CN105206675A - Nldmos器件及其制造方法 - Google Patents

Nldmos器件及其制造方法 Download PDF

Info

Publication number
CN105206675A
CN105206675A CN201510546721.7A CN201510546721A CN105206675A CN 105206675 A CN105206675 A CN 105206675A CN 201510546721 A CN201510546721 A CN 201510546721A CN 105206675 A CN105206675 A CN 105206675A
Authority
CN
China
Prior art keywords
trap
ptop
layer
ptop layer
drift region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510546721.7A
Other languages
English (en)
Inventor
段文婷
钱文生
刘冬华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Original Assignee
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huahong Grace Semiconductor Manufacturing Corp filed Critical Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority to CN201510546721.7A priority Critical patent/CN105206675A/zh
Publication of CN105206675A publication Critical patent/CN105206675A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Abstract

本发明公开了一种NLDMOS器件,包括:漂移区,P阱,形成于漂移区表面的第一PTOP层和第二PTOP层,在纵向上第一和第二PTOP层相隔一定距离且第一PTOP层位于第二PTOP层的底部,且第一PTOP层的深度比P阱的底部深度浅或相等;在横向上,两PTOP层都为分段式结构,两PTOP层的各段相互错开并交替排列结构,使两PTOP层的各段形成岛状二维耗尽结构。本发明还公开了一种NLDMOS器件的制造方法。本发明能帮助使漂移区完全耗尽、增加耗尽区面积,能提高器件的击穿电压。

Description

NLDMOS器件及其制造方法
技术领域
本发明涉及半导体集成电路制造领域,特别是涉及一种N型横向扩散金属氧化物半导体(NLDMOS)器件;本发明还涉及一种NLDMOS器件的制造方法。
背景技术
500V横向扩散金属氧化物半导体(LDMOS)既具有分立器件高压大电流特点,又汲取了低压集成电路高密度智能逻辑控制的优点,单芯片实现原来多个芯片才能完成的功能,大大缩小了面积,降低了成本,提高了能效,符合现代电力电子器件小型化,智能化,低能耗的发展方向。
击穿电压作为衡量500V器件的关键参数而显得尤为重要,现有技术通过在漂移区的表面形成PTOP层能够增加漂移区的耗尽,实现降低表面电场(Resurf)效果,如图1所示,是现有NLDMOS器件的结构示意图;在硅衬底1上形成由N型深阱2组成,P阱4和漂移区相隔一定距离,P阱4也被一个N型深阱2包围,场氧3形成于N型深阱2表面,栅极结构由栅氧化层6和多晶硅栅7组成,源区8b形成于P阱4中并和多晶硅栅7自对准,P阱引出区9形成于P阱4表面并由P+区组成,漏区8b形成于漂移区表面并和场氧3的一侧自对准;在场氧3的靠近漏区8a侧形成有多晶硅场板7a,多晶硅场板7a和多晶硅栅7都是同一层多晶硅光刻刻蚀形成。层间膜10将底部的器件区域覆盖,通过接触孔和正面金属层11引出器件的源极、漏极和栅极。在漂移区的表面形成有PTOP层5,在源区8b侧的P阱4的底部也形成有PTOP层5,PTOP层5能够增加漂移区的耗尽,降低表面电场,最终提高器件的击穿电压。
发明内容
本发明所要解决的技术问题是提供一种NLDMOS器件,能帮助使漂移区完全耗尽、增加耗尽区面积,能提高器件的击穿电压。此,本发明还提供一种NLDMOS器件的制造方法。
为解决上述技术问题,本发明提供的NLDMOS器件包括:
N型掺杂的漂移区,形成于P型半导体衬底中。
P阱,形成于所述P型半导体衬底中,所述P阱和所述漂移区侧面接触或相隔一定距离。
形成于所述半导体衬底上方的多晶硅栅,所述多晶硅栅和所述半导体衬底表面隔离有栅介质层,在横向上所述多晶硅栅从所述P阱延伸到所述漂移区上方,被所述多晶硅栅覆盖的所述P阱用于形成沟道;所述多晶硅栅的第一侧面位于所述P阱上方、第二侧面位于所述漂移区上方。
由N+区组成的源区和漏区,所述源区形成于所述P阱中并和所述多晶硅栅的第一侧面自对准,所述漏区形成于所述漂移区中。
由P+区组成的衬底引出区,所述衬底引出区形成于所述P阱中并用于将所述P阱引出,所述衬底引出区和所述源区横向接触。
场氧,位于所述P阱和所述漏区之间的所述漂移区上方,所述场氧的第二侧和所述漏区横向接触,所述场氧的第一侧和所述P阱相隔一段距离;所述多晶硅栅延伸到所述场氧上方。
第一PTOP层和第二PTOP层,形成于所述漂移区表面,在纵向上所述第一PTOP层和所述第二PTOP层相隔一定距离且所述第一PTOP层位于所述第二PTOP层的底部,且所述第一PTOP层的深度比所述P阱的底部深度浅或相等;在横向上,所述第一PTOP层和所述第二PTOP层都为分段式结构,所述第一PTOP层的各段和所述第二PTOP层的各段相互错开并交替排列结构,使所述第一PTOP层的各段和所述第二PTOP层的各段形成岛状二维耗尽结构。
进一步的改进是,所述漂移区由第一N型深阱组成,所述P阱和所述漂移区相隔一定距离,所述P阱被第二N型深阱包围,所述第一N型深阱和所述第二N型深阱工艺条件相同且相隔一定距离。
进一步的改进是,在所述P阱的底部也形成有所述第一PTOP层和所述第二PTOP层。
进一步的改进是,所述半导体衬底为硅衬底。
进一步的改进是,所述栅介质层为栅氧化层。
进一步的改进是,所述场氧为浅沟槽场氧或局部场氧。
进一步的改进是,在所述半导体衬底正面形成有层间膜,在所述层间膜的顶部形成有由正面金属层形成的源极、漏极和栅极,所述源极通过穿过所述层间膜的接触孔和所述源区以及所述衬底引出区接触,所述漏极通过穿过所述层间膜的接触孔和所述漏区接触,所述栅极通过穿过所述层间膜的接触孔和所述多晶硅栅接触。
进一步的改进是,在所述场氧的顶部的靠近所述漏区一侧形成有多晶硅场板,所述多晶硅场板通过穿过所述层间膜的接触孔连接所述漏极。
为解决上述技术问题,本发明提供的NLDMOS器件的制造方法包括如下步骤:
步骤一、在P型P型半导体衬底形成N型掺杂的漂移区。
步骤二、在所述漂移区上方形成场氧。
步骤三、光刻打开P阱注入区并进行P阱注入在所述P型半导体衬底中形成P阱,所述P阱和所述漂移区侧面接触或相隔一定距离。
