CN107140963A - 一种复合透波材料的制备方法 - Google Patents

一种复合透波材料的制备方法 Download PDF

Info

Publication number
CN107140963A
CN107140963A CN201710263030.5A CN201710263030A CN107140963A CN 107140963 A CN107140963 A CN 107140963A CN 201710263030 A CN201710263030 A CN 201710263030A CN 107140963 A CN107140963 A CN 107140963A
Authority
CN
China
Prior art keywords
wave transparent
electromagnetic wave
transparent material
sintering
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710263030.5A
Other languages
English (en)
Inventor
钟雄
薛洋
葛明月
Original Assignee
TRUSYN CHEM-TECH Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRUSYN CHEM-TECH Co Ltd filed Critical TRUSYN CHEM-TECH Co Ltd
Priority to CN201710263030.5A priority Critical patent/CN107140963A/zh
Publication of CN107140963A publication Critical patent/CN107140963A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/463Organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/82Coating or impregnation with organic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/401Alkaline earth metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本发明属于透波材料制备技术领域,具体尤其涉及一种复合透波材料的制备方法。本发明首先将水稻秸秆和稻壳粉碎并进行炭化处理后,与镁粉混合加热,经酸浸后得到改性混合秸秆粉末,再将其与碳酸锂、碳酸钙等物质混合后进行湿法球磨,得到混合浆料,接着将混合浆料干燥后置于模具中压制成型,得坯体,并将其烧结,得到透波基材,随后将3,3′,4,4′‑二苯甲酮四甲酸二酐、二氨基二苯醚等进行反应得到反应液,最后将反应液涂覆于透波基材表面进行干燥即可。本发明制备的耐高温复合透波材料耐高温可达到1700℃以上,力学性能好,可广泛应用于天线罩材料中,具有广阔的应用前景。

