CN107093625B - 双扩散漏nmos器件及制造方法 - Google Patents

双扩散漏nmos器件及制造方法 Download PDF

Info

Publication number
CN107093625B
CN107093625B CN201710249497.4A CN201710249497A CN107093625B CN 107093625 B CN107093625 B CN 107093625B CN 201710249497 A CN201710249497 A CN 201710249497A CN 107093625 B CN107093625 B CN 107093625B
Authority
CN
China
Prior art keywords
type
region
double
nmos device
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710249497.4A
Other languages
English (en)
Other versions
CN107093625A (zh
Inventor
段文婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Original Assignee
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huahong Grace Semiconductor Manufacturing Corp filed Critical Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority to CN201710249497.4A priority Critical patent/CN107093625B/zh
Publication of CN107093625A publication Critical patent/CN107093625A/zh
Application granted granted Critical
Publication of CN107093625B publication Critical patent/CN107093625B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66492Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a pocket or a lightly doped drain selectively formed at the side of the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors

Abstract

本发明公开了一种双扩散漏NMOS器件,在P型衬底上有N型埋层,N型埋层之上为N型外延;N型外延中有P阱及漂移区,两者之间为双扩散漏NMOS器件的沟道区,沟道区之上的硅表面为双扩散漏NMOS器件的栅氧化层及多晶硅栅极;P阱中具有中掺杂P型区及双扩散漏NMOS器件的源区,漂移区中具有双扩散漏NMOS器件的漏区;P阱及漂移区中,还分别具有一P型掺杂层,分别位于源区及漏区的正下方。P型掺杂层有助于漂移区耗尽,提高击穿电压;位于源区下方的P型掺杂层对器件影响很小,阈值电压几乎不变。同时,由于电流通路中的漂移区浓度没有降低,保证了器件的导通电阻不会增加。本发明所述的工艺方法在没有增加掩模版的情况下有效的提高了击穿电压,没有成本增加。

Description

双扩散漏NMOS器件及制造方法
技术领域
本发明涉及半导体领域,特别是指一种双扩散漏NMOS器件,本发明还涉及所述双扩散漏NMOS器件的制造方法。
背景技术
DDD MOS(Double Diffused Drain MOSFET)高压双扩散漏器件广泛的应用于电路输出接口、LCD驱动电路等,其工作电压在10~20V左右。DDD MOS容易与传统COMS工艺兼容,工艺较LD MOS简单,制造成本更低。
击穿电压作为衡量DDD MOS器件的关键参数而显得尤为重要。
原双扩散漏NMOS器件结构如图1所示,P型衬底1上为N型埋层2,其上再为N型外延3。漂移区4和P阱5位于外延3中。器件的漂移区浓度决定了器件的击穿电压和导通电阻。通常漂移区不能完全耗尽导致击穿电压较低,但若通过降低漂移区浓度提高击穿电压,导通电阻又会增大。因此通常两者不能兼顾,只能做取舍,取得一个较为平衡的值。
发明内容
本发明所要解决的技术问题是提供一种双扩散漏NMOS器件,具有较高的击穿电压的同时还具有较低的导通电阻。
本发明所要解决的另一技术问题在于提供所述双扩散漏NMOS器件的制造工艺方法。
为解决上述问题,本发明所述的双扩散漏NMOS器件在P型衬底上有N型埋层,N型埋层之上为N型外延;
N型外延中,具有P阱及漂移区,两者之间为双扩散漏NMOS器件的沟道区,沟道区之上的硅表面为双扩散漏NMOS器件的栅氧化层及多晶硅栅极;
所述P阱中具有中掺杂P型区及双扩散漏NMOS器件的源区,所述漂移区中具有双扩散漏NMOS器件的漏区;
所述P阱及漂移区中,还分别具有一P型掺杂层。
所述的P型掺杂层,分别位于源区及漏区的正下方。
所述的P型掺杂层辅助漂移区耗尽。
为解决上述问题,本发明所述的双扩散漏NMOS器件的工艺方法,包含如下的工艺步骤:
步骤1,在P型衬底上形成N型埋层;
步骤2,在N型埋层上形成N型外延;
步骤3,光刻定义出P阱及漂移区,离子注入形成P阱及漂移区;
步骤4,硅片表面形成栅氧化层及多晶硅,光刻及刻蚀形成多晶硅栅极;
步骤5,进行源漏注入形成器件的源区及漏区;再次利用源漏注入的掩膜版进行一次P型注入;
步骤6,进行P型杂质注入,形成P阱的重掺杂引出区。
进一步地,所述步骤4中,采用热氧化法生成栅氧化层。
进一步地,所述步骤5中,P型注入的杂质为硼,注入能量为100~300keV,注入剂量为1E12~1E14CM-2
本发明所述的双扩散漏NMOS器件,在源区及漏区的下方增加一个P型掺杂层,有助于漂移区耗尽,提高击穿电压;位于源区下方的P型掺杂层对器件影响很小,阈值电压几乎不变。同时,由于电流通路中的漂移区浓度没有降低,保证了器件的导通电阻不会增加。本发明所述的工艺方法在没有增加掩模版的情况下有效的提高了击穿电压,没有成本增加。
附图说明
图1是现有的双扩散漏NMOS结构示意图。
图2~7是本发明工艺方法步骤图。
图8是本发明工艺步骤流程图。
附图标记说明
1是衬底,2是N型埋层,3是N型外延,4是N型漂移区,5是P阱,6是栅氧化层,7是多晶硅栅极,8是重掺杂N型区(源、漏区),9是P型掺杂区,10是重掺杂P型区。
具体实施方式
本发明所述的的双扩散漏NMOS器件如图6所示,在P型衬底1上有N型埋层2,N型埋层2之上为N型外延3;N型外延3中,具有P阱5及漂移区4,两者之间为双扩散漏NMOS器件的沟道区,沟道区之上的硅表面为双扩散漏NMOS器件的栅氧化层6及多晶硅栅极7。
所述P阱5中具有重掺杂P型区10及双扩散漏NMOS器件的源区8,所述漂移区4中具有双扩散漏NMOS器件的漏区8。
所述P阱5漂移区4中,还分别具有一P型掺杂层9,分别位于源区及漏区的正下方。
本发明所述的双扩散漏NMOS器件,在源区及漏区的下方增加一个P型掺杂层,有助于N型的漂移区4耗尽,提高击穿电压.而位于源区下方的P型掺杂层9对器件影响很小,阈值电压几乎不变。同时,由于电流通路中的漂移区浓度没有降低,保证了器件的导通电阻不会增加。
本发明所述的双扩散漏NMOS器件的工艺方法,包含如下的工艺步骤,各步骤分别对应图2至图7:
步骤1,在P型衬底1上形成N型埋层2;
步骤2,在N型埋层2上形成N型外延3;
步骤3,光刻定义出P阱及漂移区,离子注入形成P阱5及漂移区4;
步骤4,硅片表面采用热氧化法形成栅氧化层6及多晶硅,光刻及刻蚀形成多晶硅栅极7;
步骤5,进行N型杂质注入形成重掺杂N型区8作为器件的源区及漏区;再次利用源漏注入的掩膜版进行一次P型注入;P型注入的杂质为硼,注入能量为100~300keV,注入剂量为1E12~1E14CM-2
步骤6,进行P型杂质注入,形成P阱的重掺杂引出区10。器件制作完成,如图7所示。
以上仅为本发明的优选实施例,并不用于限定本发明。对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种双扩散漏NMOS器件的工艺方法,其特征在于:包含如下的工艺步骤:
步骤1,在P型衬底上形成N型埋层;
步骤2,在N型埋层上形成N型外延;
步骤3,光刻定义出P阱及漂移区,离子注入形成P阱及漂移区;
步骤4,硅片表面形成栅氧化层及多晶硅,光刻及刻蚀形成多晶硅栅极;
步骤5,进行源漏注入形成器件的源区及漏区;再次利用源漏注入的掩膜版进行一次P型注入形成P型掺杂层;所述P型掺杂层分别位于P阱及漂移区中,且分别位于源区、漏区的正下方,用于辅助漂移区耗尽;
步骤6,进行P型杂质注入,形成重掺杂P型区作为P阱的引出区。
2.如权利要求1所述的双扩散漏NMOS器件的工艺方法,其特征在于:所述步骤4中,采用热氧化法生成栅氧化层。
3.如权利要求1所述的双扩散漏NMOS器件的工艺方法,其特征在于:所述步骤5中,P型注入的杂质为硼,注入能量为100~300keV,注入剂量为1E12~1E14cm-2
CN201710249497.4A 2017-04-17 2017-04-17 双扩散漏nmos器件及制造方法 Active CN107093625B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710249497.4A CN107093625B (zh) 2017-04-17 2017-04-17 双扩散漏nmos器件及制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710249497.4A CN107093625B (zh) 2017-04-17 2017-04-17 双扩散漏nmos器件及制造方法

Publications (2)

Publication Number Publication Date
CN107093625A CN107093625A (zh) 2017-08-25
CN107093625B true CN107093625B (zh) 2021-06-04

Family

ID=59637427

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710249497.4A Active CN107093625B (zh) 2017-04-17 2017-04-17 双扩散漏nmos器件及制造方法

Country Status (1)

Country Link
CN (1) CN107093625B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113594040B (zh) * 2021-07-20 2023-01-10 弘大芯源(深圳)半导体有限公司 一种双扩散金属氧化物半导体晶体管的制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6168983B1 (en) * 1996-11-05 2001-01-02 Power Integrations, Inc. Method of making a high-voltage transistor with multiple lateral conduction layers
CN101378075B (zh) * 2007-08-31 2012-10-31 谭健 Ldmos及集成ldmos与cmos的半导体器件
CN105206675A (zh) * 2015-08-31 2015-12-30 上海华虹宏力半导体制造有限公司 Nldmos器件及其制造方法

Also Published As

Publication number Publication date
CN107093625A (zh) 2017-08-25

Similar Documents

Publication Publication Date Title
US10727334B2 (en) Lateral DMOS device with dummy gate
US8125023B2 (en) Vertical type power semiconductor device having a super junction structure
WO2017211105A1 (zh) 一种超结器件、芯片及其制造方法
US11183495B2 (en) Power semiconductor devices
KR20100064263A (ko) 반도체 소자 및 이의 제조 방법
WO2007052196A1 (en) Method of manufacturing a semiconductor device
US9608057B2 (en) Semiconductor device and method for manufacturing semiconductor device
US20110193131A1 (en) Devices, Structures, and Methods Using Self-Aligned Resistive Source Extensions
US11282955B2 (en) LDMOS architecture and method for forming
CN109935633B (zh) Ldmos器件
CN107785367B (zh) 集成有耗尽型结型场效应晶体管的器件及其制造方法
US8686500B2 (en) Double diffused metal oxide semiconductor device and manufacturing method thereof
KR20110078621A (ko) 반도체 소자 및 그 제조 방법
CN111785774B (zh) Bcd工艺中cmos器件及其制造方法
KR101019406B1 (ko) Ldmos 소자 제조 방법
US9520470B1 (en) Lateral double diffused metal oxide semiconductor device and manufacturing method thereof
CN107093625B (zh) 双扩散漏nmos器件及制造方法
JP2014192361A (ja) 半導体装置およびその製造方法
CN111554579B (zh) 开关ldmos器件及其制造方法
CN111463132A (zh) 一种可降低导通电阻并增加安全工作区的功率半导体器件制备方法
KR20130073776A (ko) 횡형 디모스 트랜지스터 및 이의 제조방법
CN112466949B (zh) 一种bts型mosfet结构及其制备方法
CN112349778B (zh) 一种具有hvbn结构的resurf ldmos器件
KR20110037030A (ko) 반도체 소자 및 그 제조 방법
CN106229337A (zh) Dddmos器件及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant