CN107177846A - 一种双层电极的制备方法及其应用 - Google Patents

一种双层电极的制备方法及其应用 Download PDF

Info

Publication number
CN107177846A
CN107177846A CN201710325319.5A CN201710325319A CN107177846A CN 107177846 A CN107177846 A CN 107177846A CN 201710325319 A CN201710325319 A CN 201710325319A CN 107177846 A CN107177846 A CN 107177846A
Authority
CN
China
Prior art keywords
tio
electrode
layer
preparation
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710325319.5A
Other languages
English (en)
Other versions
CN107177846B (zh
Inventor
曹同成
宋丹
赵国华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201710325319.5A priority Critical patent/CN107177846B/zh
Publication of CN107177846A publication Critical patent/CN107177846A/zh
Application granted granted Critical
Publication of CN107177846B publication Critical patent/CN107177846B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/02Electrophoretic coating characterised by the process with inorganic material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Electrochemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Dispersion Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明涉及一种双层电极的制备方法及其应用,通过提拉浸渍的方法,在Ti板基底上附着一层TiO2溶胶凝胶,经过煅烧后形成致密的TiO2氧化膜,之后将通过水热法制备的锐钛矿{001}TiO2纳米片通过电泳沉积技术沉积在上述制备的电极上,构筑成双层的D‑{001}TiO2/Ti电极。与现有技术相比,本发明先在基底电极上附着一层致密的TiO2氧化膜作为导电层,之后再通过电沉积的方法沉积一层锐钛矿{001}TiO2纳米颗粒,制备成双层的D‑{001}TiO2/Ti电极,增强了光生电子向基底电极再向外电路的传递,相比较于单层的S‑{001}TiO2/Ti电极,D‑{001}TiO2/Ti具有更好的光电化学性能,同时其光电催化氧化降解邻苯二甲酸二甲酯的效率提高了12%左右。

