CN107123433A - 一种交换耦合复合磁记录介质及其制备方法 - Google Patents

一种交换耦合复合磁记录介质及其制备方法 Download PDF

Info

Publication number
CN107123433A
CN107123433A CN201710215468.6A CN201710215468A CN107123433A CN 107123433 A CN107123433 A CN 107123433A CN 201710215468 A CN201710215468 A CN 201710215468A CN 107123433 A CN107123433 A CN 107123433A
Authority
CN
China
Prior art keywords
fept
layers
sputtering
layer
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710215468.6A
Other languages
English (en)
Inventor
张宗芝
林亮
朱振东
赵柄丞
朱伟骅
金庆原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201710215468.6A priority Critical patent/CN107123433A/zh
Publication of CN107123433A publication Critical patent/CN107123433A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70605Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material metals or alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/716Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by two or more magnetic layers
    • G11B5/718Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by two or more magnetic layers at least one on each side of the base layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering

Abstract

本发明属于磁存储技术领域,具体为交换耦合复合磁记录介质及其制备方法。本发明复合磁记录介质是一种耦合复合膜,从下至上依次是:软磁层、中间层、硬磁层和保护层,衬底采用单晶MgO基片,软磁层为厚度t的FeRu层,中间层为Pt层,硬磁层为L10‑FePt,保护层为Pt层。本发明解决了传统ECC结构在信息写入时,下层与磁头距离过大所获磁场不足的问题。该结构中,硬磁层为5.0 nm厚的高有序度L10‑FePt薄膜,其矫顽力约为9.0 kOe;通过引入软磁层FeRu,当软磁层厚度为10.0 nm时复合薄膜的整体矫顽力可降至2.2kOe;当外场与膜面法线夹角从0°‑60°变化时,ECC薄膜的矫顽力角度特性曲线展现出良好的角度包容性。这些性能的提高对信息的写入十分有利。

Description

一种交换耦合复合磁记录介质及其制备方法
技术领域
本发明属磁存储技术领域,具体涉及一种交换耦合复合磁记录介质,可用作高密度硬盘等存储设备上。
背景技术
随着数据时代的来临,人类所需要存储的信息呈爆炸式增长。存储设备的容量已经跟不上信息的增长速度,急需提高存储设备的容量来满足日益增长的数据存储要求。硬盘作为存储设备的中坚力量,一直深受青睐。但是受制于磁记录介质的超顺磁效应,其存储密度已经越来越来接近其极限1Tb/in2。研究发现,L10-FePt具有很高的垂直磁晶各向异性和较小的热稳定临界晶粒尺寸,被认为是下一代超高密度存储介质的不二之选。但是,对单纯的垂直磁记录介质(如L10-FePt)而言,在外场由膜面的垂直方向连续变化到水平方向的过程中,介质的翻转场先减小后增大,在45°时介质的翻转场最小,这对磁记录技术十分不利,因为在磁头对介质进行信息写入时,容易擦除周围的记录位信号。而且,L10-FePt具有较高的写入场,不利于信息的写入。近年来,基于L10-FePt的交换耦合复合介质(ECC)有效地解决了“Trilemma”问题,使得硬/软磁层交换耦合复合介质在磁记录领域有着巨大的应用前景。ECC结构中软磁层的引入降低了介质的整体矫顽力,而硬磁层的高磁晶各向异性较好地保持存储介质的热稳定性,达到一举两得的目的,该结构有望能够大幅度地提高硬盘的存储密度。
在磁记录技术相关文献中提到,随着磁头与记录介质的硬磁记录层距离越来越大,硬磁层所获得的磁场会大大减小甚至无法使其翻转,这对信息的存储极为不利。在热辅助磁记录技术中,激光直接照射记录位加热是为了使介质矫顽力降低,而在传统ECC结构中激光是无法直接照射硬磁层。如果热辅助磁记录技术应用于ECC薄膜,激光直接照射在硬磁层上使其矫顽力降低,则会更加容易实现其磁矩的翻转。因此作者发明了在衬底上先外延生长软磁层,然后再沉积硬磁层的ECC薄膜,即软磁层在下、硬磁层在上。
参考文献:
1Tipcharoen W, Kaewrawang A, Siritaratiwat A, et al. Advanced MaterialsResearch, 2014, 931-932:271-275.
2Guo H H, Liao J L, Ma B, et al. Applied Physics Letters, 2012, 100(14):537.
3 Lee J, Makarov D, Brombacher C, et al. Nanotechnology, 2014, 25(4):045604.
4Guo H H, Liao J L, Ma B, et al. Journal of Applied Physics, 2012, 111(10):R149.
5Victora R H, Shen X. IEEE Transactions on Magnetics, 2005, 41(2):537-542.
6Mcdaniel T W. Journal of Physics Condensed Matter, 2005, 17(17):R315.
7Weller D, Moser A. IEEE Transactions on Magnetics, 1999, 35(6):4423-4439.
8Xu Y, Chen J S, Wang J P.Applied Physics Letters, 2002, 80(18):3325-3327.。
发明内容
本发明的目的在于提供一种新型的交换耦合复合磁记录介质,以解决磁记录技术中磁头与记录介质距离增大导致磁场减弱的问题,满足高密度硬盘的需要。
本发明提供的交换耦合复合磁记录介质,是一种软磁层在下、硬磁层在上的交换耦合复合膜,从下到上依次是:软磁层、中间层、硬磁层和保护层;其中,衬底采用单晶MgO(001),软磁层为厚度t可变的FeRu层,其中,t=3.0,5.0,7.0,10.0,15.0nm,中间层为3.0±0.1 nm厚的Pt层,硬磁层为具有高垂直磁各向异性的5.0±0.1nm L10-FePt,保护层为3.0±0.1nm厚的Pt层,记为FeRu/Pt/L10-FePt。
本发明首先解决的问题是如何在软磁层FeRu上生长高有序度的硬磁层L10-FePt。研究发现,在软磁层FeRu与硬磁层FePt之间加入3.0 nm的非磁性中间层Pt,不仅弥补了FeRu与FePt界面的晶格失配度,而且还能抑制高温下Fe向FePt层扩散,使得FePt层实现外延有序生长。实验测量发现此结构中硬磁层L10-FePt的有序度最高接近1。其次,通过调控软磁层FeRu的厚度,研究复合薄膜矫顽力与软磁层厚度的变化关系,我们得出最佳的软磁层厚度为10.0 nm,此时复合薄膜的整体矫顽力降低至2.2kOe,极大地降低了介质的写入场。最后,对FeRu(10.0 nm)/Pt(3.0 nm)/FePt(5.0 nm)薄膜的矫顽力角度特性研究发现,在0°-60°内薄膜拥有良好的角度包容性,使得磁头对记录介质写入时不会影响其他记录位的状态。
本发明提出的新型交换耦合复合磁性薄膜结构,从下至上依次是:软磁层、中间层、硬磁层和保护层,如图1所示。衬底采用单晶MgO(001)基片,软磁层为厚度t可变的FeRu层,其中t为3.0-15.0nm(例如t为3.0、5.0、7.0、10.0、15.0nm等等),中间层为3.0±0.1nm厚的Pt层,硬磁层为厚度5.0±0.1nm的L10-FePt,保护层为3.0±0.05nm的Pt层。