步骤四、光刻打开PTOP注入区域,进行第一次PTOP注入形成第一PTOP层,进行第二次PTOP注入形成第二PTOP层,所述第一次PTOP注入的能量大于所述第二PTOP注入的能量;所述第一PTOP层和所述第二PTOP层形成于所述漂移区表面,在纵向上所述第一PTOP层和所述第二PTOP层相隔一定距离且所述第二PTOP层位于所述第一PTOP层的底部,且所述第二PTOP层的深度比所述P阱的底部深度浅或相等;所述第一次PTOP注入和所述第二次PTOP注入都为分段注入,在横向上,所述第一PTOP层和所述第二PTOP层都为分段式结构,所述第一PTOP层的各段和所述第二PTOP层的各段相互错开并交替排列结构,使所述第一PTOP层的各段和所述第二PTOP层的各段形成岛状二维耗尽结构。
步骤五、形成栅介质层和多晶硅栅,所述多晶硅栅在横向上从所述P阱延伸到所述漂移区上方,被所述多晶硅栅覆盖的所述P阱用于形成沟道,所述多晶硅栅的第一侧面位于所述P阱上方、第二侧面位于所述漂移区顶部的所述场氧上方。
步骤六、进行N+注入形成源区和漏区,所述源区形成于所述P阱中并和所述多晶硅栅的第一侧面自对准,所述漏区形成于所述漂移区中,所述场氧的第二侧和所述漏区横向接触。
步骤七、进行P+注入形成衬底引出区,所述衬底引出区形成于所述P阱中并用于将所述P阱引出,所述衬底引出区和所述源区横向接触。
相对于现有单层PTOP层,本发明采用双层PTOP层,每层均为分段注入,两层间分段错开,充分利用岛状PTOP二维耗尽特点,能帮助漂移区完全耗尽,耗尽区面积增大,提高击穿电压。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明:
图1是现有NLDMOS器件的结构示意图;
图2本发明实施例NLDMOS器件的结构示意图;
图3A-图3F是本发明实施例方法各步骤中的器件结构示意图。
具体实施方式
如图2所示,本发明实施例NLDMOS器件的结构示意图;本发明实施例NLDMOS器件包括:
N型掺杂的漂移区,形成于P型半导体衬底101中。所述半导体衬底101为硅衬底。
P阱104,形成于所述P型半导体衬底101中,所述P阱104和所述漂移区侧面接触或相隔一定距离。
较佳为,所述漂移区由第一N型深阱102a组成,所述P阱104和所述漂移区相隔一定距离,所述P阱104被第二N型深阱102b包围,所述第一N型深阱102a和所述第二N型深阱102b工艺条件相同且相隔一定距离。
形成于所述半导体衬底101上方的多晶硅栅107,所述多晶硅栅107和所述半导体衬底101表面隔离有栅介质层106如栅氧化层,在横向上所述多晶硅栅107从所述P阱104延伸到所述漂移区上方,被所述多晶硅栅107覆盖的所述P阱104用于形成沟道;所述多晶硅栅107的第一侧面位于所述P阱104上方、第二侧面位于所述漂移区上方。
由N+区组成的源区108b和漏区108a,所述源区108b形成于所述P阱104中并和所述多晶硅栅107的第一侧面自对准,所述漏区108a形成于所述漂移区中。
由P+区组成的衬底引出区109,所述衬底引出区109形成于所述P阱104中并用于将所述P阱104引出,所述衬底引出区109和所述源区108b横向接触。
场氧103,位于所述P阱104和所述漏区108a之间的所述漂移区上方,所述场氧103的第二侧和所述漏区108a横向接触,所述场氧103的第一侧和所述P阱104相隔一段距离;所述多晶硅栅107延伸到所述场氧103上方。所述场氧103为浅沟槽场氧或局部场氧。
第一PTOP层105a和第二PTOP层105b,形成于所述漂移区表面,在纵向上所述第一PTOP层105a和所述第二PTOP层105b相隔一定距离且所述第一PTOP层105a位于所述第二PTOP层105b的底部,且所述第一PTOP层105a的深度比所述P阱104的底部深度浅或相等。在所述P阱104的底部也形成有所述第一PTOP层105a和所述第二PTOP层105b。在横向上,所述第一PTOP层105a和所述第二PTOP层105b都为分段式结构,所述第一PTOP层105a的各段和所述第二PTOP层105b的各段相互错开并交替排列结构,使所述第一PTOP层105a的各段和所述第二PTOP层105b的各段形成岛状二维耗尽结构。
在所述半导体衬底101正面形成有层间膜110,在所述层间膜110的顶部形成有由正面金属层111形成的源极、漏极和栅极,所述源极通过穿过所述层间膜110的接触孔和所述源区108b以及所述衬底引出区109接触,所述漏极通过穿过所述层间膜110的接触孔和所述漏区108a接触,所述栅极通过穿过所述层间膜110的接触孔和所述多晶硅栅107接触。
在所述场氧103的顶部的靠近所述漏区108a一侧形成有多晶硅场板107a,所述多晶硅场板107a通过穿过所述层间膜110的接触孔连接所述漏极。
如图3A至图3F所示,是本发明实施例方法各步骤中的器件结构示意图,本发明实施例NLDMOS器件的制造方法包括如下步骤:
步骤一、如图3A所示,在P型P型半导体衬底101形成N型掺杂的漂移区。较佳为,所述漂移区由第一N型深阱102a组成,在形成所述第一N型深阱102a的同时形成第二N型深阱102b,所述第二N型深阱102b和所述第一N型深阱102a相隔一定距离,后续形成的P阱104位于所述第二N型深阱102b中。
所述半导体衬底101为硅衬底。
步骤二、如图3B所示,在所述漂移区上方形成场氧103。所述场氧103为采用浅沟槽隔离工艺(STI)形成的浅沟槽场氧,或者所述场氧103为采用局部场氧工艺(LOCOS)形成的局部场氧。
步骤三、如图3C所示,光刻打开P阱104注入区并进行P阱104注入在所述P型半导体衬底101中形成P阱104,本发明实施例中所述P阱104位于所述第二N型深阱102b中。
步骤四、如图3D所示,光刻打开PTOP注入区域,进行第一次PTOP注入形成第一PTOP层105a,进行第二次PTOP注入形成第二PTOP层105b,所述第一次PTOP注入的能量大于所述第二PTOP注入的能量。
所述第一PTOP层105a和所述第二PTOP层105b形成于所述漂移区表面,在纵向上所述第一PTOP层105a和所述第二PTOP层105b相隔一定距离且所述第二PTOP层105b位于所述第一PTOP层105a的底部,且所述第二PTOP层105b的深度比所述P阱104的底部深度浅或相等。所述第一次PTOP注入和所述第二次PTOP注入都为分段注入,在横向上,所述第一PTOP层105a和所述第二PTOP层105b都为分段式结构,所述第一PTOP层105a的各段和所述第二PTOP层105b的各段相互错开并交替排列结构,使所述第一PTOP层105a的各段和所述第二PTOP层105b的各段形成岛状二维耗尽结构。
本步骤中,同时在所述P阱104的底部形成所述第一PTOP层105a和所述第二PTOP层105b。
步骤五、形成栅介质层如栅氧化层106和多晶硅栅107,所述多晶硅栅107在横向上从所述P阱104延伸到所述漂移区上方,被所述多晶硅栅107覆盖的所述P阱104用于形成沟道,所述多晶硅栅107的第一侧面位于所述P阱104上方、第二侧面位于所述漂移区顶部的所述场氧103上方。
本步骤五中在形成所述多晶硅栅107的同时在所述场氧103的顶部的靠近所述漏区108a一侧形成多晶硅场板107a。
步骤六、进行N+注入形成源区108b和漏区108a,所述源区108b形成于所述P阱104中并和所述多晶硅栅107的第一侧面自对准,所述漏区108a形成于所述漂移区中,所述场氧103的第二侧和所述漏区108a横向接触,也即所述漏区108a和所述场氧103的第二侧自对准。
步骤七、进行P+注入形成衬底引出区109,所述衬底引出区109形成于所述P阱104中并用于将所述P阱104引出,所述衬底引出区109和所述源区108b横向接触。
步骤八、在所述半导体衬底101正面形成有层间膜110。
步骤九、形成穿过所述层间膜110的接触孔,所述接触孔和底部对应的所述源区108b和所述衬底引出区109、所述漏区108a以及所述多晶硅栅107接触;
步骤十、在所述层间膜110顶部形成正面金属层111并进行光刻刻蚀形成源极、漏极和栅极,所述源极通过穿过所述层间膜110的接触孔和所述源区108b以及所述衬底引出区109接触,所述漏极通过穿过所述层间膜110的接触孔和所述漏区108a接触,所述栅极通过穿过所述层间膜110的接触孔和所述多晶硅栅107接触。所述多晶硅场板107a通过穿过所述层间膜110的接触孔连接所述漏极。
和现有一层PTOP层组成器件相比,本发明实施例通过两层PTOP层105a和105b能够在总的注入剂量保持和现有PTOP层的注入剂量一致的条件下,仅改变两层PTOP层105a和105b的注入能量就能实现对漂移区的耗尽的增宽和增深;再者,本发明两层PTOP层105a和105b都为分段注入,两层PTOP层105a和105b的各段相互错开并交替排列结构,形成岛状二维耗尽结构,这能进一步帮助漂移区完全还将,所以本发明实施例能提高耗尽区面积,提高击穿电压。
以上通过具体实施例对本发明进行了详细的说明,但这些并非构成对本发明的限制。在不脱离本发明原理的情况下,本领域的技术人员还可做出许多变形和改进,这些也应视为本发明的保护范围。

Claims (16)

1.一种NLDMOS器件,其特征在于,包括:
N型掺杂的漂移区,形成于P型半导体衬底中;
P阱,形成于所述P型半导体衬底中,所述P阱和所述漂移区侧面接触或相隔一定距离;
形成于所述半导体衬底上方的多晶硅栅,所述多晶硅栅和所述半导体衬底表面隔离有栅介质层,在横向上所述多晶硅栅从所述P阱延伸到所述漂移区上方,被所述多晶硅栅覆盖的所述P阱用于形成沟道;所述多晶硅栅的第一侧面位于所述P阱上方、第二侧面位于所述漂移区上方;
由N+区组成的源区和漏区,所述源区形成于所述P阱中并和所述多晶硅栅的第一侧面自对准,所述漏区形成于所述漂移区中;
由P+区组成的衬底引出区,所述衬底引出区形成于所述P阱中并用于将所述P阱引出,所述衬底引出区和所述源区横向接触;
场氧,位于所述P阱和所述漏区之间的所述漂移区上方,所述场氧的第二侧和所述漏区横向接触,所述场氧的第一侧和所述P阱相隔一段距离;所述多晶硅栅延伸到所述场氧上方;
第一PTOP层和第二PTOP层,形成于所述漂移区表面,在纵向上所述第一PTOP层和所述第二PTOP层相隔一定距离且所述第一PTOP层位于所述第二PTOP层的底部,且所述第一PTOP层的深度比所述P阱的底部深度浅或相等;在横向上,所述第一PTOP层和所述第二PTOP层都为分段式结构,所述第一PTOP层的各段和所述第二PTOP层的各段相互错开并交替排列结构,使所述第一PTOP层的各段和所述第二PTOP层的各段形成岛状二维耗尽结构。
2.如权利要求1所述的NLDMOS器件,其特征在于:所述漂移区由第一N型深阱组成,所述P阱和所述漂移区相隔一定距离,所述P阱被第二N型深阱包围,所述第一N型深阱和所述第二N型深阱工艺条件相同且相隔一定距离。
3.如权利要求2所述的NLDMOS器件,其特征在于:在所述P阱的底部也形成有所述第一PTOP层和所述第二PTOP层。
4.如权利要求1所述的NLDMOS器件,其特征在于:所述半导体衬底为硅衬底。
5.如权利要求1所述的NLDMOS器件,其特征在于:所述栅介质层为栅氧化层。
6.如权利要求1所述的NLDMOS器件,其特征在于:所述场氧为浅沟槽场氧或局部场氧。
7.如权利要求1所述的NLDMOS器件,其特征在于:在所述半导体衬底正面形成有层间膜,在所述层间膜的顶部形成有由正面金属层形成的源极、漏极和栅极,所述源极通过穿过所述层间膜的接触孔和所述源区以及所述衬底引出区接触,所述漏极通过穿过所述层间膜的接触孔和所述漏区接触,所述栅极通过穿过所述层间膜的接触孔和所述多晶硅栅接触。
8.如权利要求7所述的NLDMOS器件,其特征在于:在所述场氧的顶部的靠近所述漏区一侧形成有多晶硅场板,所述多晶硅场板通过穿过所述层间膜的接触孔连接所述漏极。
9.一种NLDMOS器件的制造方法,其特征在于,包括如下步骤:
步骤一、在P型P型半导体衬底形成N型掺杂的漂移区;
步骤二、在所述漂移区上方形成场氧;
步骤三、光刻打开P阱注入区并进行P阱注入在所述P型半导体衬底中形成P阱,所述P阱和所述漂移区侧面接触或相隔一定距离;
步骤四、光刻打开PTOP注入区域,进行第一次PTOP注入形成第一PTOP层,进行第二次PTOP注入形成第二PTOP层,所述第一次PTOP注入的能量大于所述第二PTOP注入的能量;所述第一PTOP层和所述第二PTOP层形成于所述漂移区表面,在纵向上所述第一PTOP层和所述第二PTOP层相隔一定距离且所述第二PTOP层位于所述第一PTOP层的底部,且所述第二PTOP层的深度比所述P阱的底部深度浅或相等;所述第一次PTOP注入和所述第二次PTOP注入都为分段注入,在横向上,所述第一PTOP层和所述第二PTOP层都为分段式结构,所述第一PTOP层的各段和所述第二PTOP层的各段相互错开并交替排列结构,使所述第一PTOP层的各段和所述第二PTOP层的各段形成岛状二维耗尽结构;
步骤五、形成栅介质层和多晶硅栅,所述多晶硅栅在横向上从所述P阱延伸到所述漂移区上方,被所述多晶硅栅覆盖的所述P阱用于形成沟道,所述多晶硅栅的第一侧面位于所述P阱上方、第二侧面位于所述漂移区顶部的所述场氧上方;
步骤六、进行N+注入形成源区和漏区,所述源区形成于所述P阱中并和所述多晶硅栅的第一侧面自对准,所述漏区形成于所述漂移区中,所述场氧的第二侧和所述漏区横向接触;
步骤七、进行P+注入形成衬底引出区,所述衬底引出区形成于所述P阱中并用于将所述P阱引出,所述衬底引出区和所述源区横向接触。
10.如权利要求9所述的方法,其特征在于:所述漂移区由第一N型深阱组成,所述P阱和所述漂移区相隔一定距离,所述P阱被第二N型深阱包围,步骤一中采用光刻工艺同时打开所述第一N型深阱和所述第二N型深阱的形成区域并进行N型离子注入同时形成所述第一N型深阱和所述第二N型深阱。
11.如权利要求10所述的方法,其特征在于:步骤四中同时在所述P阱的底部形成所述第一PTOP层和所述第二PTOP层。
12.如权利要求9所述的方法,其特征在于:所述半导体衬底为硅衬底。
13.如权利要求9所述的方法,其特征在于:所述栅介质层为栅氧化层。
14.如权利要求9所述的方法,其特征在于:所述场氧为采用浅沟槽隔离工艺形成的浅沟槽场氧,或者所述场氧为采用局部场氧工艺形成的局部场氧。
15.如权利要求9所述的方法,其特征在于:还包括如下步骤:
步骤八、在所述半导体衬底正面形成有层间膜;
步骤九、形成穿过所述层间膜的接触孔,所述接触孔和底部对应的所述源区和所述衬底引出区、所述漏区以及所述多晶硅栅接触;
步骤十、在所述层间膜顶部形成正面金属层并进行光刻刻蚀形成源极、漏极和栅极,所述源极通过穿过所述层间膜的接触孔和所述源区以及所述衬底引出区接触,所述漏极通过穿过所述层间膜的接触孔和所述漏区接触,所述栅极通过穿过所述层间膜的接触孔和所述多晶硅栅接触。
16.如权利要求15所述的方法,其特征在于:步骤五中在形成所述多晶硅栅的同时在所述场氧的顶部的靠近所述漏区一侧形成多晶硅场板,所述多晶硅场板通过穿过所述层间膜的接触孔连接所述漏极。
CN201510546721.7A 2015-08-31 2015-08-31 Nldmos器件及其制造方法 Pending CN105206675A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510546721.7A CN105206675A (zh) 2015-08-31 2015-08-31 Nldmos器件及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510546721.7A CN105206675A (zh) 2015-08-31 2015-08-31 Nldmos器件及其制造方法

Publications (1)

Publication Number Publication Date
CN105206675A true CN105206675A (zh) 2015-12-30

Family

ID=54954234

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510546721.7A Pending CN105206675A (zh) 2015-08-31 2015-08-31 Nldmos器件及其制造方法

Country Status (1)

Country Link
CN (1) CN105206675A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105679831A (zh) * 2016-03-16 2016-06-15 上海华虹宏力半导体制造有限公司 横向扩散场效应晶体管及其制造方法
CN105789311A (zh) * 2016-03-16 2016-07-20 上海华虹宏力半导体制造有限公司 横向扩散场效应晶体管及其制造方法
CN107093625A (zh) * 2017-04-17 2017-08-25 上海华虹宏力半导体制造有限公司 双扩散漏nmos器件及制造方法
US20220262949A1 (en) * 2021-02-18 2022-08-18 Semiconductor Components Industries, Llc Method of forming a semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6168983B1 (en) * 1996-11-05 2001-01-02 Power Integrations, Inc. Method of making a high-voltage transistor with multiple lateral conduction layers
US20020125530A1 (en) * 2001-03-07 2002-09-12 Semiconductor Components Industries, Llc. High voltage metal oxide device with multiple p-regions
KR101030923B1 (ko) * 2002-10-31 2011-04-27 프리스케일 세미컨덕터, 인크. Resurf 트랜지스터를 포함하는 반도체 컴포넌트 및 이를 제조하는 방법
CN104617149A (zh) * 2015-01-30 2015-05-13 上海华虹宏力半导体制造有限公司 隔离型nldmos器件及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6168983B1 (en) * 1996-11-05 2001-01-02 Power Integrations, Inc. Method of making a high-voltage transistor with multiple lateral conduction layers
US20020125530A1 (en) * 2001-03-07 2002-09-12 Semiconductor Components Industries, Llc. High voltage metal oxide device with multiple p-regions
KR101030923B1 (ko) * 2002-10-31 2011-04-27 프리스케일 세미컨덕터, 인크. Resurf 트랜지스터를 포함하는 반도체 컴포넌트 및 이를 제조하는 방법
CN104617149A (zh) * 2015-01-30 2015-05-13 上海华虹宏力半导体制造有限公司 隔离型nldmos器件及其制造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105679831A (zh) * 2016-03-16 2016-06-15 上海华虹宏力半导体制造有限公司 横向扩散场效应晶体管及其制造方法
CN105789311A (zh) * 2016-03-16 2016-07-20 上海华虹宏力半导体制造有限公司 横向扩散场效应晶体管及其制造方法
CN105789311B (zh) * 2016-03-16 2019-10-11 上海华虹宏力半导体制造有限公司 横向扩散场效应晶体管及其制造方法
CN107093625A (zh) * 2017-04-17 2017-08-25 上海华虹宏力半导体制造有限公司 双扩散漏nmos器件及制造方法
US20220262949A1 (en) * 2021-02-18 2022-08-18 Semiconductor Components Industries, Llc Method of forming a semiconductor device
US11810976B2 (en) * 2021-02-18 2023-11-07 Semiconductor Components Industries, Llc Semiconductor device

Similar Documents

Publication Publication Date Title
CN104992977B (zh) Nldmos器件及其制造方法
CN105070759A (zh) Nldmos器件及其制造方法
US8445958B2 (en) Power semiconductor device with trench bottom polysilicon and fabrication method thereof
US8575691B2 (en) Lateral-diffusion metal-oxide semiconductor device
WO2017211105A1 (zh) 一种超结器件、芯片及其制造方法
CN105428415B (zh) Nldmos器件及其制造方法
CN104518023B (zh) 高压ldmos器件
CN108682689A (zh) 横向扩散金属氧化物半导体结构和其形成方法
KR20130085751A (ko) 수평형 디모스 트랜지스터 및 그 제조방법
CN102543738A (zh) 高压ldmos器件及其制造方法
CN105206675A (zh) Nldmos器件及其制造方法
CN104377244A (zh) 一种降低ldmos导通电阻的器件结构
CN104659090B (zh) Ldmos器件及制造方法
CN104659091A (zh) Ldmos器件及制造方法
CN104617149A (zh) 隔离型nldmos器件及其制造方法
CN109698239B (zh) Nldmos器件及其制造方法
CN105514166B (zh) Nldmos器件及其制造方法
CN105140289A (zh) N型ldmos器件及工艺方法
CN109830523B (zh) Nldmos器件及其制造方法
CN108598166A (zh) 基于超结自隔离的耗尽型增强型集成功率器件及制造方法
CN104103693A (zh) 一种u形沟槽的功率器件及其制造方法
CN104576732A (zh) 一种寄生FinFET的横向双扩散半导体器件
CN104821334A (zh) N型ldmos器件及工艺方法
CN109888016A (zh) Nldmos器件及其制造方法
CN111223931A (zh) 沟槽mosfet及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20151230

RJ01 Rejection of invention patent application after publication