Description

一种复合透波材料的制备方法
技术领域
本发明属于透波材料制备技术领域,具体尤其涉及一种复合透波材料的制备方法。
背景技术
在精确制导飞行器的需求牵引下,精确制导技术得以迅速发展。而随着推进技术的进步,飞行器的飞行速度和再入速度越来越高,有的飞行器在大气层中的飞行速度高达十几马赫(Ma),由此使得飞行器表面承受的的气动载荷和气热越来越严重,进而使得飞行器的电磁导引装置对其保护部件—天线罩/窗对材料防热和承载性能提出了更高的要求。另外,为了提高精确制导飞行器的抗电磁干扰能力和制导精度,要求其电磁窗/罩材料在高温下仍然具有良好的透波特性,即要求材料具有极低的介电常数和介电损耗,亦即用于制作高马赫数飞行器天线罩/窗的材料要同时具备良好的耐高温、耐烧蚀、耐冲刷、抗热震及力学性能和介电性能等。
目前,高温透波材料主要分为磷酸盐基复合材料和硅基复合材料等。陶瓷基复合材料最早被用于高温天线罩领域,包括玻璃陶瓷、石英陶瓷及氮化硅陶瓷等,这类材料明显存在着脆性大、力学强度低及耐热性能差等缺点,其应用受到很大的限制;硅基复合材料具有优良的介电性能和良好的耐高温性能,是一种稳定的透波材料,但是硅基复合材料的主链非常柔顺,分子间作用力小,有效交联密度低,因此硅基复合材料的力学性能较弱,承受载荷的能力有限,这很大程度上限制了硅基复合材料的应用。
发明内容
本发明所要解决的技术问题:针对传统的透波材料耐热性能差,力学强度低,硅基复合材料的主链非常柔顺,分子间作用力小,有效交联密度低,因此硅基复合材料的力学性能较弱,承受载荷的能力有限,这很大程度上限制了硅基复合材料的应用的问题,提供了一种复合透波材料的制备方法。
为解决上述技术问题,本发明采用的技术方案是:
(1)称取水稻秸秆和稻壳,粉碎,过筛,得混合秸秆粉末,将混合秸秆粉末置于管式炉中,在氩气保护下升温,保温热处理后得炭化物,将炭化物与镁粉混合,混合后置于管式炉中,在氩气保护下升温,保温烧结后冷却至室温,得烧结后的物料;
(2)将烧结后的物料加入盐酸中,浸泡后过滤得滤渣,用去离子水洗涤滤渣后放入烘箱中,干燥后得改性混合秸秆粉末;
(3)按重量份数计,分别选取80~100份改性混合秸秆粉末、12~15份碳酸锂、15~17份碱式碳酸镁和13~15份碳酸钙,依次加入球磨罐中,以无水乙醇作为分散剂,氧化锆球为球磨介质,球磨后得混合浆料,将混合浆料置于烘箱中,干燥后过筛得混合粉末;
(4)将混合粉末加入模具中,压制成型后得坯体,将坯体放入烧结炉中,在氮气气氛保护下保温烧结,冷却至室温后得透波基材;
(5)按质量比1:3:20,分别称取3,3′,4,4′-二苯甲酮四甲酸二酐、二氨基二苯醚和二甲基乙酰胺,并置于三口烧瓶中加热,保温搅拌反应后得反应液,将反应液进行真空脱泡,得脱泡后的反应液,并涂覆在透波基材表面,先进行第一次涂覆脱泡后的反应液,涂覆后放入烘箱中,干燥后取出,再进行第二次涂覆脱泡后的反应液,涂覆后干燥,干燥后冷却至室温,取出,即可得到复合透波材料。
所述的水稻秸秆与稻壳的质量比为10:1,炭化物与镁粉质量比为30:1。
所述的烧结后的物料与盐酸的质量比为1:10,盐酸的质量分数为5~10%。
所述的炭化温度为500~600℃,炭化时间为2~3h,所述的烧结温度为800~900℃,烧结时间为1~2h。
所述的压制成型的坯体是先在压力为40~50MPa下压制60~100s,压制后再在20~30MPa压力下压制4~6min。
所述的坯体烧结是先升温至500~600℃,保温1~2h后再升温至900~1000℃,保温烧结3~4h。
所述的加热温度为80~120℃,反应时间为3~5h。
所述的第一次涂覆的涂覆量为20~40g/m2,第一次干燥温度为100~120℃,干燥时间为30~50min。
所述的第二次涂覆的涂覆量为30~50g/m2,第二次干燥温度为150~200℃,干燥时间为3~5h。
本发明与其他方法相比,有益技术效果是:
(1)本发明先对水稻秸秆在氮气气氛保护下进行炭化,将炭化后的水稻秸秆和镁粉混合,进一步进行高温烧结,烧结后物质加入酸溶液中浸泡,由于水稻秸秆炭化,酸泡处理后,可以使秸秆的表面产生不同的孔洞结构,并且炭化后的秸秆具有独特的力学性能和耐温性能,其耐高温可达到1700℃以上,表现出优异的电磁波吸收性能;
