CN107177631A - 利用CRISPR‑CAS9技术敲除NRK细胞Slc22a2基因的方法 - Google Patents

利用CRISPR‑CAS9技术敲除NRK细胞Slc22a2基因的方法 Download PDF

Info

Publication number
CN107177631A
CN107177631A CN201710496608.1A CN201710496608A CN107177631A CN 107177631 A CN107177631 A CN 107177631A CN 201710496608 A CN201710496608 A CN 201710496608A CN 107177631 A CN107177631 A CN 107177631A
Authority
CN
China
Prior art keywords
slc22a2
nrk
cell
genes
grna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710496608.1A
Other languages
English (en)
Other versions
CN107177631B (zh
Inventor
罗云波
许文涛
祁潇哲
黄昆仑
朱丽叶
贺晓云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Agricultural University
Original Assignee
China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Agricultural University filed Critical China Agricultural University
Priority to CN201710496608.1A priority Critical patent/CN107177631B/zh
Publication of CN107177631A publication Critical patent/CN107177631A/zh
Application granted granted Critical
Publication of CN107177631B publication Critical patent/CN107177631B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明提供一种利用CRISPR‑CAS9技术敲除NRK细胞Slc22a2基因的方法。根据大鼠Slc22a2基因序列,构建基于CRISPER‑Cas9系统的gRNA表达载体,以此作为Slc22a2基因打靶载体,转入NRK细胞中,获得Slc22a2基因敲除的NRK细胞,其可作为理想的细胞模型,模拟人体肾脏环境中OCT2蛋白的缺失,用于研究OCT2蛋白在药物、毒素以及其他小分子物质转运方面的应用。

Description

利用CRISPR-CAS9技术敲除NRK细胞Slc22a2基因的方法
技术领域
本发明涉及基因工程技术领域,具体地说,涉及一种利用CRISPR-CAS9技术敲除NRK细胞Slc22a2基因的方法。
背景技术
NRK-52E细胞是大鼠肾小管上皮细胞,很多药物、毒素的分泌、吸收都在肾小管上皮细胞完成。在肾脏中有很多转运蛋白在药物、毒素的分泌、吸收中发挥着重要作用。有机阳离子转运蛋白家族(OCTs)是跨膜蛋白,包括三个亚型1-3,由SLC22A1-3编码,转运有机阳离子、弱碱和一些中性化合物。人OCT1主要在肝脏表达,将血液中的有机阳离子转运进肝脏,然后再进行生物转化。OCT2主要分布于肾脏和脑部,参与药物、毒素肾清除和脑转运。OCT3在多种组织中都有表达,例如肾、肝、小肠、脑、骨骼肌、胎盘等,负责中枢神经系统中内源物质的转运。
在该家族成员中,OCT2(基因Slc22a2)在人肾近端小管细胞基底膜表达丰富,所以有可能他们在近端小管从血液吸收化合物的过程中起重要作用。人OCT2和大鼠OCT2均位于肾近端小管基底膜,参与许多化合物肾排泄和肾重吸收。人OCT2转运四乙胺、1-甲基-4-苯基吡啶、4-[4-(二甲氨基)苯乙烯基]-N-甲基吡啶、N-甲基烟酰胺、氨基胍。OCT2还转运神经递质,例如乙酰胆碱、多巴胺、肾上腺素、去甲肾上腺素、5-羟色胺、组胺、胆碱。人OCT2也转运黄曲霉毒素B1、百草枯、溴化乙锭。一些蛋白参与了OCT2的转录后调控,如蛋白激酶C(PKC)、蛋白激酶A(PKA)、磷脂酰肌醇-3激酶(PI3K)、钙调蛋白。OCT2介导许多药物肾外排的第一步,以及胆碱或其他有机阳离子底物在近端小管重吸收的第二步。人中枢神经系统中的OCT2能将药物转运通过血脑屏障,例如抗帕金森的药物。在急性和慢性肾损伤中,肾OCT2蛋白表达下降,会导致OCT2底物的药代动力学和肾毒性的改变。
发明内容
本发明的目的是提供一种利用CRISPR-CAS9技术敲除NRK细胞Slc22a2基因的方法。
本发明的另一目的是提供利用上述方法制备的Slc22a2基因敲除的NRK细胞系及以其作为细胞模型在研究OCT2蛋白的转运功能中的应用。
为了实现本发明目的,本发明首先提供一种Slc22a2基因打靶载体,所述打靶载体是基于CRISPR/Cas9系统的gRNA表达载体,gRNA作用位点位于大鼠Slc22a2基因的2号外显子上,gRNA作用位点的DNA序列为5′-TTTCAGTCAGTAGTGAACGT-3′(SEQ ID NO:1)。
用于构建所述表达载体的出发载体为pX458。
所述表达载体其是将gRNA作用位点的DNA序列5′端加上BbsI酶切位点序列,并人工合成其互补序列,将两条互补序列形成的双链DNA,与经过BbsI酶切的pX458载体连接,构建得到的。
本发明还提供所述打靶载体在制备Slc22a2基因敲除的NRK细胞系中的应用。
本发明还提供一种利用CRISPR-CAS9技术敲除NRK细胞Slc22a2基因的方法,其是根据大鼠Slc22a2基因序列,构建基于CRISPER-Cas9系统的gRNA表达载体,以此作为Slc22a2基因打靶载体,转入NRK细胞中,获得Slc22a2基因敲除的NRK细胞。
其中,gRNA作用位点位于大鼠Slc22a2基因的2号外显子上,gRNA作用位点的DNA序列为5′-TTTCAGTCAGTAGTGAACGT-3′。
本发明还提供利用上述方法制备的Slc22a2基因敲除的NRK细胞系。利用打靶载体转染NRK细胞,获得的中靶阳性细胞克隆,即为Slc22a2基因敲除的NRK细胞系。
用于鉴定中靶阳性细胞克隆的特异性PCR引物(SEQ ID NO:2-3)包括:
Slc22a2-F:5’-AAATGCCAGACTCACACCGT-3’
Slc22a2-R:5’-TGTGCGTTCAGGGTGAAGAA-3’
本发明所述NRK细胞为NRK-52E。
本发明进一步提供所述NRK细胞系在研究OCT2蛋白的转运功能(尤其对药物、毒素以及其他小分子物质的转运)中的应用。
本发明具有以下优点:
(一)利用CRISPR/Cas9系统首次从NRK-52E细胞中敲除Slc22a2基因,简便、快速,可作为理想的细胞模型,模拟人体肾脏环境中OCT2蛋白的缺失。
(二)基于CRISPR/Cas9系统敲除基因Slc22a2的方法,与沉默、干扰、敲低等手段相比,能够更有效地敲除OCT2蛋白,利于研究OCT2蛋白的转运功能。
(三)从基因、蛋白水平两方面检测都发现OCT2蛋白被敲除,说明OCT2蛋白序列已被彻底改变,可能造成OCT2功能的彻底丧失,是较为理想的OCT2敲除的细胞模型。
附图说明
图1为本发明实施例1中pX458质粒与目的片段连接后的PCR扩增结果。其中,泳道1-3均为pX458质粒与目的片段连接后转化大肠杆菌,挑取单克隆,培养后进行菌液PCR的扩增结果。
图2为本发明实施例1中大提质粒pX458-Slc22a2电泳图。
图3为本发明实施例1中转染细胞挑选单克隆鉴定结果。其中,A为不同克隆细胞基因组提取结果,B为不同克隆细胞的基因组PCR扩增结果,C为菌落PCR结果。
图4为本发明实施例1中利用Western blot检测OCT2蛋白的结果。
图5为本发明实施例2中CCK-8法测定Slc22a2基因敲除细胞活力的结果。
图6为本发明实施例3中野生型细胞与Slc22a2基因敲除型细胞在细胞凋亡中的差异比较结果。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。若未特别指明,实施例均按照常规实验条件,如Sambrook等分子克隆实验手册(Sambrook J&Russell DW,Molecular Cloning:a Laboratory Manual,2001),或按照制造厂商说明书建议的条件。
实施例1利用CRISPR-CAS9技术敲除NRK细胞Slc22a2基因的方法
1、实验材料
真核表达载体pSpCas9(BB)-2A-GFP(pX458)。
大鼠NRK-52E细胞,购自中国科学院上海生命科学研究院细胞资源中心。
2、CRISPR/Cas9打靶载体的构建
(1)靶序列确定
根据网站http://genome.ucsc.edu获取大鼠Slc22a2基因的外显子信息,选择第2外显子作为靶标设计的区域。然后根据网站http://crispr.mit.edu设计guide sequence:5’-TTTCAGTCAGTAGTGAACGT-3’,在其5’端加上BbsI酶切位点序列,并合成与其互补的序列(SEQ ID NO:4-5):
