,如果不除去氯元素,设备的使用寿命为短暂的2至3个月,除去后,设备使用寿命可达2至3年,有效降低了生产成本。
(2)本发明提供的氯氧铜除氯提铜的方法,通过将氯氧铜物料碱洗及碱洗渣水洗两步操作,有效除去了氯氧铜物料中含有的氯元素,氯元素的去除率高达99%以上,消除了氯元素对旋流电积提铜的影响,提高了铜的提取效率。
(3)本发明提供的氯氧铜除氯提铜的方法,该方法流程简单、所需设备少、生产成本低、综合回收程度高、不产生废气,具有显著的经济效益及一定的应用前景。
附图说明
图1为本发明实施例的工艺流程示意图。
具体实施方式
实施例1
一种氯氧铜除氯提铜的方法,包括如下步骤:
(1)将5000g氯氧铜物料置于反应罐内,其中氯氧铜物料中铜含量为44.04%,氯含量为18.29%,铅含量为2.05%,然后缓慢加入0.5mol/L的氢氧化钠,边加边搅拌,氢氧化钠和氯氧铜物料的液固质量比为3:1时停止加入,继续搅拌,维持反应温度为70℃,反应60min后停止搅拌,液固分离,得碱洗渣和碱洗液,收集碱洗液,经检测,碱洗液中含氯离子861.165g。
(2)向步骤(1)中得到的碱洗渣中加入水,水和碱洗渣的液固质量比为3:1,搅拌洗涤,维持洗涤温度为90℃,60min后停止搅拌,液固分离,得水洗液和水洗渣,收集水洗液,经检测,水洗液中含氯离子49.13g;因此,经过碱洗和水洗后,除氯效率达99.54%。
(3)采用硫酸浸出步骤(2)得到的水洗渣,硫酸浓度为1mol/L,硫酸和水洗渣的液固质量比为2:1,反应时间为1h,液固分离,得浸出渣和浸出液,浸出渣返铅系统回收,得铅101g,因此,铅的回收率为98.54%。
(4)将步骤(3)得到的浸出液旋流电积,得阴极铜和电积液,收集电积液,经测量阴极铜的重量为1632.39g,因此,铜的提取效率为74.13%。
工艺流程图如图1所示。
上述步骤(1)中产生的碱洗液用作下一阶段步骤(1)中的第一洗液,步骤(2)中产生的水洗液用作下一阶段步骤(2)中的第二洗液,步骤(4)中产生的电积液用作下一阶段步骤(3)中的酸液,下一阶段中的其余操作均同于上一阶段。当步骤(1)产生的碱洗液中和/或步骤(2)产生的水洗液中氯化钠浓度达到饱和时,将碱洗液和/或水洗液浓缩结晶收集氯化钠;将下一批氯氧铜物料除氯提铜时,步骤(1)中的第一洗液采用氢氧化钠,步骤(2)中的第二洗液采用水,步骤(3)中的酸液采用硫酸,并收集步骤(1)产生的碱洗液、步骤(2)产生的水洗液和步骤(4)产生的电积液,相应地用于下一阶段的氯氧铜物料除氯提铜。
实施例2
一种氯氧铜除氯提铜的方法,包括如下步骤:
(1)将5000g氯氧铜物料置于反应罐内,其中氯氧铜物料中铜含量为46.01%,氯含量为18.40%,铅含量为2.35%,然后缓慢加入1mol/L的氢氧化钠,边加边搅拌,氢氧化钠和氯氧铜物料的液固质量比为2:1时停止加入,继续搅拌,维持反应温度为90℃,反应40min后停止搅拌,液固分离,得碱洗渣和碱洗液,收集碱洗液,经检测,碱洗液中含氯离子866.253g。
(2)向步骤(1)中得到的碱洗渣中加入水,水和碱洗渣的液固质量比为2:1,搅拌洗涤,维持洗涤温度为70℃,30min后停止搅拌,液固分离,得水洗液和水洗渣,收集水洗液,经检测,水洗液中含氯离子50.21g;因此,经过碱洗和水洗后,除氯效率达99.61%。
(3)采用硫酸浸出步骤(2)得到的水洗渣,硫酸浓度为1.5mol/L,硫酸和水洗渣的液固质量比为1.5:1,反应时间为2h,液固分离,得浸出渣和浸出液,浸出渣返铅系统回收,得铅116g,因此,铅的回收率为98.72%。
(4)将步骤(3)得到的浸出液旋流电积,得阴极铜和电积液,收集电积液,经测量阴极铜的重量为1666.67g,因此,铜的提取效率为72.40%。
工艺流程图如图1所示。
