CN107138149B - 一种高效产氢的球状纳米ZnO/ZnCr2O4复合光催化剂的制备方法 - Google Patents

一种高效产氢的球状纳米ZnO/ZnCr2O4复合光催化剂的制备方法 Download PDF

Info

Publication number
CN107138149B
CN107138149B CN201710440452.5A CN201710440452A CN107138149B CN 107138149 B CN107138149 B CN 107138149B CN 201710440452 A CN201710440452 A CN 201710440452A CN 107138149 B CN107138149 B CN 107138149B
Authority
CN
China
Prior art keywords
zncr
zno
preparation
temperature
transferred
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710440452.5A
Other languages
English (en)
Other versions
CN107138149A (zh
Inventor
阎建辉
戴超华
张丽
梁青满
周民杰
杨鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Institute of Science and Technology
Original Assignee
Hunan Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Institute of Science and Technology filed Critical Hunan Institute of Science and Technology
Priority to CN201710440452.5A priority Critical patent/CN107138149B/zh
Publication of CN107138149A publication Critical patent/CN107138149A/zh
Application granted granted Critical
Publication of CN107138149B publication Critical patent/CN107138149B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1088Non-supported catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种高效产氢的球状纳米ZnO/ZnCr2O4复合光催化剂的制备方法,它在模拟太阳光下具有良好的光催化产氢性能。具体方法如下:通过控制Zn与Cr的物质的量比为(1.0~8.0):1.0,在分散剂辅助作用下,采用尿素回流水解法获得微晶前驱体,100~130℃回流2~8 h,并静置2~10 h,后转入球磨罐中研磨后转移到水热反应釜陈化,得到的产品洗涤、干燥后程序升温焙烧。尿素水解回流能有效控制金属离子的水解,球磨能促进金属氢氧化物均匀混合,增加异质结点,水热陈化能控制晶粒长大和均匀性,分散剂能抑制颗粒的团聚。本发明提出一种环保、低成本,且组成、大小和形貌可控的复合光催化材料的制备方法。