Guide sequence:5’-CACCGTTTCAGTCAGTAGTGAACGT-3’
Complementary sequence:3’-CAAAGTCAGTCATCACTTGCACAAA-5’
(2)靶序列与pX458质粒连接
①pX458空载体酶切,20μL反应体系见表1,37℃酶切过夜。
表1pX458空质粒酶切体系
②pX458酶切产物的回收纯化
根据天根生化普通琼脂糖凝胶DNA回收试剂盒说明书进行。
③合成的Guide sequence和Complementary sequence形成双链DNA,10μL反应体系见表2,反应程序:37℃,30min;95℃5min,自然降至室温。
表2合成片段形成双链体系
④将形成双链的目的片段稀释250倍后与载体pX458连接,得到重组载体pX458-Slc22a2。10μL反应体系见表3,反应程序:室温连接3h。
表3连接体系
(3)转化大肠杆菌DH5α,挑取单克隆PCR鉴定
将连接产物加入100μL E.coli感受态细胞DH5α,混匀后冰浴30min,然后进行转化,42℃热激90s,冰浴2min,加入900μL 37℃预温好的无菌LB培养基(1%胰蛋白胨、0.5%酵母提取物、1%氯化钠),37℃、200g下振荡培养1h,取100μL菌液涂布LB培养基琼脂平板(每100mL LB琼脂培养基中含100μL浓度为100mg/mL的氨苄青霉素、200μL浓度为20mg/mL的X-Gal溶液),37℃倒置培养16h左右。挑取白色克隆菌落,在1mL LB培养基(含0.1mg/mL氨苄青霉素)中培养,进行菌液PCR,测序。PCR引物:F:5’-TGGACTATCATATGCTTACCGTAAC-3’,R:5’-AAACACGTTCACTACTGACTGAAA-3’。
PCR扩增片段大小为105bp,见图1,说明目的片段与pX458载体连接成功。筛选出正确序列质粒进行下一步实验。
3、质粒的制备与鉴定
上一步经过PCR鉴定选择符合预期的克隆,用天根生化大提试剂盒大量制备无内毒素的质粒pX458-Slc22a2,测定其浓度和纯度。提取步骤依照说明书进行。在1%琼脂糖凝胶上电泳,凝胶成像系统观察跑胶结果(图2)。
4、Slc22a2基因敲除细胞系的构建
(1)细胞转染
待NRK-52E细胞长至60%~80%汇合度时,转染前lh,给细胞换液。
转染步骤如下:
①配制细胞转染液:取一个1.5mL无菌EP管,先加入320μL DMEM,然后按8μg/6cm皿量加入大提好的质粒pX458-Slc22a2,轻柔混匀,但要尽量保证充分。
②一般按照质粒∶HTF为1∶3(w/v)的比例加入相应体积的HTF(细胞转染试剂),轻柔混匀并保证充分,室温静置20min。
③转染4~6h后,给细胞换液。
④培养48h后,使用分选型流式细胞仪筛选出有EGFP标记的细胞,分单个细胞在96孔板中培养。
⑤待单克隆细胞数量足够多时分别提取DNA鉴定。
(2)细胞基因组提取
配制细胞裂解液pH 8.0,见表4。
表4细胞裂解液
①细胞消化后,离心弃上清,加600μL裂解液(3.5cm皿),加入4μL蛋白酶K,65℃孵育20min。
②12000g离心5min取上清,加入2倍体积的异丙醇,倒转混匀后,可以看见丝状物。
③12000g离心10min,弃上清,加1mL 70%乙醇洗沉淀。
④12000g离心10min,弃上清,彻底晾干后,加ddH2O溶解,-20℃保存备用。
将构建成功的质粒转染NRK-52E细胞,转染48h后利用分选型流式细胞仪筛选出转染成功的细胞,在96孔板里单细胞培养。待单克隆细胞数量足够多时分别提取DNA,图3A展示了其中8个细胞克隆A1、A10、B5、B13、C2、C5、C10和C16的DNA提取结果。
(3)PCR鉴定
在Slc22a2基因上,以包含靶序列的517bp片段为目的片段,设计引物Slc22a2-F和Slc22a2-R,序列如下:
Slc22a2-F:5’-AAATGCCAGACTCACACCGT-3’
Slc22a2-R:5’-TGTGCGTTCAGGGTGAAGAA-3’
PCR反应条件:95℃预变性5min;30个循环:95℃变性30s,58℃退火60s,72℃延伸60s;最后72℃终延伸7min。PCR反应体系见表5。PCR产物用琼脂糖凝胶电泳检测(图3B)。
表5PCR扩增体系
其中6个细胞克隆的PCR扩增片段大小符合预期517bp,将A1、B13、C2、C5、C10、C16的PCR产物回收纯化。
(4)PCR产物回收纯化
根据天根生化普通琼脂糖凝胶DNA回收试剂盒说明书进行。
(5)回收片段与T-Vector pMDTM19的连接与转化
将PCR产物回收纯化后的片段与T载体连接,连接体系见表6。载体连接条件为16℃过夜。
表6T载体连接反应体系
(6)转化大肠杆菌DH5α,挑取单克隆PCR鉴定
连接产物转化大肠杆菌DH5α,参见前述转化操作步骤。每个平板挑取20个白色克隆菌落,进行菌落PCR。引物使用T载体通用引物:
M13F(-47)5’-CGCCAGGGTTTTCCCAGTCACGAC-3’
M13R(-48)5’-AGCGGATAACAATTTCACACAGGA-3’
PCR反应条件:95℃预变性5min;30个循环:95℃变性30s,58℃退火60s,72℃延伸60s;最后72℃终延伸7min。PCR反应体系见表7。PCR扩增产物大小为673bp,用琼脂糖凝胶电泳检测。
表7PCR扩增体系
PCR胶回收产物连接T载体后,转化大肠杆菌DH5α,挑取白色克隆菌落,进行菌落PCR,选取C16号部分结果展示见图3C。
(7)测序比对
将PCR产物测序,测序结果与原始PCR序列比对,确定具体突变位置以及突变序列。经比对发现只有C16号细胞克隆的PCR产物测序结果显示全部突变,类型为增加一个碱基C,下划线处碱基为新增加的碱基,该碱基的增加导致Slc22a2基因表达移码突变。加粗字体是Slc22a2基因部分序列,斜体为T载体上的部分序列。
CGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTAGAACTCGGTACGCGCGGATCTTCCAGAGATTAAATGCCAGACTCACACCGTCAGATGGAATGCTAAATGCTAATGGATTTCCAGGGGAAATCTGGCAATGTATAGAAATTTAGCATGGGTTACGGTGCAGCTGGACTATTGGCACTCCGTTCAAGAAATATTCGAGTAAGTACCACACAGTAATCACCTGAACCGTCTGTGCTCCCAGGAACTCCCAGTTAGAAATACTCAGAGAACTATGATATGAATAGATCTAAGGAGATGCTAATAACATTTTCTCCCTCTCTGCCCTCCCCCACTCTCTTCCCCTCCCCCGGCTTGGACGGCACCGCATATTTGGACAGTTTAACCTGGTGTGTGCTCACTCCTGGATGCTGGACCTGTTTCAGTCAGTAGTGAACCGTGGGGTTTTTCATCGGTGCTATGATGATTGGCTACCTAGCGGACAGGTAGGTGAAACAACTGTGGGGCTTTAAAAATAACCCACAGGTTCAGACAGTACTCGGGCTCACCCACCCTGCCCGAATCCTTCTTCACCCTGAACGCACAATCGTCGAACGGCAGGCGTGCAAACTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCT
(8)Western blot验证
在基因水平验证突变细胞株后,用Western blot进一步验证C16号细胞株是否敲除OCT2蛋白,结果见图4,未检测到OCT2蛋白。
通过以上DNA水平以及蛋白水平的验证,证明Slc22a2基因敲除的NRK-52E细胞系构建成功。然后使用KO代表C16号Slc22a2基因敲除的细胞株。
实施例2CCK-8法测定敲除细胞活力
使用敲除型细胞株KO,用10μM、20μM、50μM OTA以及1000μM TEA(OCT抑制剂)处理细胞24h,检测细胞活力。
1.用胰酶消化收集对数生长期的细胞,加入适量完全培养基吹打成单细胞。在96孔培养板中每孔接种约8000个细胞,每孔添加培养液100μL,空白孔不加细胞,为防止液体挥发影响细胞生长,在96孔板最外侧一圈添加200μL PBS。
2.将96孔板放入37℃、5%CO2及95%饱和大气湿度培养箱培养。24h后待细胞长到约70%弃去培养液,每孔加入含有不同浓度(0~50μM)OTA的完全培养基,对照组(有细胞、无OTA)和空白组(无细胞、无OTA)加入同等体积的完全培养基,每个处理组设置6个复孔,培养箱孵育24h。
3.每孔加10μL CCK8工作液,在37℃培养箱中放置1h。用酶标仪在450nm处测定吸光值。
4.待确定OTA的处理浓度后,用胰酶消化收集对数生长期的细胞,加入适量完全培养基吹打成单细胞。每孔接种8000个细胞,每孔添加培养液100μL,空白孔不加细胞,为防止液体挥发影响细胞生长,在96孔板最外侧一圈添加200μL PBS。
5.将96孔板放入37℃、5%CO2及95%饱和大气湿度培养箱培养。24h后待细胞长到约70%,弃去培养液,用含有OCT的抑制剂TEA(Tetraethylammonium chloride)(0~100μM)的完全培养基预处理细胞15min,每孔细胞悬液体积100uL,然后弃去TEA,再用含有OTA和TEA的完全培养基共同处理细胞24h。
6.每孔加入10μL CCK-8工作液,37℃孵育1h。用酶标仪在450nm处测定吸光值。
OTA处理24h对敲除细胞的细胞活力产生影响(图5),OTA剂量为10μM、20μM、50μM时,细胞活力均显著降低。在OTA处理的同时添加TEA,发现细胞活力与单独OTA处理无显著变化。该结果表明敲除OCT2蛋白后,再使用OCT家族的抑制剂,对于细胞存活无显著缓解作用,说明OCT1,OCT3并不在OTA影响细胞存活中起主要作用。
实施例3OTA对敲除细胞凋亡的影响
用50μM OTA处理野生型细胞与敲除型细胞KO 24h,用流式细胞仪检测细胞凋亡。
1)将细胞以105个/孔的密度传代于6孔板中,生长约24h待细胞覆盖底面积约70%时用OTA处理(0、20μM、50μM)或OTA与TEA共处理。
2)处理24h后,弃处理液,用PBS冲洗两遍后用不含EDTA的胰酶消化收集细胞。
3)用PBS洗涤细胞2次,以2000g离心5min,收集细胞沉淀。
4)加500μL的Binding Buffer悬浮细胞,2000g离心5min,收集细胞沉淀。
5)加500μL的Binding Buffer悬浮细胞,加5μL FITC混合均匀后,加5μL PI混匀,放置10min。
6)流式细胞仪上机检测,重复三次,收集数据和图像。
为了探究OTA诱导的细胞凋亡是否在OCT2敲除后发生了变化,本实验用50μM OTA处理细胞24h,比较野生型细胞与敲除型细胞KO在细胞凋亡中的差异。结果见图6,50μM OTA处理细胞24h,野生型细胞的凋亡率由9%增加到40%(p<0.05);敲除型细胞KO的凋亡率由10%增加到14%,无显著增加;在50μM OTA处理24h后,敲除型细胞KO的凋亡率显著低于野生型细胞。说明OCT2敲除缓解了OTA引发的NRK-52E细胞凋亡。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之做一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
序列表
<110> 中国农业大学
<120> 利用CRISPR-CAS9技术敲除NRK细胞Slc22a2基因的方法
<130> KHP171113745.0
<160> 5
<170> PatentIn version 3.3
<210> 1
<211> 20
<212> DNA
<213> 人工序列
<400> 1
tttcagtcag tagtgaacgt 20
<210> 2
<211> 20
<212> DNA
<213> 人工序列
<400> 2
aaatgccaga ctcacaccgt 20
<210> 3
<211> 20
<212> DNA
<213> 人工序列
<400> 3
tgtgcgttca gggtgaagaa 20
<210> 4
<211> 25
<212> DNA
<213> 人工序列
<400> 4
caccgtttca gtcagtagtg aacgt 25
<210> 5
<211> 25
<212> DNA
<213> 人工序列
<400> 5
caaagtcagt catcacttgc acaaa 25