上述步骤(1)中产生的碱洗液用作下一阶段步骤(1)中的第一洗液,步骤(2)中产生的水洗液用作下一阶段步骤(2)中的第二洗液,步骤(4)中产生的电积液用作下一阶段步骤(3)中的酸液,下一阶段中的其余操作均同于上一阶段。当步骤(1)产生的碱洗液中和/或步骤(2)产生的水洗液中氯化钠浓度达到饱和时,将碱洗液和/或水洗液浓缩结晶收集氯化钠;将下一批氯氧铜物料除氯提铜时,步骤(1)中的第一洗液采用氢氧化钠,步骤(2)中的第二洗液采用水,步骤(3)中的酸液采用硫酸,并收集步骤(1)产生的碱洗液、步骤(2)产生的水洗液和步骤(4)产生的电积液,相应地用于下一阶段的氯氧铜物料除氯提铜。
实施例3
一种氯氧铜除氯提铜的方法,包括如下步骤:
(1)将5000g氯氧铜物料置于反应罐内,其中氯氧铜物料中铜含量为46.02%,氯含量为18.4%,铅含量为2.35%,然后缓慢加入0.8mol/L的氢氧化钠,边加边搅拌,氢氧化钠和氯氧铜物料的液固质量比为2.5:1时停止加入,继续搅拌,维持反应温度为80℃,反应50min后停止搅拌,液固分离,得碱洗渣和碱洗液,收集碱洗液,经检测,碱洗液中含氯离子828.1g。
(2)向步骤(1)中得到的碱洗渣中加入水,水和碱洗渣的液固质量比为2.5:1,搅拌洗涤,维持洗涤温度为80℃,50min后停止搅拌,液固分离,得水洗液和水洗渣,收集水洗液,经检测,水洗液中含氯离子89.1g;因此,经过碱洗和水洗后,除氯效率达99.69%。
(3)采用硫酸浸出步骤(2)得到的水洗渣,硫酸浓度为1.2mol/L,硫酸和水洗渣的液固质量比为1.7:1,反应时间为1.5h,液固分离,得浸出渣和浸出液,浸出渣返铅系统回收,得铅108g,因此,铅的回收率为91.91%。
(4)将步骤(3)得到的浸出液旋流电积,得阴极铜和电积液,收集电积液,经测量阴极铜的重量为1794.78g,因此,铜的提取效率为78.0%。
工艺流程图如图1所示。
上述步骤(1)中产生的碱洗液用作下一阶段步骤(1)中的第一洗液,步骤(2)中产生的水洗液用作下一阶段步骤(2)中的第二洗液,步骤(4)中产生的电积液用作下一阶段步骤(3)中的酸液,下一阶段中的其余操作均同于上一阶段。当步骤(1)产生的碱洗液中和/或步骤(2)产生的水洗液中氯化钠浓度达到饱和时,将碱洗液和/或水洗液浓缩结晶收集氯化钠;将下一批氯氧铜物料除氯提铜时,步骤(1)中的第一洗液采用氢氧化钠,步骤(2)中的第二洗液采用水,步骤(3)中的酸液采用硫酸,并收集步骤(1)产生的碱洗液、步骤(2)产生的水洗液和步骤(4)产生的电积液,相应地用于下一阶段的氯氧铜物料除氯提铜。
实施例4
一种氯氧铜除氯提铜的方法,包括如下步骤:
(1)将5000g氯氧铜物料置于反应罐内,其中氯氧铜物料中铜含量为45.26%,氯含量为17.28%,铅含量为2.56%,然后缓慢加入0.6mol/L的氢氧化钠,边加边搅拌,氢氧化钠和氯氧铜物料的液固质量比为2.7:1时停止加入,继续搅拌,维持反应温度为75℃,反应55min后停止搅拌,液固分离,得碱洗渣和碱洗液,收集碱洗液,经检测,碱洗液中含氯离子795.2g。
(2)向步骤(1)中得到的碱洗渣中加入水,水和碱洗渣的液固质量比为2.2:1,搅拌洗涤,维持洗涤温度为85℃,40min后停止搅拌,液固分离,得水洗液和水洗渣,收集水洗液,经检测,水洗液中含氯离子63.88g;因此,经过碱洗和水洗后,除氯效率达99.43%。
(3)采用硫酸浸出步骤(2)得到的水洗渣,硫酸浓度为1.4mol/L,硫酸和水洗渣的液固质量比为1.9:1,反应时间为1.3h,液固分离,得浸出渣和浸出液,浸出渣返铅系统回收,得铅121g,因此,铅的回收率为94.53%。
(4)将步骤(3)得到的浸出液溶液旋流电积,得阴极铜和电积液,收集电积液,经测量阴极铜的重量为1810.10g,因此,铜的提取效率为79.99%。
工艺流程图如图1所示。
上述步骤(1)中产生的碱洗液用作下一阶段步骤(1)中的第一洗液,步骤(2)中产生的水洗液用作下一阶段步骤(2)中的第二洗液,步骤(4)中产生的电积液用作下一阶段步骤(3)中的酸液,下一阶段中的其余操作均同于上一阶段。当步骤(1)产生的碱洗液中和/或步骤(2)产生的水洗液中氯化钠浓度达到饱和时,将碱洗液和/或水洗液浓缩结晶收集氯化钠;将下一批氯氧铜物料除氯提铜时,步骤(1)中的第一洗液采用氢氧化钠,步骤(2)中的第二洗液采用水,步骤(3)中的酸液采用硫酸,并收集步骤(1)产生的碱洗液、步骤(2)产生的水洗液和步骤(4)产生的电积液,相应地用于下一阶段的氯氧铜物料除氯提铜。
实施例5
一种氯氧铜除氯提铜的方法,包括如下步骤:
(1)将5000g氯氧铜物料置于反应罐内,其中氯氧铜物料中铜含量为44.36%,氯含量为15.28%,铅含量为2.34%,然后缓慢加入0.9mol/L的氢氧化钠,边加边搅拌,氢氧化钠和氯氧铜物料的液固质量比为2:1时停止加入,继续搅拌,维持反应温度为85℃,反应45min后停止搅拌,液固分离,得碱洗渣和碱洗液,收集碱洗液,经检测,碱洗液中含氯离子687.5g。
(2)向步骤(1)中得到的碱洗渣中加入水,水和碱洗渣的液固质量比为2.7:1,搅拌洗涤,维持洗涤温度为75℃,55min后停止搅拌,液固分离,得水洗液和水洗渣,收集水洗液,经检测,水洗液中含氯离子70.1g;因此,经过碱洗和水洗后,除氯效率达99.16%。
(3)采用硫酸浸出步骤(2)得到的水洗渣,硫酸浓度为1.3mol/L,硫酸和水洗渣的液固质量比为1.5:1,反应时间为1.8h,液固分离得浸出渣和浸出液,浸出渣返铅系统回收,得铅118g,因此,铅的回收率为92.19%。
(4)将步骤(3)得到的浸出液旋流电积,得阴极铜和电积液,收集电积液,经测量阴极铜的重量为1719.88g,因此,铜的提取效率为76.01%。
工艺流程图如图1所示。
上述步骤(1)中产生的碱洗液用作下一阶段步骤(1)中的第一洗液,步骤(2)中产生的水洗液用作下一阶段步骤(2)中的第二洗液,步骤(4)中产生的电积液用作下一阶段步骤(3)中的酸液,下一阶段中的其余操作均同于上一阶段。当步骤(1)产生的碱洗液中和/或步骤(2)产生的水洗液中氯化钠浓度达到饱和时,将碱洗液和/或水洗液浓缩结晶收集氯化钠;将下一批氯氧铜物料除氯提铜时,步骤(1)中的第一洗液采用氢氧化钠,步骤(2)中的第二洗液采用水,步骤(3)中的酸液采用硫酸,并收集步骤(1)产生的碱洗液、步骤(2)产生的水洗液和步骤(4)产生的电积液,相应地用于下一阶段的氯氧铜物料除氯提铜。
对比例1
一种氯氧铜除氯提铜的方法,包括如下步骤:
(1)将5000g氯氧铜物料至于反应罐内,其中氯氧铜物料中铜含量为45.23%,氯含量为15.02%,铅含量为2.12%,向反应罐内加入硫酸,硫酸浓度为1.2mol/L,硫酸和氯氧铜物料的液固质量比为1.7:1,反应时间为1.5h,液固分离,得浸出渣和浸出液,浸出渣返铅系统回收,得铅79.1g,因此,铅的回收率为74.62%。
(2)将步骤(1)得到的浸出液旋流电积,得阴极铜和电积液,收集电积液,经测量阴极铜的重量为1311.67g,因此,铜的提取效率为58.00%。
对比例2
(1)将5000g氯氧铜物料置于离子交换设备中进行处理,其中氯氧铜物料中铜含量为47.01%,氯含量为15.26%,铅含量为1.89%,经检测,氯离子的除去量为610.4g。
(2)采用硫酸浸出步骤(1)经离子交换设备处理后得到的氯氧铜物料,硫酸浓度为1.3mol/L,硫酸和氯氧铜物料的液固质量比为1.5:1,反应时间为1.8h,液固分离,得浸出渣和浸出液,浸出渣返铅系统回收,得铅79.5g,因此,铅的回收率为84.13%。
(3)将步骤(2)得到的浸出液旋流电积,得阴极铜和电积液,收集电积液,经测量阴极铜的重量为1410.3g,因此,铜的提取效率为60.01%。
由实施例1~5及对比例1~2可以看出,本发明提供的氯氧铜除氯提铜的方法,首先将氯氧铜物料与氢氧化钠或碱洗液反应,氯元素反应形成氯化钠溶于水中而除去,并将得到的碱洗渣进行水洗,洗掉了碱洗渣中夹带的氯化钠,相当于进一步除去了氯氧铜物料中含有的氯元素,从而消除了氯元素对后续旋流电积工艺及设备的影响;并且该方法通过将氯氧铜物料碱洗及碱洗渣水洗两步操作,有效除去了氯氧铜物料中含有的氯元素,氯元素的去除率高达99%以上,消除了氯元素对旋流电积提铜的影响,提高了铜的提取效率。
所属领域的普通技术人员应当理解:以上任何实施例的讨论仅为示例性的,并非旨在暗示本公开的范围(包括权利要求)被限于这些例子;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,并存在如上所述的本发明的不同方面的许多其它变化,为了简明它们没有在细节中提供。因此,凡在本发明的精神和原则之内,所做的任何省略、修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种氯氧铜除氯提铜的方法,其特征在于,包括如下步骤:
第一阶段:(1)向氯氧铜物料中加入第一洗液,反应后得碱洗液和碱洗渣;
(2)采用第二洗液洗涤步骤(1)得到的碱洗渣,得水洗液和水洗渣;
(3)向步骤(2)得到的水洗渣中加入酸液,反应后得浸出渣和浸出液;
(4)步骤(3)得到的浸出液旋流电积,得阴极铜和电积液;
第二阶段:将第一阶段步骤(1)产生的碱洗液作为第二阶段步骤(1)中的第一洗液,将第一阶段步骤(2)产生的水洗液作为第二阶段步骤(2)中的第二洗液,将第一阶段步骤(4)产生的电积液作为第二阶段步骤(3)中的酸液,其余操作同第一阶段;
后续阶段循环第二阶段,当步骤(1)产生的碱洗液中和/或步骤(2)产生的水洗液饱和时,循环第一阶段。
2.根据权利要求1所述的氯氧铜除氯提铜的方法,其特征在于,所述第一阶段步骤(1)中的第一洗液为氢氧化钠,氢氧化钠浓度为0.5~1mol/L,氢氧化钠与氯氧铜物料的液固质量比为(2~3):1;反应温度为70~90℃,反应时间为40~60min。
3.根据权利要求1所述的氯氧铜除氯提铜的方法,其特征在于,除第一阶段外,步骤(1)中的第一洗液为上一阶段步骤(1)中产生的碱洗液,碱洗液与氯氧铜物料的液固质量比为(2~3):1,反应温度为70~90℃,反应时间为40~60min。
4.根据权利要求1所述的氯氧铜除氯提铜的方法,其特征在于,所述第一阶段步骤(2)中的第二洗液为水,水与碱洗渣的液固质量比为(2~3):1;洗涤温度为70~90℃,洗涤时间为30~60min。
5.根据权利要求1所述的氯氧铜除氯提铜的方法,其特征在于,除第一阶段外,步骤(2)中的第二洗液为上一阶段步骤(2)中产生的水洗液,水洗液与碱洗渣的液固质量比为(2~3):1;洗涤温度为70~90℃,洗涤时间为30~60min。
6.根据权利要求1所述的氯氧铜除氯提铜的方法,其特征在于,所述第一阶段步骤(3)中的酸液为硫酸,硫酸浓度为1~1.5mol/L,硫酸与水洗渣的液固质量比为(1.5~2):1,反应时间为1~2h。
7.根据权利要求1所述的氯氧铜除氯提铜的方法,其特征在于,除第一阶段外,步骤(3)中的酸液为上一阶段步骤(4)中产生的电积液,电积液与水洗渣的液固质量比为(1.5~2):1,反应时间为1~2h。
CN201710495358.XA 2017-06-26 2017-06-26 一种氯氧铜除氯提铜的方法 Pending CN107227466A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710495358.XA CN107227466A (zh) 2017-06-26 2017-06-26 一种氯氧铜除氯提铜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710495358.XA CN107227466A (zh) 2017-06-26 2017-06-26 一种氯氧铜除氯提铜的方法

Publications (1)

Publication Number Publication Date
CN107227466A true CN107227466A (zh) 2017-10-03

Family

ID=59935157

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710495358.XA Pending CN107227466A (zh) 2017-06-26 2017-06-26 一种氯氧铜除氯提铜的方法

Country Status (1)

Country Link
CN (1) CN107227466A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114990334A (zh) * 2022-05-06 2022-09-02 中南大学 一种从有机硅废触体中回收铜的方法
CN115058586A (zh) * 2022-06-30 2022-09-16 武汉理工大学 一种从有机硅废触体中回收铜和硅粉的方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1110326A (zh) * 1994-04-11 1995-10-18 宁蒗彝族自治县乡镇企业局溶浸炼铜厂 溶浸——电积提铜新工艺
CN101643852A (zh) * 2009-09-02 2010-02-10 北京科技大学 一种镀锡铜线铜锡分离的堆浸方法
CN101818254A (zh) * 2009-12-23 2010-09-01 株洲冶炼集团股份有限公司 氧化锌烟灰的综合回收方法
CN101974689A (zh) * 2010-09-26 2011-02-16 金川集团有限公司 一种处理含铜物料的方法
CN102108445A (zh) * 2009-12-23 2011-06-29 株洲冶炼集团股份有限公司 氧化锌烟灰中氟氯的脱除方法
CN102534235A (zh) * 2012-02-13 2012-07-04 株洲冶炼集团股份有限公司 一种从湿法炼锌砷盐净化钴镍渣中回收有价金属的方法
CN102994762A (zh) * 2012-12-21 2013-03-27 嘉兴科菲冶金科技股份有限公司 一种从铜镍泥中选择性回收铜和镍的工业方法
CN103540766A (zh) * 2012-07-17 2014-01-29 陕西锌业有限公司 高氟、氯含量氧化锌物料回收铟萃余液除氟、氯、砷工艺
CN103866125A (zh) * 2014-02-28 2014-06-18 红河锌联科技发展有限公司 锌灰物料碱洗萃取联合工艺脱除氟氯的方法
CN105132692A (zh) * 2015-09-25 2015-12-09 广东环境保护工程职业学院 再生铜电解阳极泥中回收有价金属的方法
CN106381397A (zh) * 2016-09-27 2017-02-08 吉首市金湘资源科技开发有限公司 锌灰物料氨浸离子交换联合工艺脱除氯的方法
CN106399715A (zh) * 2016-09-27 2017-02-15 吉首市金湘资源科技开发有限公司 高氯锌灰物料氨浸离子交换联合工艺生产电解锌的方法
CN106566927A (zh) * 2016-10-14 2017-04-19 铜陵有色金属集团股份有限公司 用于铜阳极泥浸出液的高效梯度分离回收工艺

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1110326A (zh) * 1994-04-11 1995-10-18 宁蒗彝族自治县乡镇企业局溶浸炼铜厂 溶浸——电积提铜新工艺
CN101643852A (zh) * 2009-09-02 2010-02-10 北京科技大学 一种镀锡铜线铜锡分离的堆浸方法
CN101818254A (zh) * 2009-12-23 2010-09-01 株洲冶炼集团股份有限公司 氧化锌烟灰的综合回收方法
CN102108445A (zh) * 2009-12-23 2011-06-29 株洲冶炼集团股份有限公司 氧化锌烟灰中氟氯的脱除方法
CN101974689A (zh) * 2010-09-26 2011-02-16 金川集团有限公司 一种处理含铜物料的方法
CN102534235A (zh) * 2012-02-13 2012-07-04 株洲冶炼集团股份有限公司 一种从湿法炼锌砷盐净化钴镍渣中回收有价金属的方法
CN103540766A (zh) * 2012-07-17 2014-01-29 陕西锌业有限公司 高氟、氯含量氧化锌物料回收铟萃余液除氟、氯、砷工艺
CN102994762A (zh) * 2012-12-21 2013-03-27 嘉兴科菲冶金科技股份有限公司 一种从铜镍泥中选择性回收铜和镍的工业方法
CN103866125A (zh) * 2014-02-28 2014-06-18 红河锌联科技发展有限公司 锌灰物料碱洗萃取联合工艺脱除氟氯的方法
CN105132692A (zh) * 2015-09-25 2015-12-09 广东环境保护工程职业学院 再生铜电解阳极泥中回收有价金属的方法
CN106381397A (zh) * 2016-09-27 2017-02-08 吉首市金湘资源科技开发有限公司 锌灰物料氨浸离子交换联合工艺脱除氯的方法
CN106399715A (zh) * 2016-09-27 2017-02-15 吉首市金湘资源科技开发有限公司 高氯锌灰物料氨浸离子交换联合工艺生产电解锌的方法
CN106566927A (zh) * 2016-10-14 2017-04-19 铜陵有色金属集团股份有限公司 用于铜阳极泥浸出液的高效梯度分离回收工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114990334A (zh) * 2022-05-06 2022-09-02 中南大学 一种从有机硅废触体中回收铜的方法
CN115058586A (zh) * 2022-06-30 2022-09-16 武汉理工大学 一种从有机硅废触体中回收铜和硅粉的方法

Similar Documents

Publication Publication Date Title
CN108622943B (zh) 一种以废镍钴合金生产电池级硫酸镍和硫酸钴的方法
CN110512080A (zh) 一种废旧镍钴锰锂离子电池中有价金属分离回收方法
CN103184338B (zh) 铜铟镓硒薄膜太阳能板回收方法
CN102560535B (zh) 一种湿法回收废铅酸蓄电池填料中铅的方法
CN108715935B (zh) 一种硫酸铅渣湿法清洁处理的方法
CN107746969A (zh) 一种含锌、镍、钴净化渣的综合回收方法
CN107354484A (zh) 一种脱除锌电解废液中氯的方法
CN104630826A (zh) 一种从锡阳极泥中回收锡的工艺
CN107201448B (zh) 高碲铜渣处理方法
CN109897966A (zh) 一种次氧化锌原料高效资源化利用方法
CN103938223A (zh) 一种高铋粗铅的提纯方法
CN103866125A (zh) 锌灰物料碱洗萃取联合工艺脱除氟氯的方法
CN106566927A (zh) 用于铜阳极泥浸出液的高效梯度分离回收工艺
CN106006572B (zh) 一种从碲阳极泥回收回用碲的方法
CN102839379A (zh) 一种酸性蚀刻液的在线处理方法
CN110468281A (zh) 一种废旧钴酸锂电池中有价金属分离回收方法
CN104775036A (zh) 从具有贵金属涂层的废旧钛阳极中回收贵金属的方法
CN107557579B (zh) 一种从酸性复杂含锑溶液中萃取分离锑、铁的方法
CN107227466A (zh) 一种氯氧铜除氯提铜的方法
Che et al. Recovery of metallic Bi from PbBi slag: An integrated process of chloride leaching and electrowinning
CN105887118B (zh) 一种从含碲物料中选择性分离回收碲的方法
CN109957655A (zh) 一种从ito废靶中提取铟和锡的工艺方法
CN101333605A (zh) 一种从富铟底铅中提取铟的技术
CN106282569A (zh) 一种铜镉渣提镉残渣资源回收的方法
CN104152701B (zh) 从粗锡精炼渣中回收锡的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171003

RJ01 Rejection of invention patent application after publication