Description

一种双层电极的制备方法及其应用
技术领域
本发明属于环境污染处理技术和材料化学领域,尤其涉及一种双层{001}TiO2/Ti板电极(D-{001}TiO2/Ti)的制备及其在高效光电催化去除邻苯二甲酸二甲酯中的应用。
背景技术
邻苯二甲酸酯类,俗称塑化剂,该物质能增加塑料的可塑性和柔韧性从而被广泛的应用于塑料工业中。由于其与塑料分子之间通过微弱的氢键或范德华力连接,因此,其结合力弱,很容易从塑料中扩散到外环境中,因而成为一种广泛存在的污染物之一,在大气、水体、土壤等环境介质中均可检测到该类污染物的存在。这类物质它具有类似生物激素的作用,会影响生物体的内分泌系统,会导致生物体繁殖能力下降、基因突变、神经系统和免疫系统受损等危害。
光电催化氧化技术是将光催化技术和电催化技术相结合一种降解污染物的方式,通过外加电场的作用,有效的避免了光催化剂在光照条件下产生的电子和空穴的复合,大大增加了载流子的浓度和寿命,从而提升光催化剂的光催化能力。
在光催化领域,TiO2是被研究最多的一种光催化材料,其中由于TiO2{001}晶面具有较高的表面能(0.92J·m-2),是(101)晶面(0.44J·m-2)的两倍多,其在异相反应中表现出最高的光催化活性。因{001}晶面中含有100%五配位Ti原子(Ti5c),具有最大的表面能0.92J m-2,从而具有更多的氧化活性位点,而具有高比例低配位原子的晶面通常在异相反应中活性较高,具有{001}晶面的TiO2具有更强的光催化活性。通常锐钛矿{001}TiO2是以粉末形态存在,在液相体系催化过程中往往存在着催化剂难回收,不可重复利用和导电性差的问题,限制了光电催化氧化技术的应用。电泳沉积技术能耗低、无污染、简单易行,可通过调节电压、反应时间等参数控制电极上催化剂的负载量。但是,由于{001}TiO2纳米片在堆积过程中会与基底电极之间存在缝隙。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种兼备低阳极电势、提高光能利用率、具有高效催化氧化能力的双层D-{001}TiO2/Ti电极,并用于高效光电催化氧化去除环境内分泌干扰物邻苯二甲酸二甲酯。
本发明的目的可以通过以下技术方案来实现:
一种双层电极的制备方法,采用以下步骤:
(1)在磁力搅拌下,将氢氟酸滴加于钛酸异丙酯中,采用水热法得到纳米级{001}TiO2白色粉末;
(2)在室温下,将无水乙醇、钛酸四丁酯、浓硝酸混合并剧烈搅拌,静置,形成淡黄色透明TiO2溶胶,将纯金属钛片表面用金相砂纸进行打磨抛光清洗,并用盐酸溶液刻蚀清洗,将其垂直固定在提拉浸渍机上,浸没在TiO2溶胶中,设置提拉速率为1~2mm/min,提拉浸渍1~3次,在Ti板表面附着一层TiO2溶胶,自然晾干后将其置于管式炉中采用程序升温进行热处理,以1~2℃/min的速度升温至450~550℃,维持30~60min,获得致密的TiO2氧化膜导电层;
(3)采用电泳沉积技术将步骤(1)中的纳米级{001}TiO2白色粉末沉积到步骤(2)制备的致密的TiO2氧化膜导电层外,以TiO2氧化膜电极为阴极,以Ti板为阳极,控制电极间距离为2cm,施加电压在10~20V,电泳时间15~60min,从而制备得到双层D-{001}TiO2/Ti电极。
步骤(1)中氢氟酸与钛酸异丙酯体积比为0.6~0.8:5。
步骤(2)中无水乙醇、钛酸四丁酯、浓硝酸体积比为15:5:0.8。
双层电极在高效光电催化去除邻苯二甲酸二甲酯中的应用,在半圆形的外带循环水套环的光电化学反应池中,取浓度为5~20mg/L的DMP待降解液,支持电解质为0.1MNa2SO4,采用三电极体系,以制备的双层D-{001}TiO2/Ti电极作为光阳极,以氙灯为光源对其进行光照,控制电极与光源距离为4cm,同时施加0.4~0.8V(vs SCE)电压,对DMP溶液进行光电催化氧化降解。
为了提高电极的电传导率,本发明在基底电极与负载的{001}TiO2层负载一层致密的TiO2氧化膜来作为电子传输层,可以有效的提高电子传递效率,从而提高光能利用率。通过构筑双层的电极,避免了锐钛矿{001}TiO2直接堆叠在Ti板基底上与基底电极之间产生的缝隙而导致电子传递受阻,同时TiO2氧化膜的存在也会在光照条件下激发光生电子和空穴,其与锐钛矿{001}TiO2之间形成异质结构,可促进电子传递。现存的关于锐钛矿{001}TiO2的研究很多都是在光催化领域,将其制备成光电极材料的报道还不是很多,本发明是提供了将粉末{001}TiO2材料构筑成电极的一种方法,同时两种不同晶型TiO2材料的复合也有效的提高了光电催化的效果。