Claims (9)

1.Slc22a2基因打靶载体,其特征在于,所述打靶载体是基于CRISPR/Cas9系统的gRNA表达载体,gRNA作用位点位于大鼠Slc22a2基因的2号外显子上,gRNA作用位点的DNA序列为5′-TTTCAGTCAGTAGTGAACGT-3′。
2.根据权利要求1所述的打靶载体,其特征在于,出发载体为pX458。
3.根据权利要求2所述的打靶载体,其特征在于,其是将gRNA作用位点的DNA序列5′端加上BbsI酶切位点序列,并人工合成其互补序列,将两条互补序列形成的双链DNA,与经过BbsI酶切的pX458载体连接,构建得到的。
4.权利要求1-3任一项所述打靶载体在制备Slc22a2基因敲除的NRK细胞系中的应用。
5.利用CRISPR-CAS9技术敲除NRK细胞Slc22a2基因的方法,其特征在于,其是根据大鼠Slc22a2基因序列,构建基于CRISPER-Cas9系统的gRNA表达载体,以此作为Slc22a2基因打靶载体,转入NRK细胞中,获得Slc22a2基因敲除的NRK细胞;
其中,gRNA作用位点位于大鼠Slc22a2基因的2号外显子上,gRNA作用位点的DNA序列为5′-TTTCAGTCAGTAGTGAACGT-3′。
6.Slc22a2基因敲除的NRK细胞系,其特征在于,用权利要求1-3任一项所述打靶载体转染NRK细胞,获得的中靶阳性细胞克隆,即为Slc22a2基因敲除的NRK细胞系。
7.根据权利要6所述的NRK细胞系,其特征在于,用于鉴定中靶阳性细胞克隆的特异性PCR引物包括:
Slc22a2-F:5’-AAATGCCAGACTCACACCGT-3’
Slc22a2-R:5’-TGTGCGTTCAGGGTGAAGAA-3’。
8.根据权利要求6或7所述的NRK细胞,其特征在于,所述NRK细胞为NRK-52E。
9.权利要求6-8任一项所述NRK细胞系在研究OCT2蛋白的转运功能中的应用。
CN201710496608.1A 2017-06-26 2017-06-26 利用CRISPR-CAS9技术敲除NRK细胞Slc22a2基因的方法 Active CN107177631B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710496608.1A CN107177631B (zh) 2017-06-26 2017-06-26 利用CRISPR-CAS9技术敲除NRK细胞Slc22a2基因的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710496608.1A CN107177631B (zh) 2017-06-26 2017-06-26 利用CRISPR-CAS9技术敲除NRK细胞Slc22a2基因的方法

Publications (2)

Publication Number Publication Date
CN107177631A true CN107177631A (zh) 2017-09-19
CN107177631B CN107177631B (zh) 2020-11-24

Family

ID=59844272

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710496608.1A Active CN107177631B (zh) 2017-06-26 2017-06-26 利用CRISPR-CAS9技术敲除NRK细胞Slc22a2基因的方法

Country Status (1)

Country Link
CN (1) CN107177631B (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1020518A1 (en) * 1997-09-08 2000-07-19 Chugai Research Institute for Molecular Medicine Inc. Transporter genes
CN106191057A (zh) * 2016-07-06 2016-12-07 中山大学 一种用于敲除人CYP2E1基因的sgRNA序列、CYP2E1基因缺失细胞株的构建方法及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1020518A1 (en) * 1997-09-08 2000-07-19 Chugai Research Institute for Molecular Medicine Inc. Transporter genes
CN106191057A (zh) * 2016-07-06 2016-12-07 中山大学 一种用于敲除人CYP2E1基因的sgRNA序列、CYP2E1基因缺失细胞株的构建方法及其应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FILIPSKI K.K.ET AL: "Contribution of Organic Cation Transporter 2 (OCT2) to Cisplatin-Induced Nephrotoxicity", 《CLINICAL PHARMACOLOGY & THERAPEUTICS》 *
JONKER J.W. ET AL: "Deficiency in the Organic Cation Transporters 1 and 2 (Oct1/Oct2 [Slc22a1/Slc22a2]) in Mice Abolishes Renal Secretion of Organic Cations", 《MOLECULAR AND CELLULAR BIOLOGY》 *
SCHLATTER E. ET AL: "Mouse organic cation transporter 1 determines properties and regulation of basolateral organic cation transport in renal proximal tubules", 《PFLUGERS ARCH-EUR J PHYSIOL》 *
THEVENOD F. ET AL.: "Substrate- and Cell Contact-Dependent Inhibitor Affinity of Human Organic Cation Transporter 2: Studies with Two Classical Organic Cation Substrates and the Novel Substrate Cd2+", 《MOLECULAR PHARMACEUTICS》 *