Description

一种高效产氢的球状纳米ZnO/ZnCr2O4复合光催化剂的制备 方法
技术领域
本发明属于新材料及其制备技术领域,涉及一种纳米球状结构的ZnO/ZnCr2O4无机材料的制备方法,它在模拟太阳光下具有良好的光催化产氢性能。
背景技术
随着全球能源消耗的极速增长,化石能源的不断减少,在新能源的研究上越来越受到人们的重视。作为二次能源的氢能,具有高效、可贮存、可运输、清洁、安全等特点,被认为是本世纪最佳研究价值的新能源,被各国政府所重视。借助于太阳光将水分解成氢气,并且把水中的污染物氧化或还原为无害物质,具有低能耗、绿色的特征。而分解水的系列关键因素之一就是要寻求新型高效光催化剂。目前研究的大部分光催化剂分解水的光量子效率比较低,模拟太阳光下反应活性不理想,光照下光催化剂容易光腐蚀,导致循环利较差。寻找新的催化材料,采用新的合成方法,制备出具高稳定性、太阳光能量转换效率高的新型环境友好型光催化材料,对解决光催化技术应用于环境保护、能源等方面具有重要的战略意义。
尖晶石型化合物作为一种新型光催化剂,在熔点、硬度、热稳定性和耐腐蚀性具有优异的表现,成为了一种重要的功能材料。在催化、陶瓷、涂料、电子元件、电池、冶金等领域具有极其广泛的应用。ZnCr2O4是由ZnO和Cr2O3组成的一种具有尖晶石结构的复合氧化物,具有很好的化学稳定性,能作为一种被紫外光激发的半导体但光量子效率不高,单一的ZnCr2O4在光催化技术中没有太多的应用。ZnO是一种新一代的宽带隙半导体,无毒环保,具有良好的导热、导电、光电特性,而且化学性质稳定,在光催化领域中的应用越来越多。但光照下单一的ZnO易发生光腐蚀,具有较宽的禁带宽度,在光催化过程中,不能充分的利用太阳光,并且光激发产生的电子空穴对的复合几率高。为了解决以上存在的问题,通过修饰,改性和复合等手段不失为一种有效的方法。将两种或者以上的半导体进行复合,形成复合中间带和异质结,能够有效的降低光生空穴和光生电子的复合,促进光生电子在催化剂表面的转移,通过过渡带隙调节,促进光响应的红移。通常单一的制备方法容易使氢氧化物快速发生沉淀,获得的光催化剂容易发生团聚,异质结点数不多,对光催化活性的提高有限。如果制备过程通过控制水解速度,限制晶粒的生长,并借助机械研磨法等物理手段得到的充分混合的微晶前驱体,继而在一定温度下水热陈化,将减少产物的团聚现象,形成颗粒大小均匀的纳米光催化材料。
本发明称取一定量硝酸锌、硝酸铬、分散剂和尿素(CO(NH2)2)溶解到一定量的去离子水中,在一定温度下回流数小时,将反应液转入机械球磨罐中,充分研磨后转移到水热反应釜中在一定温度下陈化数小时,样品程序升温焙烧,得到粒径均匀的球状复合氧化物光催化材料。
发明内容
本发明的目的之一在于提供一种均匀混合的球状ZnO/ZnCr2O4复合纳米材料的制备方法,其特征是通过控制Zn与Cr的比例,在分散剂辅助作用下,采用尿素回流水解法获得产品前驱体,前驱体转入机械球磨罐中研磨后转移到水热反应釜陈化数小时,将得到的沉淀物分别用去离子水和无水乙醇抽滤洗涤,干燥过夜。将样品程序升温焙烧,样品自然冷却到室温。本发明的目的之二是提供一种可见光响应的球状ZnO/ZnCr2O4复合纳米光催化剂的相关应用,该复合光催化剂具有可见光响应,在模拟太阳可见光作用下,具有优异的光催化活性,适用于太阳能转化利用和环境治理的领域,主要包括污水处理、光解水制氢、CO2光催化还原制备醇类等。
本发明获得的均匀混合的ZnO/ZnCr2O4复合纳米材料的制备方法及应用包括以下步骤:
(1) 按Zn与Cr物质的量比为(1.0~8.0):1.0分别称取所需硝酸锌和硝酸铬加入到去离子水中,在磁力搅拌下溶解形成混合硝酸盐溶液,金属离子总浓度控制在0.1mol/L以内,具体的Zn与Cr物质的量比为1.0:1.0、2.0:1.0、3.0:1.0、4.0:1.0、5.0:1.0、6.0:1.0、7.0:1.0或8.0:1.0;
(2) 将小分子蜡类物质加入到步骤(1)制得的混合硝酸盐溶液中作为分散剂,加入量以反应理论可得到的ZnO/ZnCr2O4的质量来衡量,可为4%、8%、12%、16%或20%,待其完全溶解后,在磁力搅拌下加入尿素,加入量以反应理论可得到的ZnO/ZnCr2O4的质量来衡量,可为10%、20%、30%、40%或50%;
(3) 将(2)获得的反应混合液转入圆底烧瓶中,在磁力搅拌下于100~130℃回流2~8 h,随后同一温度下静置2~10 h获得微晶前驱物。其中回流温度可以为100、110、120和130 ℃,回流时间可以为2、4、6和8h,静置时间可以为2、4、6、8和10 h;
(4) 将(3)中获得前驱物转入机械球磨罐中以50 Hz/min的转速研磨60 min;
(5) 将(4)中获得研磨液转移至水热反应釜中进行水热陈化,水热陈化温度为100~150℃,陈化时间为4~20 h,反应釜自然冷却到室温。其中水热陈化反应温度可以为100、110、120、130、140或150 ℃,陈化时间为4、8、12、16或20 h;
(6) 将步骤(5)获得的反应产物进行真空抽滤,用去离子水、无水乙醇多次洗涤,真空干燥及程序升温焙烧后获得均匀球状的ZnO/ZnCr2O4复合纳米光催化材料。
(7) 将步骤(6)的获得产品称取一定量,充分研磨后转移至光催化反应器中,在模拟太阳光下进行光催化反应,用光催化分解水制氢作为评价光催化剂的活性。
在上述方案的基础上,步骤(2)中所述的小分子蜡类可以为均聚物、氧化均聚物、乙烯-丙烯酸共聚物、乙烯-醋酸乙烯共聚物、低分子离聚物等低聚物中的一种或几种的混合物;步骤(6)中采用分段程序升温,先用2℃/min的升温速率升温到400 ℃,保温1h,再用5℃/min的升温速率升温到所需温度,保温1~5 h ,自然冷却到室温。其中焙烧温度为400、500、600、700或800 ℃,合计焙烧时间为2、3、4、5或6 h;
在上述方案的基础上,该方法制备出了具有均匀粒径的ZnO/ZnCr2O4复合纳米光催化材料,并进行了相关表征:XRD检测表明,未焙烧样品主要显示的是Zn-Cr-LDHs层状结构的特征峰,对应于(003)、(006)和(009)晶面;500℃焙烧样品主要显示的是晶尖石型ZnCr2O4和ZnO两者的衍射峰,无新相出现(图1)。SEM图表明,所构成的纳米球粒子的平均粒径约10~20 nm(由XRD和TEM图对粒径进行的估算),复合物为粒径相对均匀的纳米粒子结构(图2)。由高倍透射电镜图表明,ZnCr2O4和ZnO两相结合紧密,复合效果较好,形成异质结(图3)。所获样品比表面积较大,分散剂的加入量对比表面积、平均孔径和总孔体积有一定影响见表1。
表1 PEG添加量对产物比表面积的影响
本发明技术方案的显著优点主要体现在:
(1)通过控制Zn与Cr物质的量比,采用回流水解—机械球磨—水热陈化得到均匀纳米球ZnO/ZnCr2O4复合物;
(2)适量添加小分子蜡类聚合物作为分散剂,抑制颗粒的团聚,促进均匀性,提高了产物的比表面积;
(3)以硝酸锌和硝酸铬为原料,采用尿素水解回流能有效控制金属离子的水解速率及氢氧化物的生成;机械球磨能促进金属氢氧化物微晶均匀混合,增加异质结点;水热陈化能控制晶粒长大和均匀性。
本发明提出一种环保、低成本、且组成、大小和形貌可控的ZnO/ZnCr2O4复合纳米结构光催化材料的制备方法及其高效产氢性能。
附图说明
图1 是ZnO/ZnCr2O4复合光催化材料的XRD图。
图2 是ZnO/ZnCr2O4复合光催化材料的SEM图。
图3 是ZnO/ZnCr2O4复合光催化材料的HRTEM图。
图4是纯ZnO(a),纯ZnCr2O4(b),ZnO/ZnCr2O4 (c)在模拟太阳光下产氢活性的比较。
具体实施方式
实施例一:
(1) 称取0.04mol硝酸锌和0.02mol硝酸铬加入到去离子水中,磁力搅拌至完全溶解形成混合硝酸盐溶液,金属离子总浓度控制在0.1mol/L以内;
(2) 称取0.22g小分子蜡类物质加到步骤(1)制得的混合硝酸盐溶液中作为分散剂,在磁力搅拌下加入0.56 g尿素至完全溶解;
(3) 将(2)获得的反应混合液转入圆底烧瓶中,在磁力搅拌下于120℃回流4 h,随后同一温度下静置4 h获得微晶前驱物;
(4) 将(3)中获得前驱物转移至水热反应釜中进行水热陈化反应,水热陈化温度为120℃,反应时间为8 h,反应物自然冷却到室温;