研究表明,软磁层FeRu厚度t对ECC薄膜矫顽力以及薄膜矫顽力的角度特性的影响,发现随着软磁层厚度的增加,ECC薄膜的矫顽力从9.0kOe逐渐降低至2.2 kOe。ECC薄膜翻转场的角度特性曲线显示,外场与膜面法线夹角在0°-60°范围内拥有良好的角度包容性,这对信息写入十分有利。
本发明提出的上述新型交换耦合复合薄膜的制备方法,是利用超高真空磁控溅射仪(例如设备型号Lesker CMS-18),采用直流磁控溅射的方法,在高真空(真空度优于3.0×10-8Torr)和高温条件下溅射制备得到,具体步骤如下:
第一步,制备软磁层:厚度为t的FeRu单层膜;溅射气压为6.0±0.2mTorr;溅射功率,Fe:80±2W、Ru:8±1W;沉积速率为 0.051± 0.002nm/s;首先在高真空腔体中将MgO加热至300-350℃,等待设定温度稳定后,启动溅射程序,使用Fe靶和Ru靶共同溅射;
第二步,制备非磁性中间层:厚度为3.0±0.1nm的Pt单层膜;溅射气压为5.0±0.2mTorr;溅射功率为40±1W;沉积速率为0.049±0.002nm/s;Pt层在300-350℃下进行溅射;
第三步,制备硬磁层:厚度为5.0±0.1nm L10-FePt单层膜;溅射完FeRu和Pt层后迅速升温至500-530℃,待温度稳定后,启动溅射程序制备FePt层。溅射气压5.0±0.2mTorr;溅射功率Fe:80±2W、Pt:40±1W;FePt整体沉积速率为 0.101±0.002nm/s。使用Fe靶和Pt靶共同溅射,开始沉积FePt层,溅射完成后恒温10-30 min以保证FePt晶相外延生长所需要的能量;
第四步:制备保护层:厚度为3.0±0.1nm的Pt单层膜;在制备Pt保护层之前,关闭加热系统,等待样品冷却到室温,而后在室温下溅射Pt层,以防止样品被氧化。溅射气压为5.0±0.2mTorr;溅射功率为Pt40±1W;沉积速率为0.049± 0.002 nm/s。
以上各膜层的厚度由溅射时间所控制,沉积速率的测定方法是在玻璃基片上溅射时间一定、厚度达几百纳米的待测薄膜材料,再通过台阶仪确定薄膜厚度,计算出所用薄膜的沉积速率。
本发明的创新之处在于,首先,选取了具有高垂直各向异性和较小的热稳定临界晶粒尺寸的L10-FePt作为硬磁层,不仅记录介质的晶粒尺寸变小,有利于提高存储密度,而且能够保持介质的热稳定性。其次,我们提出的薄膜结构是软磁层在下,硬磁层在上的ECC结构。正如背景技术所言,这种新型的交换耦合复合薄膜结构能够较好地解决磁记录技术中磁头与记录介质距离增大导致磁场减弱的问题。最后,在软磁层上生长高有序度的硬磁层L10-FePt较难实现,而我们在薄膜设计的过程中在软磁层和硬磁层之间引入一层中间层Pt层。Pt的掺入,不仅降低了软磁层FeRu与硬磁层FePt界面之间的晶格失配度,而且阻止了高温下Fe向FePt层的扩散,保证了FePt的有序生长。
附图说明
图1为本发明设计的薄膜结构示意图。自下向上分别为衬底MgO、软磁层FeRu、中间层Pt、硬磁层FePt和保护层Pt,图中t代表软磁层FeRu的厚度。
图2为FeRu(t)/Pt(3.0 nm)/FePt(5.0 nm)薄膜的晶体结构测量结果;(a)-(e)分别对应t=3.0, 5.0,7.0,10.0,15.0 nm。
图3为FeRu(t)/Pt(3.0 nm)/FePt(5.0 nm)薄膜的矫顽力随软磁层厚度t的变化关系。
图4为FeRu(10.0 nm)/Pt(3.0 nm)/FePt(5.0 nm)薄膜的翻转场角度特性曲线,横轴变量为外场与膜面法线方向的夹角。
具体实施方式
下面通过实施例进一步描述本发明。
实施例说明:
本发明设计的薄膜结构如图1所示,正如前文所言,本发明为新型的交换耦合复合薄膜,首先创新性地提出设计软磁层在下层、硬磁层在上层的ECC薄膜结构。该复合结构的实现难度在于如何在软磁层FeRu层上生长高有序度的L10-FePt。我们提出在FeRu和FePt之间插入一层3.0 nm厚的Pt中间层,很好地弥补了FeRu层与FePt层界面之间的晶格失配度,并且抑制了Fe在高温下向FePt层的扩散。图2为FeRu(t)/Pt(3.0 nm)/FePt(5.0 nm)薄膜的晶体结构测量结果,所有薄膜样品都出现FePt的(001)和(002)特征峰,峰的强度十分明显,甚至有FePt的(003)峰,说明所有薄膜中硬磁层均为L10-FePt,其有序度最高接近1,从而实现了在软磁层FeRu上生长出高度有序的硬磁层L10-FePt,这也是本发明的关键所在。
图3为FeRu(t)/Pt(3.0 nm)/FePt(5.0 nm)薄膜随软磁层FeRu厚度的变化关系,随着软磁层厚度t的增加,复合薄膜的矫顽力逐渐降低至2.2 kOe。在实际的信息存储过程中,磁头能提供的写入场大小毕竟有限,该系列ECC薄膜的矫顽力相比于硬磁层FePt大大降低,即降低了磁头的写入场,对磁头的设计及信息的写入十分有利。
图4给出了FeRu(10.0 nm)/Pt(3.0 nm)/FePt(5.0 nm)薄膜矫顽力的角度特性曲线,从图中可以看出,本发明提出的新型ECC薄膜矫顽力在0°-60°拥有良好的角度包容性,从而消除了45°翻转场最小的弊端,减少磁头信息写入时的误码率。

Claims (2)

1.一种交换耦合复合磁记录介质,其特征在于,是一种软磁层在下、硬磁层在上的交换耦合复合膜,从下至上依次是:软磁层、中间层、硬磁层和保护层,衬底采用单晶MgO(001)基片,软磁层为厚度t的FeRu层,其中t为3.0-15.0nm,中间层为3.0±0.1nm厚的Pt层,硬磁层为厚度5.0±0.1nm的L10-FePt,保护层为3.0±0.05nm的Pt层,记为FeRu/Pt/L10-FePt。
2.如权利要求1所述的交换耦合复合磁记录介质的制备方法,其特征在于,利用超高真空磁控溅射仪,采用直流磁控溅射的方法,真空度优于3.0×10-8Torr;在高温条件下溅射制备,具体步骤如下:
第一步,制备软磁层:厚度为t的FeRu单层膜;溅射气压为6.0±0.2mTorr;溅射功率,Fe:80±2W、Ru:8±1W;沉积速率为 0.051± 0.002nm/s;首先在高真空腔体中将MgO加热至300-350℃,等待设定温度稳定后,启动溅射程序,使用Fe靶和Ru靶共同溅射;
第二步,制备非磁性中间层:厚度为3.0±0.1nm的Pt单层膜;溅射气压为5.0±0.2mTorr,溅射功率为40±1W,沉积速率为0.049±0.002nm/s;Pt层在300-350℃下进行溅射;
第三步,制备硬磁层:厚度为5.0±0.1nm L10-FePt单层膜;溅射完FeRu和Pt层后升温至500-530℃,待温度稳定后,启动溅射程序制备FePt层;溅射气压5.0±0.2mTorr,溅射功率Fe:80±2W,Pt:40±1W;FePt整体沉积速率为 0.101±0.002nm/s;使用Fe靶和Pt靶共同溅射,开始沉积FePt层,溅射完成后恒温10-30 min以保证FePt晶相外延生长所需要的能量;
第四步:制备保护层:厚度为3.0±0.1nm的Pt单层膜;在制备Pt保护层之前,关闭加热系统,等待样品冷却到室温,而后在室温下溅射Pt层,溅射气压为5.0 ±0.2mTorr;溅射功率为Pt40±1W;沉积速率为0.049± 0.002 nm/s。
CN201710215468.6A 2017-04-03 2017-04-03 一种交换耦合复合磁记录介质及其制备方法 Pending CN107123433A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710215468.6A CN107123433A (zh) 2017-04-03 2017-04-03 一种交换耦合复合磁记录介质及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710215468.6A CN107123433A (zh) 2017-04-03 2017-04-03 一种交换耦合复合磁记录介质及其制备方法

Publications (1)

Publication Number Publication Date
CN107123433A true CN107123433A (zh) 2017-09-01

Family

ID=59725555

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710215468.6A Pending CN107123433A (zh) 2017-04-03 2017-04-03 一种交换耦合复合磁记录介质及其制备方法

Country Status (1)

Country Link
CN (1) CN107123433A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111883653A (zh) * 2020-07-28 2020-11-03 复旦大学 一种磁存储用高热稳定性硬磁-非磁-软磁复合薄膜结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1096478A2 (en) * 1999-10-28 2001-05-02 International Business Machines Corporation Trilayer seed layer structure for spin valve sensor
CN1892833A (zh) * 2005-06-28 2007-01-10 株式会社东芝 用于制造磁记录介质的方法和装置
CN101192419A (zh) * 2006-11-30 2008-06-04 株式会社东芝 垂直磁记录介质和磁记录/再现设备
CN101661757A (zh) * 2009-09-15 2010-03-03 山西师范大学 一种磁记录交换耦合复合膜的制备方法
CN104700850A (zh) * 2013-12-06 2015-06-10 株式会社东芝 垂直磁记录介质和垂直磁记录介质的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1096478A2 (en) * 1999-10-28 2001-05-02 International Business Machines Corporation Trilayer seed layer structure for spin valve sensor
CN1892833A (zh) * 2005-06-28 2007-01-10 株式会社东芝 用于制造磁记录介质的方法和装置
CN101192419A (zh) * 2006-11-30 2008-06-04 株式会社东芝 垂直磁记录介质和磁记录/再现设备
CN101661757A (zh) * 2009-09-15 2010-03-03 山西师范大学 一种磁记录交换耦合复合膜的制备方法
CN104700850A (zh) * 2013-12-06 2015-06-10 株式会社东芝 垂直磁记录介质和垂直磁记录介质的制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111883653A (zh) * 2020-07-28 2020-11-03 复旦大学 一种磁存储用高热稳定性硬磁-非磁-软磁复合薄膜结构
CN111883653B (zh) * 2020-07-28 2022-08-23 复旦大学 一种磁存储用高热稳定性硬磁-非磁-软磁复合薄膜结构

Similar Documents

Publication Publication Date Title
US7755861B1 (en) Method and system for providing a magnetic recording media
CN102725793B (zh) 热辅助磁记录介质和磁记录再生装置
JP5153575B2 (ja) 熱アシスト磁気記録媒体及び磁気記録装置
US9520151B2 (en) Multiple layer FePt structure
US8133332B2 (en) Method for preparing FePt media at low ordering temperature and fabrication of exchange coupled composite media and gradient anisotropy media for magnetic recording
CN104620316B (zh) 在玻璃基板上生长具有(001)纹理的FePt颗粒介质的导电底层
JP6083163B2 (ja) 垂直磁気記録媒体およびその製造方法
US6493164B1 (en) Magnetic recording apparatus and method of magnetic recording
CN101145352A (zh) 具有交换弹簧记录结构和横向耦合层的垂直磁记录介质
KR20050072047A (ko) 자기 기록 매체 및 자기 기억 장치
JP2004362746A (ja) 磁気記録媒体、磁気記憶装置、および磁気記録媒体の製造方法
KR20060047963A (ko) 열 어시스트 자기 기록 장치
Richter et al. Media for magnetic recording beyond 100 Gbit/in. 2
CN103440875A (zh) 一种超高密度热辅助磁记录用FeRh/FePt双层薄膜及其制备方法
CN107123433A (zh) 一种交换耦合复合磁记录介质及其制备方法
JP2007273056A (ja) 垂直磁気記録媒体および磁気記憶装置
JP4069205B2 (ja) 磁気記録媒体の製造方法
CN106205644B (zh) 垂直磁记录介质及磁记录再生装置
JP2002170227A (ja) 高密度磁気記録媒体
CN101202145B (zh) 一种横向交换耦合的磁信息存储介质材料及其制备方法
JP2005196959A (ja) 垂直磁気記録媒体
JP2004014056A (ja) 垂直磁気記録媒体、その製造方法および磁気記憶装置
CN102280113A (zh) 一种交换耦合介质L10-FePt/[Co/Ni]N及其制备方法
CN102522094A (zh) SmCo5垂直磁化膜的双层结构底层材料及其制备方法
JP2006164315A (ja) 垂直磁気記録媒体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170901