(2)本发明利用稻壳炭化后会生产二氧化硅,与镁粉复合烧结,会生成后负载在秸秆孔洞结构中,可以提高透波材料的断裂韧性,裂韧性达到1.8~2.1(MPa·m1/2);
(3)本发明将改性秸秆混合粉末、碳酸锂、碱式碳酸镁和碳酸钙球磨得混合浆料,其中的二氧化硅起到促进烧结和粘结剂的作用,与锂离子、镁离子和钙离子进行复合,得多元复合填料,填料后分散于改性秸秆混合粉末中,得透波基材,得到的透波基材力学性能,热学性能和介电性能良好的,抗弯强度达到125~170MPa,拉伸强度达到90~120MPa,介电常数为3.2~3.4;
(4)本发明将3,3′,4,4′-二苯甲酮四甲酸二酐、二氨基二苯醚和二甲基乙酰胺制备得反应液涂覆在透波基材上,干燥后得复合透波材料,反应液在基材表面形成胶凝材料,干燥后形成结构致密的膜,可以进一步增强透波材料的耐温温度,和透波率,透波率达92~96%。
具体实施方式
按质量比10:1称取水稻秸秆和稻壳,混合后加入粉碎机中粉碎,过80~100目筛,得混合秸秆粉末,将混合秸秆粉末置于管式炉中,在氩气保护下以5~10℃/min速率升温至500~600℃后,保温热处理2~3h,得炭化物,按质量比30:1将炭化物与镁粉混合,混合后置于管式炉中,在氩气保护下升温至800~900℃,保温烧结1~2h,烧结后冷却至室温,得烧结后的物料;按质量比1:10将烧结后的物料加入质量分数5~10%盐酸中,浸泡2~3h后过滤得滤渣,用去离子水洗涤2~4次后放入烘箱中,在60~80℃下干燥6~8h,干燥后得改性混合秸秆粉末;按重量份数计,分别选取80~100份改性混合秸秆粉末、12~15份碳酸锂、15~17份碱式碳酸镁和13~15份碳酸钙,依次加入球磨罐中,以无水乙醇作为分散剂,氧化锆球为球磨介质,球磨3~5h后得混合浆料,将混合浆料置于烘箱中,在80~90℃下干燥3~5h,干燥后过200~220目筛得混合粉末;将混合粉末加入模具中,先在40~50MPa压力下压制60~100s,压制后再在20~30MPa压力下压制4~6min,压制成型后得坯体,将坯体放入烧结炉中,在氮气气氛保护下先升温至500~600℃,保温1~2h后再升温至900~1000℃,保温烧结3~4h后冷却至室温,得透波基材;按质量比1:3:20,分别称取3,3′,4,4′-二苯甲酮四甲酸二酐、二氨基二苯醚和二甲基乙酰胺,并置于三口烧瓶中,将三口烧瓶放入油浴锅中,加热至80~120℃,保温搅拌反应3~5h后得反应液,将反应液进行真空脱泡3~5min后得脱泡后的反应液,并均匀涂覆在透波基材表面,先进行第一次涂覆,涂覆量为20~40g/m2,涂覆后放入烘箱中,在100~120℃温度下干燥30~50min,干燥后取出,再进行第二次涂覆脱泡后的反应液,涂覆量为30~50g/m2,涂覆后在150~200℃温度下干燥3~5h,干燥后冷却至室温,取出,即可得到复合透波材料。
实例1
按质量比10:1称取水稻秸秆和稻壳,混合后加入粉碎机中粉碎,过100目筛,得混合秸秆粉末,将混合秸秆粉末置于管式炉中,在氩气保护下以10℃/min速率升温至600℃后,保温热处理3h,得炭化物,按质量比30:1将炭化物与镁粉混合,混合后置于管式炉中,在氩气保护下升温至900℃,保温烧结2h,烧结后冷却至室温,得烧结后的物料;按质量比1:10将烧结后的物料加入质量分数10%盐酸中,浸泡3h后过滤得滤渣,用去离子水洗涤4次后放入烘箱中,在80℃下干燥8h,干燥后得改性混合秸秆粉末;按重量份数计,分别选取100份改性混合秸秆粉末、15份碳酸锂、17份碱式碳酸镁和15份碳酸钙,依次加入球磨罐中,以无水乙醇作为分散剂,氧化锆球为球磨介质,球磨5h后得混合浆料,将混合浆料置于烘箱中,在90℃下干燥5h,干燥后过220目筛得混合粉末;将混合粉末加入模具中,先在50MPa压力下压制100s,压制后再在30MPa压力下压制6min,压制成型后得坯体,将坯体放入烧结炉中,在氮气气氛保护下先升温至600℃,保温2h后再升温至1000℃,