(5) 将步骤(4)获得的反应产物进行真空抽滤,用去离子水和元水乙醇多次洗涤,真空干燥后程序升温焙烧。先用2℃/min的升温速率升温到400 ℃,保温5h,自然冷却后获得均匀球状的ZnO/ZnCr2O4复合纳米光催化材料;
(6) 将步骤(5)的获得产品称取一定量,充分研磨后转移至光催化反应器中,在模拟太阳光下进行光催化反应,用光催化分解水制氢作为评价光催化剂的活性。
实施例二:
(1) 称取0.06mol硝酸锌和0.02mol硝酸铬加入到离子水中,磁力搅拌至完全溶解形成混合硝酸盐溶液,金属离子总浓度控制在0.1mol/L以内;
(2) 称取0.44g小分子蜡类物质加到步骤(1)制得的混合硝酸盐溶液中作为分散剂,在磁力搅拌下加入0.79 g尿素至完全溶解;
(3) 将(2)获得的反应混合液转入圆底烧瓶中,在磁力搅拌下于110℃回流6 h,随后于同一温度下静置6 h获得微晶前驱物;
(4) 将(3)中获得前驱物转移至水热反应釜中进行水热陈化反应,水热陈化温度为110℃,反应时间为12h,反应物自然冷却到室温;
(5) 将步骤(4)获得的反应产物进行真空抽滤,用去离子水多次洗涤,真空干燥后先用2℃/min的升温速率升温到400 ℃,保温1h,再用5℃/min的升温速率升温到500℃,保温4 h,自然冷却到室温。
(6) 同实施实例一中的步骤(6)。
实施例三:
(1) 称取0.08mol硝酸锌和0.03mol硝酸铬加入到去离子水中,磁力搅拌至完全溶解形成混合硝酸盐溶液,金属离子总浓度控制在0.1mol/L以内;
(2) 称取0.66g小分子蜡类物质加到步骤(1)制得的混合硝酸盐溶液中作为分散剂,在磁力搅拌下加入1.12 g尿素至完全溶解;
(3) 将(2)获得的反应混合液转入圆底烧瓶中,在磁力搅拌下于100℃回流8 h,随后于同一温度下静置10 h获得微晶前驱物;
(4) 将(3)中获得前驱物转移至水热反应釜中进行水热陈化反应,水热陈化温度为120℃,反应时间为8 h,反应物自然冷却到室温;
(5) 将步骤(4)获得的反应产物进行真空抽滤,用去离子水和无水乙醇多次洗涤,真空干燥后先用2℃/min的升温速率升温到400 ℃,保温1h,再用5℃/min的升温速率升温到600℃,保温2 h,自然冷却到室温。
(6) 同实施实例一中的步骤(6)。
实施例四:
(1) 称取0.07mol硝酸锌和0.01mol硝酸铬加入到去离子水中,磁力搅拌至完全溶解形成混合硝酸盐溶液,金属离子总浓度控制在0.1mol/L以内;
(2) 称取0.88g小分子蜡类物质加到步骤(1)制得的混合硝酸盐溶液中作为分散剂,在磁力搅拌下加入1.40 g尿素至完全溶解;
(3) 将(2)获得的反应混合液转入圆底烧瓶中,在磁力搅拌下于130℃回流6 h,随后于同一温度下静置4 h获得微晶前驱物;
(4) 将(3)中获得前驱物转移至水热反应釜中进行水热陈化反应,水热陈化温度为140℃,反应时间为4 h,反应物自然冷却到室温;
(5) 将步骤(4)获得的反应产物进行真空抽滤,用去离子水和无水乙醇多次洗涤,真空干燥后先用2℃/min的升温速率升温到400 ℃,保温1h,再用5℃/min的升温速率升温到700℃,保温3 h,自然冷却到室温。
(6) 同实施实例一中的步骤(6)。
实施例五:
(1) 称取0.06mol硝酸锌和0.01mol硝酸铬加入到去离子水中,磁力搅拌至完全溶解形成混合硝酸盐溶液,金属离子总浓度控制在0.1mol/L以内;
(2) 称取0.33g小分子蜡类物质加到步骤(1)制得的混合硝酸盐溶液中作为分散剂,在磁力搅拌下加入0.56 g尿素至完全溶解;
(3) 将(2)获得的反应混合液转入圆底烧瓶中,在磁力搅拌下于120℃回流8 h,随后于同一温度下静置8 h获得微晶前驱物;
(4) 将(3)中获得前驱物转移至水热反应釜中进行水热陈化反应,水热陈化温度为120℃,反应时间为6 h,反应物自然冷却到室温;
(5) 同实施实例四中的步骤(5);
(6) 同实施实例一中的步骤(6)。
需要说明的是:以上实施例仅为体现本发明的技术特征而提供,并非以此限定本发明专利请求的专利保护范围。虽然实施例中未提出,然而本发明还具有多样化的实施方式。初步实验表明,ZnO/ZnCr2O4复合氧化物还可应用于有机染料降解和CO2光催化还原等。

Claims (7)

1.一种高效产氢的均匀球状纳米ZnO/ZnCr2O4复合光催化剂的制备方法,其特征是通过控制Zn与Cr的比例,在分散剂辅助作用下,采用尿素回流水解,机械研磨和水热陈化得到均匀球状ZnO/ZnCr2O4纳米复合氧化物光催化材料,该方法具体包括以下步骤:
(1) 按Zn与Cr物质的量比为(1.0~8.0):1.0分别称取所需硝酸锌和硝酸铬加入到去离子水中,在磁力搅拌下溶解形成混合硝酸盐溶液,金属离子总浓度控制在0.1mol/L以内;
(2) 将小分子蜡类物质加入到步骤(1)制得的混合硝酸盐溶液中作为分散剂,加入量以反应理论可得到的ZnO/ZnCr2O4质量的4~20%,待其完全溶解;
(3) 将(2)获得的反应物在磁力搅拌下加入尿素,加入量以反应理论可得到的ZnO/ZnCr2O4质量的10~50%;
(4) 将(3)获得的反应混合液转入圆底烧瓶中,在磁力搅拌下回流水解,随后静置获得微晶前驱物;
(5) 将(4)中获得前驱物转入机械球磨罐中以50 Hz/min的转速研磨60 min;
(6) 将(5)中获得产物转移至水热反应釜中进行水热陈化反应,反应物自然冷却到室温;
(7) 将步骤(6)获得的反应产物进行真空抽滤,用去离子水和无水乙醇多次洗涤,真空干燥及程序升温焙烧后获得均匀球状ZnO/ZnCr2O4纳米复合光催化材料。
2.根据权利要求1 所述的光催化剂的制备方法,其特征在于:步骤(2)中所述的小分子蜡类为均聚物、氧化均聚物、乙烯-丙烯酸共聚物、乙烯-醋酸乙烯共聚物、低分子离聚物中的一种或几种的混合物,加入量为4~20%,提高产品的比表面积。
3.根据权利要求1 所述的光催化剂的制备方法,其特征在于:步骤(4)中反应混合液于100~130℃回流2~8 h,并在同一温度下静置2~10 h获得微晶前驱物。
4.根据权利要求1 所述的光催化剂的制备方法,其特征在于:步骤(6)中水热陈化温度为100~150℃,陈化时间为4~20 h,反应物自然冷却到室温。
5.根据权利要求1 所述的光催化剂的制备方法,其特征在于:步骤(7)中程序升温焙烧是先用2℃/min的升温速率升温到400 ℃,保温1h,再用5℃/min的升温速率升温到400~800 ℃,保温1~5 h。
6.一种高效产氢的均匀球状纳米ZnO/ZnCr2O4复合光催化材料,其特征在于:是由权利要求1~5任意一项所述的制备方法得到的。
7.根据权利要求1所述的光催化剂的制备方法获得的一种均匀球状纳米ZnO/ZnCr2O4复合光催化材料用于高效光催化分解水制氢。
CN201710440452.5A 2017-06-13 2017-06-13 一种高效产氢的球状纳米ZnO/ZnCr2O4复合光催化剂的制备方法 Expired - Fee Related CN107138149B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710440452.5A CN107138149B (zh) 2017-06-13 2017-06-13 一种高效产氢的球状纳米ZnO/ZnCr2O4复合光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710440452.5A CN107138149B (zh) 2017-06-13 2017-06-13 一种高效产氢的球状纳米ZnO/ZnCr2O4复合光催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN107138149A CN107138149A (zh) 2017-09-08
CN107138149B true CN107138149B (zh) 2019-08-27

Family

ID=59781307

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710440452.5A Expired - Fee Related CN107138149B (zh) 2017-06-13 2017-06-13 一种高效产氢的球状纳米ZnO/ZnCr2O4复合光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN107138149B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113089000B (zh) * 2021-03-24 2022-05-17 福州大学 一种具有面内缺陷的钼基催化剂及其制备方法与应用
CN114324499B (zh) * 2022-01-13 2023-01-31 吉林大学 一种基于核壳结构ZnCr2O4微球敏感材料的二甲苯气体传感器及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1867402A (zh) * 2003-10-14 2006-11-22 纳幕尔杜邦公司 含锌的氧化铬组合物、它们的制备以及它们作为催化剂和催化剂前体的用途
CN102794166A (zh) * 2011-05-25 2012-11-28 中国科学院大连化学物理研究所 二甲醚水蒸气重整制氢的催化剂及制备和应用
CN102863205A (zh) * 2011-07-07 2013-01-09 夏普株式会社 复合无机化合物系及其利用、以及复合无机化合物系的制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136731B2 (zh) * 1972-08-15 1976-10-12

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1867402A (zh) * 2003-10-14 2006-11-22 纳幕尔杜邦公司 含锌的氧化铬组合物、它们的制备以及它们作为催化剂和催化剂前体的用途
CN102794166A (zh) * 2011-05-25 2012-11-28 中国科学院大连化学物理研究所 二甲醚水蒸气重整制氢的催化剂及制备和应用
CN102863205A (zh) * 2011-07-07 2013-01-09 夏普株式会社 复合无机化合物系及其利用、以及复合无机化合物系的制造方法

Also Published As

Publication number Publication date
CN107138149A (zh) 2017-09-08

Similar Documents

Publication Publication Date Title
Xu et al. Improved photocatalytic activity of nanocrystalline ZnO by coupling with CuO
CN108940332B (zh) 一种高活性MoS2/g-C3N4/Bi24O31Cl10复合光催化剂的制备方法
Ma et al. Construction of dual Z-scheme NiO/NiFe2O4/Fe2O3 photocatalyst via incomplete solid state chemical combustion reactions for organic pollutant degradation with simultaneous hydrogen production
CN105540640B (zh) 一种花状纳米氧化锌的制备方法
CN107983353B (zh) 一种TiO2-Fe2O3复合粉体的制备方法及其应用
CN112875755B (zh) 一种钨酸铋纳米粉体的制备方法
CN107185547A (zh) 一种C/Fe‑FeVO4复合光催化剂及其制备方法和应用
Yin et al. Synthesis of δ-Bi2O3/Bi2MoO6 composites with enhanced photocatalytic activity by hydrothermal method
CN110152665A (zh) CuO/Cu2O/Cu三元复合材料的制备方法
CN102942206A (zh) 一种二氧化铈纳米空心球的制备方法
CN108404959A (zh) 一种棒状g-C3N4@SnIn4S8复合光催化剂及其制备方法
CN106390986A (zh) 一种钒酸铋/钛酸锶复合光催化剂的制备方法
CN105645469A (zh) 一种纳米棒状钛酸镧粉体及其制备方法
CN109433185A (zh) 一步水热法制备钒酸铟/同质异相结钒酸铋复合光催化剂
CN107138149B (zh) 一种高效产氢的球状纳米ZnO/ZnCr2O4复合光催化剂的制备方法
CN110721698A (zh) 一种钒酸铋/钒酸铜复合光催化剂及其制备方法和应用
CN102580720A (zh) 可见光响应的纳米氧化锌-氧化铋复合光催化剂及其制备方法
CN110075903B (zh) 一种c、n共掺杂纳米二氧化钛的制备方法
CN100453165C (zh) 纳米二氧化钛/二氧化硒复合物及其制备方法
CN110368979B (zh) 一种管状g-C3N4/CuS/Cu2S纳米复合材料及其制备方法和应用
CN107555467A (zh) 一种由纳米针组成的表面暴露(0001)面的氧化锌空心球的制备方法
CN108654663A (zh) 一种混合硝酸盐熔盐法制备硼氮共掺杂单晶介孔TiO2催化材料的方法
CN102942204A (zh) 一种二氧化铈纳米粉体的制备方法
CN114849762B (zh) 一种降解亲油性偶氮萘基化合物的g-C3N4/BiOI/Ag2CrO4三元异质结光催化剂的制备方法及其应用
CN108273522B (zh) 一种具有梯形结构的z型半导体光催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190827

Termination date: 20200613