本发明Ti板作为基底,先通过提拉浸渍的方法在基底表面负载一层溶胶凝胶,经过煅烧之后形成致密的TiO2氧化膜来作为电子传输层,之后采用电泳沉积法,将纳米级{001}TiO2均匀地沉积到TiO2膜电极表面,通过控制施加电位、反应时间等参数,可控获得负载量在1~2mg·cm-2范围内的双层D-{001}TiO2/Ti电极。本发明电极通过制备双层的D-{001}TiO2电极,提高电极的光电催化活性,更进一步地提高电极的光电催化活性,适用于环境污染物的光电催化降解领域。
与现有技术相比,本发明具有以下优点:
(1)借助于{001}TiO2高的表面能和更高的氧化活性,实现对邻苯二甲酸二甲酯高效的氧化去除。
(2)通过在Ti板基底和{001}TiO2纳米片层中间负载了一层致密的TiO2氧化膜层来作为导电层,提高电子传递效率,具有更高的光电转化效率和光催化活性。
(3)通过电泳沉积技术,使得{001}TiO2纳米薄片均匀地附着于TiO2氧化膜基底电极上,同时,可通过调节电压、反应时间等参数,获得负载量可控的纳米级D-{001}TiO2/Ti电极材料,成功的将光催化粉末材料制备成电极,提高了光催化剂的使用效率,光电催化氧化降解邻苯二甲酸二甲酯的效率提高了12%左右。
附图说明
图1为实施案例1和实施案例2中制备的D-{001}TiO2/Ti和S-{001}TiO2/Ti电极侧面扫描电镜图;
图2为实施案例1和实施案例2中制备的D-{001}TiO2/Ti和S-{001}TiO2/Ti电极的i-t图;
图3为实施案例1和实施案例2中制备的D-{001}TiO2/Ti和S-{001}TiO2/Ti电极交流阻抗图;
图4为实施案例1和实施案例2中制备的D-{001}TiO2/Ti和S-{001}TiO2/Ti电极降解邻苯二甲酸二甲酯(DMP)曲线。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1
一种双层D-{001}TiO2/Ti电极的制备方法,具体包括以下步骤:
(1)在磁力搅拌下,将氢氟酸(HF)滴加于钛酸异丙酯中,采用水热法得到锐钛矿{001}TiO2纳米颗粒。
(2)在室温下,将无水乙醇、钛酸四丁酯、浓硝酸进行混合并剧烈搅拌,静置,形成淡黄色透明TiO2溶胶。将纯金属钛片表面用金相砂纸进行打磨抛光清洗刻蚀,垂直固定在提拉浸渍机上,将Ti基底电极浸没在TiO2溶胶中,以1~2mm/min的速度进行提拉浸渍1~3次,自然晾干后将其置于管式炉中采用程序升温进行热处理,按0.7℃/min~2℃/min的升温速率升温至450℃~550℃热处理30~60min,获得致密的TiO2氧化膜导电层。
(3)采用电泳沉积技术,将步骤(1)中的纳米级{001}TiO2白色粉末沉积到步骤(2)制备的致密的TiO2氧化膜导电层外,控制电压在10~20V,电泳沉积15~60min,从而制备得到D-{001}TiO2/Ti电极。
实施例2
对比电极S-{001}TiO2/Ti的制备是按照实施案例1的方法,将Ti板刻蚀好后没有经过提拉浸渍挂膜处理,直接在Ti板基底上通过电泳沉积的方法负载制备好的{001}TiO2纳米颗粒。
所制备的D-{001}TiO2/Ti电极和S-{001}TiO2/Ti电极的侧面形貌通过场发射扫描电子显微镜技术进行表征,通过图1可以观察到对于D-{001}TiO2/Ti电极其与基底电极之间存在的TiO2氧化膜导电层紧密的与基底进行结合,但对于S-{001}TiO2/Ti电极其沉积的{001}TiO2层由于{001}TiO2纳米颗粒的堆叠之间存在空隙,其与基底电极之间也存在一定的缝隙,这就阻碍了电子在电极上的传输。
实施例3
D-{001}TiO2/Ti电极和对比电极光电化学测定,具体步骤包括如下:
在CHI660c电化学工作站上对D-{001}TiO2/Ti和S-{001}TiO2/Ti电极进行光电化学性能测试,控制电极面积在0.5cm2,所用的装置是带有石英窗口的三电极体系电化学反应池,以饱和甘汞电极(SCE)为参比电极,Pt丝电极为对电极,以0.1mol·L-1的Na2SO4溶液为电解液。以300W LA-410UV作为光源,施加0.4V偏压,测定其i-t曲线。同时,在开路电位下,测定D-{001}TiO2/Ti和S-{001}TiO2/Ti电极的在非光照条件和光照条件下的交流阻抗图。如图2所示,D-{001}TiO2/Ti的光电流是S-{001}TiO2/Ti光电流响应值的8倍。如图3所示的交流阻抗图,分别对应的D-{001}TiO2/Ti和S-{001}TiO2/Ti电极的交流阻抗,和它们在光照之后的阻抗值的变化曲线,相比较于S-{001}TiO2/Ti电极,D-{001}TiO2/Ti的阻抗值较小,这也进一步说明了TiO2氧化膜层起到的快速电子传输的作用。
实施例4
DMP的降解实验在圆形电化学反应池中进行,外加带有循环水的套杯,保持反应体系恒温在25℃。采用三电极降解体系,分别D-{001}TiO2/Ti电极和S-{001}TiO2/Ti电极为阳极,铂片为阴极,阴阳极之间的距离为2cm,有效的光阳极面积为3×4cm-2。用0.1mol·L-1硫酸钠去离子水溶液将DMP配制成浓度为10mg/L的模拟废水,处理体积为100mL,采用氙灯作为光催化光源,光照强度为200mW/cm2,施加偏压+0.4V(相对于饱和甘汞电极)。测试结果如图4所示,分别对应的是没有催化剂存在下、应用S-{001}TiO2/Ti的光电催化条件下、和D-{001}TiO2/Ti电极的光催化和光电催化条件下对DMP的降解曲线。测试结果表明,D-{001}TiO2/Ti电极的光催化效率为57.8%,在电助光催化的条件下,其对DMP的降解率为90%,提高了30%左右。同时,对S-{001}TiO2/Ti电极,其在光电催化条件下对DMP的降解率大约为78%,相比较于S-{001}TiO2/Ti电极,D-{001}TiO2/Ti电极在光电催化条件下对降解DMP的效率提高了12%。
实施例5
一种双层电极的制备方法,采用以下步骤:
(1)在磁力搅拌下,将氢氟酸滴加于钛酸异丙酯中,氢氟酸与钛酸异丙酯体积比为0.8:5,采用水热法得到纳米级{001}TiO2白色粉末;
(2)在室温下,将无水乙醇、钛酸四丁酯、浓硝酸按体积比为15:5:0.8混合并剧烈搅拌,静置,形成淡黄色透明TiO2溶胶,将纯金属钛片表面用金相砂纸进行打磨抛光清洗,并用盐酸溶液刻蚀清洗,将其垂直固定在提拉浸渍机上,浸没在TiO2溶胶中,设置提拉速率为2mm/min,提拉浸渍1次,在Ti板表面附着一层TiO2溶胶,自然晾干后将其置于管式炉中采用程序升温进行热处理,以2℃/min的速度升温至550℃,维持30min,获得致密的TiO2氧化膜导电层;
(3)采用电泳沉积技术将步骤(1)中的纳米级{001}TiO2白色粉末沉积到步骤(2)制备的致密的TiO2氧化膜导电层外,以TiO2氧化膜电极为阴极,以Ti板为阳极,控制电极间距离为2cm,施加电压在20V,电泳时间15min,从而制备得到双层D-{001}TiO2/Ti电极。
双层电极在高效光电催化去除邻苯二甲酸二甲酯中的应用,在半圆形的外带循环水套环的光电化学反应池中,取浓度为20mg/L的DMP待降解液,支持电解质为0.1M Na2SO4,采用三电极体系,以制备的双层D-{001}TiO2/Ti电极作为光阳极,以氙灯为光源对其进行光照,控制电极与光源距离为4cm,同时施加0.8V(vs SCE)电压,对DMP溶液进行光电催化氧化降解。
实施例6
一种双层电极的制备方法,采用以下步骤:
(1)在磁力搅拌下,将氢氟酸滴加于钛酸异丙酯中,氢氟酸与钛酸异丙酯体积比为0.6:5,采用水热法得到纳米级{001}TiO2白色粉末;
(2)在室温下,将无水乙醇、钛酸四丁酯、浓硝酸按体积比为15:5:0.8混合并剧烈搅拌,静置,形成淡黄色透明TiO2溶胶,将纯金属钛片表面用金相砂纸进行打磨抛光清洗,并用盐酸溶液刻蚀清洗,将其垂直固定在提拉浸渍机上,浸没在TiO2溶胶中,设置提拉速率为1mm/min,提拉浸渍3次,在Ti板表面附着一层TiO2溶胶,自然晾干后将其置于管式炉中采用程序升温进行热处理,以1℃/min的速度升温至450℃,维持60min,获得致密的TiO2氧化膜导电层;
(3)采用电泳沉积技术将步骤(1)中的纳米级{001}TiO2白色粉末沉积到步骤(2)制备的致密的TiO2氧化膜导电层外,以TiO2氧化膜电极为阴极,以Ti板为阳极,控制电极间距离为2cm,施加电压在10V,电泳时间60min,从而制备得到双层D-{001}TiO2/Ti电极。
双层电极在高效光电催化去除邻苯二甲酸二甲酯中的应用,在半圆形的外带循环水套环的光电化学反应池中,取浓度为5mg/L的DMP待降解液,支持电解质为0.1M Na2SO4,采用三电极体系,以制备的双层D-{001}TiO2/Ti电极作为光阳极,以氙灯为光源对其进行光照,控制电极与光源距离为4cm,同时施加0.4V(vs SCE)电压,对DMP溶液进行光电催化氧化降解。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (5)