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US12043852B2 (en) 2015-10-23 2024-07-23 President And Fellows Of Harvard College Evolved Cas9 proteins for gene editing
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11999947B2 (en) 2016-08-03 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US12084663B2 (en) 2016-08-24 2024-09-10 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US12031126B2 (en) 2020-05-08 2024-07-09 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Also Published As

Publication number Publication date
CN107177631B (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
CN107177631A (zh) 利用CRISPR‑CAS9技术敲除NRK细胞Slc22a2基因的方法
Murakami et al. Epidermal LysM receptor ensures robust symbiotic signalling in Lotus japonicus
Fuchsbauer et al. Cas9 allosteric inhibition by the anti-CRISPR protein AcrIIA6
CN104560864B (zh) 利用CRISPR‑Cas9系统构建的敲除IFN‑β基因的293T细胞系
CN106868008A (zh) CRISPR/Cas9靶向敲除人Lin28A基因及其特异性gRNA
CN106906242A (zh) 一种提高CRIPSR/Cas9靶向敲除基因产生非同源性末端接合效率的方法
Sun et al. pH regulates white-opaque switching and sexual mating in Candida albicans
CN106244609A (zh) 一种调节pi3k‑akt信号通路的非编码基因的筛选系统及筛选方法
CN103509729B (zh) 一种生产辅酶q10工程菌的构建方法、工程菌及其应用
CN109169702B (zh) 纳米化RNAi制剂及其制备方法和应用
Zhang et al. Development of an Agrobacterium-mediated transformation system for the cold-adapted fungi Pseudogymnoascus destructans and P. pannorum
Park et al. EFG1 Mutations, phenotypic switching, and colonization by clinical a/α strains of Candida albicans
CN109402171B (zh) 一种松材线虫RNAi调控基因及其应用
CN106916821A (zh) 一种ssDNA核酸适配体及其应用
CN105457041B (zh) miR-26a在非小细胞肺癌中的应用
CN113444726B (zh) 一种与仔猪细菌性腹泻相关的lncRNA ALDB-898及其应用
CN105218642B (zh) 一种肽适体及其作为稻瘟菌钙调蛋白拮抗剂的应用
CN104845913B (zh) 苏云金芽胞杆菌菌株,组合蛋白及其应用
CN106177906B (zh) Ddb1蛋白的应用
CN111471715A (zh) 一种腺病毒载体及其构建方法和用途
CN106075396B (zh) Cul4蛋白的应用
Yamada et al. Agrobacterium tumefaciens-mediated transformation of antifungal lipopeptide producing fungus Coleophoma empetri F-11899
WO2024174954A1 (zh) 小麦广谱抗白粉病基因wtk7-tm克隆、功能标记及其应用
CN113151320B (zh) 马铃薯StLecRK-VI.1与StTET8基因及其在改良晚疫病抗性中的应用
CN108300763A (zh) 一种筛选miR-101-3P靶基因的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Xu Wentao

Inventor after: Luo Yunbo

Inventor after: Qi Xiaozhe

Inventor after: Huang Kunlun

Inventor after: Zhu Liye

Inventor after: He Xiaoyun

Inventor before: Luo Yunbo

Inventor before: Xu Wentao

Inventor before: Qi Xiaozhe

Inventor before: Huang Kunlun

Inventor before: Zhu Liye

Inventor before: He Xiaoyun

GR01 Patent grant
GR01 Patent grant