保温烧结4h后冷却至室温,得透波基材;按质量比1:3:20,分别称取3,3′,4,4′-二苯甲酮四甲酸二酐、二氨基二苯醚和二甲基乙酰胺,并置于三口烧瓶中,将三口烧瓶放入油浴锅中,升温至120℃,保温搅拌反应5h后得反应液,将反应液进行真空脱泡5min后得脱泡后的反应液,并均匀涂覆在透波基材表面,先进行第一次涂覆,涂覆量为40g/m2,涂覆后放入烘箱中,在120℃温度下干燥50min,干燥后取出,再进行第二次涂覆脱泡后的反应液,涂覆量为50g/m2,涂覆后在200℃温度下干燥5h,干燥后冷却至室温,取出,即可得到复合透波材料。
实例2
按质量比10:1称取水稻秸秆和稻壳,混合后加入粉碎机中粉碎,过80目筛,得混合秸秆粉末,将混合秸秆粉末置于管式炉中,在氩气保护下以5℃/min速率升温至500℃后,保温热处理2h,得炭化物,按质量比30:1将炭化物与镁粉混合,混合后置于管式炉中,在氩气保护下升温至800℃,保温烧结1h,烧结后冷却至室温,得烧结后的物料;按质量比1:10将烧结后的物料加入质量分数5%盐酸中,浸泡2h后过滤得滤渣,用去离子水洗涤2次后放入烘箱中,在60℃下干燥6h,干燥后得改性混合秸秆粉末;按重量份数计,分别选取80份改性混合秸秆粉末、12份碳酸锂、15份碱式碳酸镁和13份碳酸钙,依次加入球磨罐中,以无水乙醇作为分散剂,氧化锆球为球磨介质,球磨3h后得混合浆料,将混合浆料置于烘箱中,在80℃下干燥3h,干燥后过200目筛得混合粉末;将混合粉末加入模具中,先在40MPa压力下压制60s,压制后再在20MPa压力下压制4min,压制成型后得坯体,将坯体放入烧结炉中,在氮气气氛保护下先升温至500℃,保温1h后再升温至900℃,保温烧结3h后冷却至室温,得透波基材;按质量比1:3:20,分别称取3,3′,4,4′-二苯甲酮四甲酸二酐、二氨基二苯醚和二甲基乙酰胺,并置于三口烧瓶中,将三口烧瓶放入油浴锅中,加热至80℃,保温搅拌反应3h后得反应液,将反应液进行真空脱泡3min后得脱泡后的反应液,并均匀涂覆在透波基材表面,先进行第一次涂覆,涂覆量为20g/m2,涂覆后放入烘箱中,在100℃温度下干燥30min,干燥后取出,再进行第二次涂覆脱泡后的反应液,涂覆量为30g/m2,涂覆后在150℃温度下干燥3h,干燥后冷却至室温,取出,即可得到复合透波材料。
实例3
按质量比10:1称取水稻秸秆和稻壳,混合后加入粉碎机中粉碎,过90目筛,得混合秸秆粉末,将混合秸秆粉末置于管式炉中,在氩气保护下以7℃/min速率升温至550℃后,保温热处理2h,得炭化物,按质量比30:1将炭化物与镁粉混合,混合后置于管式炉中,在氩气保护下升温至850℃,保温烧结2h,烧结后冷却至室温,得烧结后的物料;按质量比1:10将烧结后的物料加入质量分数7%盐酸中,浸泡2h后过滤得滤渣,用去离子水洗涤3次后放入烘箱中,在70℃下干燥7h,干燥后得改性混合秸秆粉末;按重量份数计,分别选取90份改性混合秸秆粉末、13份碳酸锂、16份碱式碳酸镁和14份碳酸钙,依次加入球磨罐中,以无水乙醇作为分散剂,氧化锆球为球磨介质,球磨4h后得混合浆料,将混合浆料置于烘箱中,在85℃下干燥4h,干燥后过210目筛得混合粉末;将混合粉末加入模具中,先在45MPa压力下压制80s,压制后再在25MPa压力下压制5min,压制成型后得坯体,将坯体放入烧结炉中,在氮气气氛保护下先升温至550℃,保温1h后再升温至950℃,保温烧结3h后冷却至室温,得透波基材;按质量比1:3:20,分别称取3,3′,4,4′-二苯甲酮四甲酸二酐、二氨基二苯醚和二甲基乙酰胺,并置于三口烧瓶中,将三口烧瓶放入油浴锅中,加热至100℃,保温搅拌反应4h后得反应液,将反应液进行真空脱泡4min后得脱泡后的反应液,并均匀涂覆在透波基材表面,先进行第一次涂覆,涂覆量为30g/m2,涂覆后放入烘箱中,在110℃温度下干燥40min,干燥后取出,再进行第二次涂覆脱泡后的反应液,涂覆量为40g/m2,涂覆后在170℃温度下干燥4h,干燥后冷却至室温,取出,即可得到复合透波材料。
将上述实例1~3所得的复合透波材料进行检测,其物理性质如下:

Claims (9)

1.一种复合透波材料的制备方法,其特征在于具体制备步骤为:
称取水稻秸秆和稻壳,粉碎,过筛,得混合秸秆粉末,将混合秸秆粉末置于管式炉中,在氩气保护下升温,保温热处理后得炭化物,将炭化物与镁粉混合,混合后置于管式炉中,在氩气保护下升温,保温烧结后冷却至室温,得烧结后的物料;
将烧结后的物料加入盐酸中,浸泡后过滤得滤渣,用去离子水洗涤滤渣后放入烘箱中,干燥后得改性混合秸秆粉末;
按重量份数计,分别选取80~100份改性混合秸秆粉末、12~15份碳酸锂、15~17份碱式碳酸镁和13~15份碳酸钙,依次加入球磨罐中,以无水乙醇作为分散剂,氧化锆球为球磨介质,球磨后得混合浆料,将混合浆料置于烘箱中,干燥后过筛得混合粉末;
将混合粉末加入模具中,压制成型后得坯体,将坯体放入烧结炉中,在氮气气氛保护下保温烧结,冷却至室温后得透波基材;
按质量比1:3:20,分别称取3,3′,4,4′-二苯甲酮四甲酸二酐、二氨基二苯醚和二甲基乙酰胺,并置于三口烧瓶中加热,保温搅拌反应后得反应液,将反应液进行真空脱泡,得脱泡后的反应液,并涂覆在透波基材表面,先进行第一次涂覆脱泡后的反应液,涂覆后放入烘箱中,干燥后取出,再进行第二次涂覆脱泡后的反应液,涂覆后干燥,干燥后冷却至室温,取出,即可得到复合透波材料。
2.根据权利要求1所述的一种复合透波材料的制备方法,其特征在于:步骤(1)中所述的水稻秸秆与稻壳的质量比为10:1,炭化物与镁粉质量比为30:1。
3.根据权利要求1所述的一种复合透波材料的制备方法,其特征在于:步骤(1)中所述的烧结后的物料与盐酸的质量比为1:10,盐酸的质量分数为5~10%。
4.根据权利要求1所述的一种复合透波材料的制备方法,其特征在于:步骤(1)中所述的炭化温度为500~600℃,炭化时间为2~3h,所述的烧结温度为800~900℃,烧结时间为1~2h。
5.根据权利要求1所述的一种复合透波材料的制备方法,其特征在于:步骤(4)中所述的压制成型的坯体是先在压力为40~50MPa下压制60~100s,压制后再在20~30MPa压力下压制4~6min。
6.根据权利要求1所述的一种复合透波材料的制备方法,其特征在于:步骤(4)中所述的坯体烧结是先升温至500~600℃,保温1~2h后再升温至900~1000℃,保温烧结3~4h。
7.根据权利要求1所述的一种复合透波材料的制备方法,其特征在于:步骤(5)中所述的加热温度为80~120℃,反应时间为3~5h。
8.根据权利要求1所述的一种复合透波材料的制备方法,其特征在于:步骤(5)中所述的第一次涂覆的涂覆量为20~40g/m2,第一次干燥温度为100~120℃,干燥时间为30~50min。
9.根据权利要求1所述的一种复合透波材料的制备方法,其特征在于:步骤(5)中所述的第二次涂覆的涂覆量为30~50g/m2,第二次干燥温度为150~200℃,干燥时间为3~5h。
CN201710263030.5A 2017-04-20 2017-04-20 一种复合透波材料的制备方法 Pending CN107140963A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710263030.5A CN107140963A (zh) 2017-04-20 2017-04-20 一种复合透波材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710263030.5A CN107140963A (zh) 2017-04-20 2017-04-20 一种复合透波材料的制备方法

Publications (1)

Publication Number Publication Date
CN107140963A true CN107140963A (zh) 2017-09-08

Family

ID=59775235

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710263030.5A Pending CN107140963A (zh) 2017-04-20 2017-04-20 一种复合透波材料的制备方法

Country Status (1)

Country Link
CN (1) CN107140963A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1673174A (zh) * 2004-03-23 2005-09-28 浙江大学 低温烧结(Ca,Mg)SiO3系微波介质陶瓷及制备工艺
CN101974155A (zh) * 2010-07-10 2011-02-16 襄樊市凯隆鑫高分子材料有限公司 聚酰亚胺前聚体树脂合成方法及单面柔性覆铜板制造方法
CN103351155A (zh) * 2013-07-05 2013-10-16 陕西师范大学 低温烧结二氧化硅基复合陶瓷及其制备方法
CN103579596A (zh) * 2013-11-08 2014-02-12 合肥国轩高科动力能源股份公司 锂离子电池负极材料的制备方法
CN103936401A (zh) * 2013-11-25 2014-07-23 云南银峰新材料有限公司 一种低介电常数微波介质陶瓷材料的制备方法
CN105870422A (zh) * 2016-06-01 2016-08-17 大连海事大学 一种C@SiOx材料及其制备方法和作为锂离子电池负极材料的应用
CN106211596A (zh) * 2016-06-30 2016-12-07 杭州福斯特光伏材料股份有限公司 一种双面挠性覆铜板及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1673174A (zh) * 2004-03-23 2005-09-28 浙江大学 低温烧结(Ca,Mg)SiO3系微波介质陶瓷及制备工艺
CN101974155A (zh) * 2010-07-10 2011-02-16 襄樊市凯隆鑫高分子材料有限公司 聚酰亚胺前聚体树脂合成方法及单面柔性覆铜板制造方法
CN103351155A (zh) * 2013-07-05 2013-10-16 陕西师范大学 低温烧结二氧化硅基复合陶瓷及其制备方法
CN103579596A (zh) * 2013-11-08 2014-02-12 合肥国轩高科动力能源股份公司 锂离子电池负极材料的制备方法
CN103936401A (zh) * 2013-11-25 2014-07-23 云南银峰新材料有限公司 一种低介电常数微波介质陶瓷材料的制备方法
CN105870422A (zh) * 2016-06-01 2016-08-17 大连海事大学 一种C@SiOx材料及其制备方法和作为锂离子电池负极材料的应用
CN106211596A (zh) * 2016-06-30 2016-12-07 杭州福斯特光伏材料股份有限公司 一种双面挠性覆铜板及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王楠等: "碳化秸秆作为金属液保温剂的研究", 《钢铁》 *

Similar Documents

Publication Publication Date Title
CN101555156B (zh) 一种氮化硼晶须/氮化硅陶瓷复合材料及其制备方法
CN101747047B (zh) 一种提高ZrB2-SiC超高温陶瓷材料抗热冲击和强度的方法
CN105130438B (zh) 一种基于反应烧结制备碳化硼陶瓷复合材料的方法
CN103011827A (zh) 一种原位引入硼为添加剂的二硼化锆陶瓷的制备方法
CN104591782A (zh) MoSi2-BSG涂覆氧化锆纤维板一体化隔热材料及其制备方法
CN101913887B (zh) 一种耐高温炭纤维制品及其制备方法
CN110937892A (zh) 一种高温吸收剂、超薄高温吸波材料及其制备方法
CN100465129C (zh) 一种陶瓷基透波材料及其制备方法
CN112479742A (zh) 一种基于碳基陶瓷隔热材料表面增韧的高发射率涂层的制备方法
CN103964860B (zh) 一种以纳米硅溶胶为烧结助剂热压制备的氮化硼基透波复合材料的制备方法
CN101734920B (zh) 一种氮化钛多孔陶瓷及其制备方法
CN102731098B (zh) 一种硅硼氧氮纤维/氮化硅陶瓷复合材料及其制备方法
CN107140963A (zh) 一种复合透波材料的制备方法
CN103145112B (zh) 一种BN-Si2N2O复合陶瓷及其制备方法
CN108191403A (zh) 一种抗冲击散热纳米陶瓷材料的制备方法
CN103819180A (zh) 一种bn-mas陶瓷复合材料及其制备方法
CN108002839B (zh) 一种ZrC1-x-SiC复相陶瓷的制备方法
CN102807389A (zh) 一种Si3N4-Si2N2O多孔复相陶瓷的制备方法
CN106673669B (zh) 一种镁铝尖晶石-氮化硅基蜂窝陶瓷吸热体及其制备方法
CN104876623A (zh) 一种高强度高气孔率yb4超高温多孔陶瓷及其制备方法
CN111748760B (zh) 一种HfO2/HfB2复合高红外发射率陶瓷涂层及其制备方法
CN109896845B (zh) 一种微波高功率材料及其制备工艺
CN112194485A (zh) 一种热障涂层陶瓷材料及其制备方法和应用
CN105801124A (zh) 一种结构功能一体化的碳化硅陶瓷复合微波吸收材料
CN101817690B (zh) 硼酸盐系晶须增强的磷酸铝陶瓷透波材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20180423

Address after: 213000 Room 502, unit 54, Lihua three village, Tianning District, Changzhou, Jiangsu, China

Applicant after: Zhou Rong

Address before: 213164 B 2519, Beijing University of Chemical Technology Research Institute, Changzhou science and Education City, 801 Wujin Road, Wujin, Changzhou.

Applicant before: TRUSYN CHEM-TECH CO., LTD.

TA01 Transfer of patent application right
RJ01 Rejection of invention patent application after publication

Application publication date: 20170908

RJ01 Rejection of invention patent application after publication