1.一种双层电极的制备方法,其特征在于,该方法采用以下步骤:
(1)在磁力搅拌下,将氢氟酸滴加于钛酸异丙酯中,采用水热法得到纳米级{001}TiO2白色粉末;
(2)在室温下,将无水乙醇、钛酸四丁酯、浓硝酸混合并剧烈搅拌,静置,形成淡黄色透明TiO2溶胶,将纯金属钛片表面用金相砂纸进行打磨抛光清洗,并用盐酸溶液刻蚀清洗,将其垂直固定在提拉浸渍机上,浸没在TiO2溶胶中,设置提拉速率为1~2mm/min,提拉浸渍1~3次,在Ti板表面附着一层TiO2溶胶,自然晾干后将其置于管式炉中采用程序升温进行热处理,以1~2℃/min的速度升温至450~550℃,维持30~60min,获得致密的TiO2氧化膜导电层;
(3)采用电泳沉积技术将步骤(1)中的纳米级{001}TiO2白色粉末沉积到步骤(2)制备的致密的TiO2氧化膜导电层外,以TiO2氧化膜电极为阴极,以Ti板为阳极,控制电极间距离为2cm,施加电压在10~20V,电泳时间15~60min,从而制备得到双层D-{001}TiO2/Ti电极。
2.根据权利要求1所述的一种双层电极的制备方法,其特征在于,步骤(1)中氢氟酸与钛酸异丙酯体积比为0.6~0.8:5。
3.根据权利要求1所述的一种双层电极的制备方法,其特征在于,步骤(2)中无水乙醇、钛酸四丁酯、浓硝酸体积比为15:5:0.8。
4.一种双层电极在高效光电催化去除邻苯二甲酸二甲酯中的应用。
5.根据权利要求4所述的一种双层电极在高效光电催化去除邻苯二甲酸二甲酯中的应用,其特征在于,在半圆形的外带循环水套环的光电化学反应池中,取浓度为5~20mg/L的DMP待降解液,支持电解质为0.1M Na2SO4,采用三电极体系,以制备的双层D-{001}TiO2/Ti电极作为光阳极,以氙灯为光源对其进行光照,控制电极与光源距离为4cm,同时施加0.4~0.8V(vs SCE)电压,对DMP溶液进行光电催化氧化降解。
CN201710325319.5A 2017-05-10 2017-05-10 一种双层电极的制备方法及其应用 Active CN107177846B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710325319.5A CN107177846B (zh) 2017-05-10 2017-05-10 一种双层电极的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710325319.5A CN107177846B (zh) 2017-05-10 2017-05-10 一种双层电极的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN107177846A true CN107177846A (zh) 2017-09-19
CN107177846B CN107177846B (zh) 2019-05-14

Family

ID=59832535

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710325319.5A Active CN107177846B (zh) 2017-05-10 2017-05-10 一种双层电极的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN107177846B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1905215A (zh) * 2005-07-26 2007-01-31 中国科学院化学研究所 电泳沉积低温制备二氧化钛纳晶多孔薄膜电极的制备方法
CN1909261A (zh) * 2006-08-28 2007-02-07 清华大学 二氧化钛纳晶光吸收增强型薄膜电极及其制备方法
WO2008031643A2 (de) * 2006-09-14 2008-03-20 Siemens Aktiengesellschaft Redoxstabile transparente elektrode für elektrochrome displays
CN101608330A (zh) * 2009-07-14 2009-12-23 华中科技大学 一种二氧化钛镀膜的低温制备方法
CN103295789A (zh) * 2013-06-08 2013-09-11 苏州诺信创新能源有限公司 二氧化钛双层薄膜电极的制备方法
CN105836857A (zh) * 2016-04-27 2016-08-10 同济大学 高{001}晶面暴露比例的纳米级TiO2/碳气凝胶电极及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1905215A (zh) * 2005-07-26 2007-01-31 中国科学院化学研究所 电泳沉积低温制备二氧化钛纳晶多孔薄膜电极的制备方法
CN1909261A (zh) * 2006-08-28 2007-02-07 清华大学 二氧化钛纳晶光吸收增强型薄膜电极及其制备方法
WO2008031643A2 (de) * 2006-09-14 2008-03-20 Siemens Aktiengesellschaft Redoxstabile transparente elektrode für elektrochrome displays
CN101608330A (zh) * 2009-07-14 2009-12-23 华中科技大学 一种二氧化钛镀膜的低温制备方法
CN103295789A (zh) * 2013-06-08 2013-09-11 苏州诺信创新能源有限公司 二氧化钛双层薄膜电极的制备方法
CN105836857A (zh) * 2016-04-27 2016-08-10 同济大学 高{001}晶面暴露比例的纳米级TiO2/碳气凝胶电极及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵宝秀: ""TiO2/Ti与Fe双阳极光电催化氧化降解2,4-二氯苯酚的研究"", 《中国博士学位论文全文数据库 工程科技I辑(月刊)》 *

Also Published As

Publication number Publication date
CN107177846B (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
CN102309973B (zh) 一种复合光电催化剂及制备和应用
Antoniadou et al. Production of electricity by photoelectrochemical oxidation of ethanol in a PhotoFuelCell
CN105712428A (zh) 一种掺锑二氧化锡-碳纳米管复合吸附性电极及其制备方法
CN102941077A (zh) 一种具有可见光活性的二氧化钛纳米管薄膜的制备方法
CN105597784B (zh) MoS2掺杂的氧化铁光催化薄膜、制备方法及其在处理含酚废水中的应用
CN104617323B (zh) 一种产电与降解污染物的非光催化与光催化燃料电池系统
Yao et al. Decolorization of Rhodamine B in a thin-film photoelectrocatalytic (PEC) reactor with slant-placed TiO2 nanotubes electrode
CN109402656A (zh) 一种磷化钴修饰钼掺杂钒酸铋光电极的制备方法
CN105970601A (zh) 一种二氧化钛纳米棒/聚吡咯/涤纶复合织物的制备方法
Yu et al. A self-biased fuel cell with TiO2/g-C3N4 anode catalyzed alkaline pollutant degradation with light and without light—What is the degradation mechanism?
CN101543771A (zh) 利用玻璃基TiO2纳米管阵列电极光电催化降解有机物的方法
CN108911056A (zh) {001}晶面可控暴露的二氧化钛光电极的制备及应用
CN104801295B (zh) 金属钛表面氧化钛/氧化钨纳米复合物薄膜及制备与应用
CN109759065A (zh) 二氧化钛负载铁酸镍和氧化石墨烯的复合薄膜、制备方法及其在废水处理中的应用
CN113023833A (zh) 一种高催化活性的钛/锑/氧化锡-氧化硅电极材料及制备方法
CN107020103B (zh) 一种氧化铁-硫化钼-氧化亚铜光催化薄膜及其制备方法和应用
CN101700485B (zh) 一种光电催化装置
Yin et al. Photoelectrochemical property of ZnFe2O4/TiO2 double-layered films
CN110042409A (zh) 氧化钨/钒酸铋异质结光电阳极的制备方法及自供电光电解水系统
CN102258971B (zh) 一种列管式纳米二氧化钛管阵列光催化反应器及制备方法
CN102534718B (zh) 一种制备PbO2修饰TiO2纳米管电极的方法
CN101956194A (zh) 一种TiO2薄膜修饰的钛基β-PbO2光电极的制备方法
CN103882499B (zh) 作为催化剂载体用的碳纳米管膜电极CNT-Ti电极制备及其应用
CN107177846B (zh) 一种双层电极的制备方法及其应用
CN103922608B (zh) 一种二氧化钛异质结光阳极的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant