CN107217075A - 一种构建epo基因敲除斑马鱼动物模型的方法及引物、质粒与制备方法 - Google Patents

一种构建epo基因敲除斑马鱼动物模型的方法及引物、质粒与制备方法 Download PDF

Info

Publication number
CN107217075A
CN107217075A CN201710509552.9A CN201710509552A CN107217075A CN 107217075 A CN107217075 A CN 107217075A CN 201710509552 A CN201710509552 A CN 201710509552A CN 107217075 A CN107217075 A CN 107217075A
Authority
CN
China
Prior art keywords
epo
zebra fish
primer
gene knockout
animal models
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710509552.9A
Other languages
English (en)
Other versions
CN107217075B (zh
Inventor
折剑青
袁祖贻
吴岳
邓杨阳
娄博文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
First Affiliated Hospital of Medical College of Xian Jiaotong University
Original Assignee
First Affiliated Hospital of Medical College of Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by First Affiliated Hospital of Medical College of Xian Jiaotong University filed Critical First Affiliated Hospital of Medical College of Xian Jiaotong University
Priority to CN201710509552.9A priority Critical patent/CN107217075B/zh
Publication of CN107217075A publication Critical patent/CN107217075A/zh
Application granted granted Critical
Publication of CN107217075B publication Critical patent/CN107217075B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knockout animals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/505Erythropoietin [EPO]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/40Fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases

Abstract

本发明提供了一种构建EPO基因敲除斑马鱼动物模型的方法及及引物、质粒与制备方法,属于生物医学技术领域。包括步骤:1)建立EPO基因敲除斑马鱼CRISPR寡聚物序列质粒;2)基于CRISPR基因敲除技术建立并培育EPO基因敲除斑马鱼模型;其中,步骤1)具体包括:1‑1)针对EPO外显子2区域靶序列进行引物设计和引物合成;1‑2)合成含有EPO靶序列的大肠杆菌质粒。本发明提供的构建EPO基因敲除斑马鱼动物模型的方法,能够构建EPO基因敲除斑马鱼动物模型,方便对EPO的进一步认识和研究。

Description

一种构建EPO基因敲除斑马鱼动物模型的方法及引物、质粒与 制备方法
技术领域
本发明属于生物医学技术领域,特别涉及一种基于CRISPR基因敲除技术构建EPO基因敲除斑马鱼动物模型的方法、引物、质粒及质粒制备方法。
背景技术
促红细胞生成素(Erythropoietin,EPO)是由肾脏和肝脏分泌的一种激素样物质,在抑制原始红细胞凋亡、促进红细胞生成中起到重要作用。近年研究提示,EPO在心脏、肾脏、肝脏疾病及糖尿病、高脂血症等多种代谢综合症的发生发展中均起到重要调控作用,在氧化应激、抗凋亡方面作用显著。
由于既往基于锌脂蛋白、Talen等基因编辑技术制备EPO基因敲除存在基因敲除成功率低、步骤复杂,并且由于EPO的作用重要且复杂,既往研究针对EPO基因敲除的动物模型由于严重贫血均不能有效存活,导致目前并无可用于科学研究的EPO基因敲除生物模型存在,限制了对EPO的进一步认识和研究。因此,有必要研究构建EPO基因敲除的动物模型的方法,为研究EPO 研究提供EPO基因敲除的动物模型。
CRISPR是近年来新兴的基因编辑技术,它通过gRNA引导,利用Cas9 蛋白操作,从而对多种目标细胞DNA进行切除,使基因组有效地产生变化或突变,效率比TALEN等其他传统基因编辑技术更高。已成为生物医学领域中研究分子机理和致病机制的重要手段。
斑马鱼作为一种新兴的实验生物,具有繁殖周期短、胚胎数量多、幼鱼身体通过药物保持透明等技术优势,被越来越广泛的运用于生物医学各项研究。斑马鱼幼鱼在胚胎发育10天以内可通过外界环境中氧气获得生存,对红细胞携氧的依赖较其他动物模型更少,因此有可能通过构建EPO基因敲除斑马鱼,从而在胚胎时期对身体各器官进行更加全面准确的观察及分析。
因此,研究和探讨如何基于CRISPR基因敲除技术构建EPO基因敲除斑马鱼动物模型,有助于解决目前并无可用于科学研究的EPO基因敲除生物模型的问题,为EPO研究提供EPO基因敲除的动物模型。
发明内容
本发明的目的在于提供一种基于CRISPR基因敲除技术构建EPO基因敲除斑马鱼动物模型的方法,以便构建EPO基因敲除斑马鱼动物模型,方便对 EPO的进一步认识和研究。
本发明的目的还在于提供一种用于构建EPO基因敲除斑马鱼动物模型的引物和质粒,以及质粒的制备方法。
本发明是通过以下技术方案来实现:
一种基于CRISPR基因敲除技术构建EPO基因敲除斑马鱼动物模型的方法,包括步骤:
1)建立含有EPO基因片段靶序列的大肠杆菌质粒;
2)基于CRISPR基因敲除技术建立并培育EPO基因敲除斑马鱼模型;
其中,步骤1)具体包括:
1-1)针对EPO外显子2区域靶序列进行引物设计和引物合成,其中,
EPO外显子2区域靶序列为:CATCTGTGACCTGCGCGT(SEQ ID NO.1);
1-2)合成含有EPO基因片段靶序列的大肠杆菌质粒。
优选地,在步骤1-1)中,所设计和合成的引物为:
前向引物:TAGGACGCGCAGGTCACAGATG(SEQ ID NO.2);
逆向引物:AAACCATCTGTGACCTGCGCGT(SEQ ID NO.3)。
优选地,步骤2)具体包括:
2-1)提取目标DNA;
2-2)将目标DNA逆转录为EPO gRNA;
2-3)合成Cas9RNA;
2-4)向斑马鱼受精卵单细胞中注射EPO gRNA和Cas9RNA的混合物;
2-5)步骤2-4)所得受精卵培养成为嵌合体斑马鱼,成年嵌合体斑马鱼与野生斑马鱼杂交获得杂合子斑马鱼,成年杂合子斑马鱼杂交获得纯合子斑马鱼胚胎。
优选地,在步骤2-4)与2-5)之间,还包括:在受精48~72小时后,提取胚胎基因组DNA进行PCR扩增,进行基因测序和序列比对,确认基因敲除的有效性。
优选地,在步骤2-2)中,使用T7Transcription Kit(InvitrogenTM)将目标DNA逆转录为EPO gRNA。
优选地,在步骤2-3)中,Cas9质粒来自AddgeneTM(Plasmid#63154),使用T7/T3Transcription Kit(InvitrogenTM)合成Cas9RNA。
优选地,在步骤2-4)中,将EPO gRNA与Cas9RNA混合于0.1mol/LKCl 溶质中,在斑马鱼受精卵单细胞进行注射;混合后EPO gRNA的浓度为 180~220pg/μL,混合后Cas9RNA的浓度为180~220pg/μL。
一种用于构建EPO基因敲除斑马鱼动物模型的引物,包括:
前向引物:TAGGACGCGCAGGTCACAGATG;
逆向引物:AAACCATCTGTGACCTGCGCGT。
一种用于构建EPO基因敲除斑马鱼动物模型的含有EPO靶序列的大肠杆菌质粒,其包括序列:
CATCTGTGACCTGCGCGT。
所述的含有EPO靶序列的大肠杆菌质粒的制备方法,包括步骤:
1)合成引物,其中,引物的序列为:
前向引物:TAGGACGCGCAGGTCACAGATG;
逆向引物:AAACCATCTGTGACCTGCGCGT;
2)引物退火:将前向引物和逆向引物的混合物退火,得退火寡聚物;
3)退火寡聚物的限制内切,得限制内切产物;
4)将限制内切产物转导入大肠杆菌中,大肠杆菌隔夜培养;
5)隔夜培养菌群挑选单一菌落隔夜培养,提取质粒并进行基因测序,筛选出含有EPO基因片段靶序列的大肠杆菌质粒。
与现有技术相比,本发明具有以下有益的技术效果:
本发明针对EPO外显子2区域靶序列设计和合成出了引物,并借助该引物合成出含有EPO基因片段靶序列的大肠杆菌质粒,并最终基于CRISPR基因敲除技术建立EPO基因敲除斑马鱼动物模型。本发明已成功培育出EPO基因敲除杂合子斑马鱼成鱼,以及基因敲除纯合子斑马鱼幼鱼。通过基因测序及血红蛋白染色初步证实该方法具有较高的基因敲除成功率。本发明利用 CRISPR技术敲除EPO基因,得到相应靶基因修饰的斑马鱼模型,不仅可以加深对EPO在基因调控中的作用认识,同时可为转化医学和新药研发提供高水平的基因模型。
本发明所提供的质粒和引物,可以用于构建EPO基因敲除斑马鱼动物模型。
附图说明
图1为EPO基因敲除嵌合体及纯合子斑马鱼胚胎基因测序结果图示。
图2为EPO基因敲除嵌合体斑马鱼胚胎受精后48h血红蛋白染色结果图。
图3为斑马鱼存活率图,其中,Epo+/+为野生型,Epo+/-为杂合子,Epo-/-为纯合子;Embryo percentage为胚胎比例;2/6/8dpf为受精后2/6/8天;3month 为3月成年鱼。
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
1、EPO基因敲除斑马鱼模型的建立
1)建立含有EPO基因片段靶序列的大肠杆菌质粒:
1-0)Ensemble数据库(http://www.ensembl.org)获取斑马鱼EPO基因序列(ENSDART00000020288.9);
1-1)针对EPO基因外显子2区域使用Zifit Target Version4.2进行靶序列选择和引物设计,然后合成所设计的引物;
其中,所选择的EPO外显子2区域的靶序列如SEQ ID NO.1所示,为:
CATCTGTGACCTGCGCGT;
其中,所设计和合成的引物为:
前向引物(SEQ ID NO.2)TAGGACGCGCAGGTCACAGATG
逆向引物(SEQ ID NO.3)AAACCATCTGTGACCTGCGCGT
1-2)合成含有EPO基因片段靶序列的大肠杆菌质粒;
1-2A)引物退火:2μL前向引物、2μL逆向引物、2μLNEB缓冲液、14μL 蒸馏水混合,混合物95℃下孵育5min,然后以0.1℃/sec的速度降温至50℃, 50℃下孵育10min,然后以1℃/sec降温至4℃,得退火寡聚物;
1-2B)限制内切:1μL 1-2A)所得的退火寡聚物、400ng pT7-gRNA质粒、 1μL NEB缓冲液、1μL T4DNA连接酶、0.5μL BsmBI酶、0.3μL BglII酶、0.3μl SalI酶、0.5μL T4连接酶和无DNA水混合,混合后总容量为10μL;混合物先在37℃下孵育60min,再在16℃下孵育45min,如此循环三次;然后混合物升温至37℃并孵育30min,然后升温至55℃并孵育30min,再升温至80℃并孵育15min,降温至4℃,得限制内切产物;
1-2C)将限制内切产物转导入大肠杆菌中:大肠杆菌在-80℃冰箱中保存,取出后在冰上放置20~30min,将步骤1-2B)中所合成的限制内切产物与50μL 大肠杆菌混合,混合物在冰上放置20min,再在42℃水浴中放置90sec,再在冰上放置至少90sec;将以上混合物中加入1mLLB培养液在37℃、220rpm恒温箱培养板进行培育45min,然后将以上混合物在4℃离心机6000rpm离心5min,取离心后上清液900μL,平铺在LB培养基中,37℃恒温温箱隔夜培养。
1-2D)将隔夜培养菌群挑选单一菌落在3mL培养液中,37℃、220rpm隔夜培养;使用GETM Healthcare Illustra kit提取质粒进行基因测序;获得含有目的基因序列(EPO外显子2区域靶序列:CATCTGTGACCTGCGCGT)的质粒为阳性质粒;
2)基于CRISPR基因敲除技术建立并培育EPO基因敲除斑马鱼模型:
2-1)将含有目的序列的阳性质粒1~3ug、NEB 3:1缓冲液5μL、10%BSA 5μL、BamHI-HF 1μL混合,无DNA水将体积调整为50μL,37℃隔夜水浴;加入100ug/mL蛋白酶K 0.5μL及0.5%SDS 2.5μL,在50℃加热20min,使用 QiagenTM PCR purification kit提取DNA,琼脂凝胶电泳验证,得目标DNA;
2-2)使用T7Transcription Kit(InvitrogenTM)将目标DNA逆转录为EPO gRNA;使用不含目的Epo靶序列的空白质粒(即不含有EPO外显子2区域靶序列的质粒)提取对照RNA(即无法造成基因敲除的对照序列);
2-3)Cas9质粒来自AddgeneTM(Plasmid#63154),使用T7/T3Transcription Kit(InvitrogenTM)合成Cas9RNA;
2-4)将EPO gRNA与Cas9RNA混合于0.1mol/LKCl溶质中,在斑马鱼受精卵单细胞进行注射;混合后EPO gRNA的浓度为200pg/μL,混合后Cas9RNA 的浓度为200pg/μL。使用对照RNA与Cas9混合注射作为对照观察组;
在受精72小时后,提取胚胎基因组DNA进行PCR扩增。进行基因测序,使用ClustalW2(http://www.ebi.ac.uk/Tools/msa/clustalw2/)进行序列比对,进一步明确基因敲除有效性;
2-5)将EPO gRNA注射后获得嵌合体鱼(即含有多种混合基因突变细胞的嵌合体斑马鱼)培养至3月左右成年鱼大小,取鱼鳍组织基因测序,将基因测序阳性成年鱼与野生背景斑马鱼杂交获得EPO+/-杂合子斑马鱼,将成年杂合子背景斑马鱼杂交获得EPO-/-纯合子斑马鱼胚胎。通过基因测序结果判断纯合子基因变异序列。
2、EPO基因敲除斑马鱼的血红蛋白染色及存活率评价
1)通过基因测序筛选检测EPO+/-杂合子斑马鱼杂交后纯合子胚胎比率 (EPO-/-纯合子斑马鱼可存活至胚胎第8日)。
如图1所示,通过对CRISPR注射后嵌合子和纯合子斑马鱼进行靶位点 PCR引物扩增,并且进行基因测序,与野生型斑马鱼序列比较,我们发现:①嵌合子斑马鱼胚胎目的序列受到干扰,可以检测到多个碱基信号;②纯合子目的序列中存在TAA(逆向序列:TTA)终止子基因突变。该结果进一步证实本基因敲除方法的可靠性和有效性。
2)血红蛋白染色评价EPO基因敲除效率。
如图2所示,对CRISPR注射后48hpf(hours post fertilization)嵌合子斑马鱼进行血红蛋白染色,可发现,EPO基因敲除杂合子斑马鱼与对照组相比,血红蛋白明显减少。这提示Epo基因敲除可影响斑马鱼造血系统正常发展,进一步证实本基因敲除方法的有效性。
3)通过对Epo+/-杂合子斑马鱼成鱼进行交配,获得含有野生型、杂合子、纯合子的胚胎,选取16-24枚胚胎,提取基因组DNA,通过PCR提取目的基因片段进行基因测序,判断斑马鱼的基因型为野生型、纯合子或杂合子,进一步在受精后2天、6天、8天、3月计算不同基因型斑马鱼的存活率,可以发现,如图3所示,其中,Epo+/+为野生型,Epo+/-为杂合子,Epo-/-为纯合子;Embryo percentage为胚胎比例;2/6/8dpf为受精后2/6/8天;3month为3月成年鱼。EPO-/-基因敲除纯合子斑马鱼可存活至受精后8日,但无法存活至成年。这一结果进一步评价了本基因敲除的效率,并且证实通过本基因敲除方法获得基因敲除纯合子斑马鱼,可进行相关实验观察至胚胎发育第8日。
本发明通过构建EPO gRNA,并对斑马鱼胚胎单细胞器进行基因注射,已成功培育出EPO基因敲除杂合子斑马鱼成鱼,以及基因敲除纯合子斑马鱼幼鱼。通过基因测序及血红蛋白染色初步证实该方法具有较高的基因敲除成功率。
本发明利用CRISPR技术敲除EPO基因,得到相应靶基因修饰的斑马鱼模型,不仅可以加深对EPO在基因调控中的作用认识,同时可为转化医学和新药研发提供高水平的基因模型。在具体的操作中,利用互联网软件可筛选出合适的EPO gRNA,并同时预测脱靶概率及中靶概率,可有效提高基因敲除效率。
核苷酸序列表
<110>西安交通大学医学院第一附属医院
<120>一种构建EPO基因敲除斑马鱼动物模型的方法及及引物、质粒与制备方法
<160> 3
<210> 1
<211> 20
<212> DNA
<213> 斑马鱼(Barchydanio rerio var)
<400> 1
CATCTGTGACCTGCGCGT 20
<210> 2
<211> 22
<212> DNA
<213> 人工合成
<400> 2
TAGGACGCGC AGGTCACAGA TG 22
<210> 3
<211> 30
<212> DNA
<213> 人工合成
<400> 3
AAACCATCTG TGACCTGCGC GT 22

Claims (9)

1.一种构建EPO基因敲除斑马鱼动物模型的方法,其特征在于,包括步骤:
1)建立含有EPO基因片段靶序列的大肠杆菌质粒;
2)基于CRISPR基因敲除技术建立并培育EPO基因敲除斑马鱼模型;
其中,步骤1)具体包括:
1-1)针对EPO外显子2区域靶序列进行引物设计和引物合成,其中,
EPO外显子2区域靶序列为SEQ ID NO.1所示的核苷酸序列;
1-2)合成含有EPO基因片段靶序列的大肠杆菌质粒。
2.如权利要求1所述的构建EPO基因敲除斑马鱼动物模型的方法,其特征在于,
在步骤1-1)中,所设计和合成的引物为:
前向引物为SEQ ID NO.2所示的核苷酸序列;
逆向引物为SEQ ID NO.3所示的核苷酸序列。
3.如权利要求1所述的构建EPO基因敲除斑马鱼动物模型的方法,其特征在于,步骤2)具体包括:
2-1)提取目标DNA;
2-2)将目标DNA逆转录为EPO gRNA;
2-3)合成Cas9RNA;
2-4)向斑马鱼受精卵单细胞中注射EPO gRNA和Cas9RNA的混合物;
2-5)步骤2-4)所得受精卵培养成年成为嵌合体斑马鱼,成年嵌合体斑马鱼与野生斑马鱼杂交获得杂合子斑马鱼,成年杂合子斑马鱼杂交获得纯合子斑马鱼胚胎。
4.如权利要求3所述的构建EPO基因敲除斑马鱼动物模型的方法,其特征在于,在步骤2-2)中,使用T7 Transcription Kit(InvitrogenTM)将目标DNA逆转录为EPO gRNA。
5.如权利要求3所述的构建EPO基因敲除斑马鱼动物模型的方法,其特征在于,在步骤2-3)中,Cas9质粒来自Addgene TM(Plasmid#63154),使用T7/T3Transcription Kit(InvitrogenTM)合成Cas9RNA。
6.如权利要求3所述的构建EPO基因敲除斑马鱼动物模型的方法,其特征在于,在步骤2-4)中,将EPO gRNA与Cas9RNA混合于0.1KCl溶质中,在斑马鱼受精卵单细胞进行注射;混合后EPO gRNA的浓度为180~220pg/μL,混合后Cas9RNA的浓度为180~220pg/μL。
7.一种用于构建EPO基因敲除斑马鱼动物模型的引物,其特征在于,包括:
前向引物:TAGGACGCGCAGGTCACAGATG;
逆向引物:AAACCATCTGTGACCTGCGCGT。
8.一种用于构建EPO基因敲除斑马鱼动物模型的含有EPO靶序列的大肠杆菌质粒,其特征在于,其包括序列:
CATCTGTGACCTGCGCGT。
9.权利要求8所述的含有EPO靶序列的大肠杆菌质粒的制备方法,包括以下步骤:
1)合成引物,其中,引物的序列为:
前向引物为SEQ ID NO.2所示的核苷酸序列;
逆向引物为SEQ ID NO.3所示的核苷酸序列;
2)引物退火:将前向引物和逆向引物的混合物退火,得退火寡聚物;
3)退火寡聚物的限制内切,得限制内切产物;
4)将限制内切产物转导入大肠杆菌中,大肠杆菌隔夜培养;
5)隔夜培养菌群挑选单一菌落隔夜培养,提取质粒并进行基因测序,筛选出含有EPO基因片段靶序列的大肠杆菌质粒。
CN201710509552.9A 2017-06-28 2017-06-28 一种构建epo基因敲除斑马鱼动物模型的方法及引物、质粒与制备方法 Active CN107217075B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710509552.9A CN107217075B (zh) 2017-06-28 2017-06-28 一种构建epo基因敲除斑马鱼动物模型的方法及引物、质粒与制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710509552.9A CN107217075B (zh) 2017-06-28 2017-06-28 一种构建epo基因敲除斑马鱼动物模型的方法及引物、质粒与制备方法

Publications (2)

Publication Number Publication Date
CN107217075A true CN107217075A (zh) 2017-09-29
CN107217075B CN107217075B (zh) 2021-07-02

Family

ID=59950601

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710509552.9A Active CN107217075B (zh) 2017-06-28 2017-06-28 一种构建epo基因敲除斑马鱼动物模型的方法及引物、质粒与制备方法

Country Status (1)

Country Link
CN (1) CN107217075B (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6485964B1 (en) * 1995-03-20 2002-11-26 Arris Pharmaceutical Corporation Transgenic mammals lacking expression of erythropoietin or of erythropoietin receptor, transgenic mammals expressing chimeric erythropoietin receptors, constructs for producing the transgenic mammals and uses therefor
US20140053288A1 (en) * 2011-04-05 2014-02-20 Tohoku Techno Arch Co., Ltd. Epo knockout gfp anemic mouse
CN104928321A (zh) * 2015-02-12 2015-09-23 中国科学院西北高原生物研究所 一种由Crispr/Cas9诱导的鳞片缺失斑马鱼模式及建立方法
CN105274144A (zh) * 2015-09-14 2016-01-27 徐又佳 通过CRISPR/Cas9技术得到敲除铁调素基因斑马鱼的制备方法
CN106282241A (zh) * 2016-08-05 2017-01-04 无锡市第二人民医院 通过CRISPR/Cas9得到敲除bmp2a基因的斑马鱼的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6485964B1 (en) * 1995-03-20 2002-11-26 Arris Pharmaceutical Corporation Transgenic mammals lacking expression of erythropoietin or of erythropoietin receptor, transgenic mammals expressing chimeric erythropoietin receptors, constructs for producing the transgenic mammals and uses therefor
US20140053288A1 (en) * 2011-04-05 2014-02-20 Tohoku Techno Arch Co., Ltd. Epo knockout gfp anemic mouse
CN104928321A (zh) * 2015-02-12 2015-09-23 中国科学院西北高原生物研究所 一种由Crispr/Cas9诱导的鳞片缺失斑马鱼模式及建立方法
CN105274144A (zh) * 2015-09-14 2016-01-27 徐又佳 通过CRISPR/Cas9技术得到敲除铁调素基因斑马鱼的制备方法
CN106282241A (zh) * 2016-08-05 2017-01-04 无锡市第二人民医院 通过CRISPR/Cas9得到敲除bmp2a基因的斑马鱼的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHENG-YING CHU,ET AL: "The zebrafish erythropoietin: Functional identification and biochemical characterization", 《FEBS LETTERS 》 *

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Also Published As

Publication number Publication date
CN107217075B (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
CN107217075A (zh) 一种构建epo基因敲除斑马鱼动物模型的方法及引物、质粒与制备方法
Tandon et al. Expanding the genetic toolkit in Xenopus: Approaches and opportunities for human disease modeling
CN108660161B (zh) 基于CRISPR/Cas9技术的制备无嵌合基因敲除动物的方法
Harel et al. Efficient genome engineering approaches for the short-lived African turquoise killifish
CN109943593B (zh) Mir3061基因Rosa26定点敲入杂合子小鼠模型构建方法与应用
Horb et al. Xenopus resources: transgenic, inbred and mutant animals, training opportunities, and web-based support
CN110951787A (zh) 一种免疫缺陷小鼠、其制备方法及应用
CN106191113A (zh) 一种mc3r基因敲除猪的制备方法
CN108184770B (zh) 一种黑腹果蝇RasV12;Snail肿瘤迁徙模型的建立方法
El Marjou et al. Targeted transgenic mice using CRISPR/Cas9 technology
US20030162292A1 (en) Method for producing heart-specific fluorescence of non-human eukaryotic animals
CN109207524A (zh) 基于fto基因的人类肥胖症斑马鱼模型的建立与应用
Schilit et al. Pronuclear Injection‐Based Targeted Transgenesis
Rozenberg et al. CRISPR–Cas9 Genome Editing in Nothobranchius furzeri for Gene Knockout and Knock-In
CN113862304A (zh) 一种皱纹盘鲍CRISPR/Cas9基因编辑的方法
CN112226465A (zh) 一段分离的核苷酸序列在无矿化肌间骨斑马鱼构建中的应用
CN110643716A (zh) 一种与绵羊尾脂重相关的分子标记及其应用
Ghassemi et al. Pipeline for the generation of gene knockout mice using dual sgRNA CRISPR/Cas9-mediated gene editing
CN112899279A (zh) 一种构建Fzd6基因敲除小鼠模型的方法及应用
CN108048463B (zh) 一种构建rip3基因敲除小鼠的碱基序列、载体、方法及应用
CN109112162B (zh) 利用CRISPR/Cas9技术构建的亨廷顿病原位敲入小鼠模型及构建方法
CN114250247A (zh) Glud1突变基因敲入小鼠动物模型的构建方法及其应用
CN101412999A (zh) 一种基因打靶定点转基因方法及其应用
CN105400808A (zh) 利用生殖特异性启动子表达cre的重组酶载体
Kuk et al. Rapid and Efficient BAC Recombineering: Gain & Loss Screening System

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant