CN107058909A - 一种改善超级奥氏体不锈钢热塑性的方法 - Google Patents

一种改善超级奥氏体不锈钢热塑性的方法 Download PDF

Info

Publication number
CN107058909A
CN107058909A CN201710143972.XA CN201710143972A CN107058909A CN 107058909 A CN107058909 A CN 107058909A CN 201710143972 A CN201710143972 A CN 201710143972A CN 107058909 A CN107058909 A CN 107058909A
Authority
CN
China
Prior art keywords
rare earth
stainless steel
austenitic stainless
boron
super austenitic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710143972.XA
Other languages
English (en)
Other versions
CN107058909B (zh
Inventor
姜周华
张树才
李花兵
冯浩
张彬彬
朱红春
苑胜龙
范思鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201710143972.XA priority Critical patent/CN107058909B/zh
Publication of CN107058909A publication Critical patent/CN107058909A/zh
Application granted granted Critical
Publication of CN107058909B publication Critical patent/CN107058909B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • C21C7/0645Agents used for dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明属于超级奥氏体不锈钢冶炼与加工领域,提供一种改善超级奥氏体不锈钢热塑性的方法。本方法适用于冶炼C:≤0.02%、Si:≤0.5%、Mn:2.0~4.0%、Cr:24.0~25.0%、Ni:21.0~23.0%、Mo:7.0~8.0%、Cu:0.3~0.6%、N:0.45~0.55%、S:≤0.005%、P:≤0.03%,余量为Fe及其他不可避免杂质元素的超级奥氏体不锈钢,在此基础上钢中加入0.01~0.10%的稀土和0.001~0.008%的硼。其特征在于:配料、装料;抽真空至5Pa以下通电升温;熔清后通入氮气至0.08~0.10MPa,依次加入氮化铬、脱氧剂和脱硫剂;深脱氧和脱硫后,依次加入稀土和硼;再次充氮气至0.10~0.12MPa,浇铸。其优点是采用复合添加硼和稀土的方式,显著改善了钢的热塑性,为提升钢的热加工性能、突破热轧开裂的技术瓶颈、获得高表面质量且性能优异的超级奥氏体不锈钢产品提供了技术保障。

Description

一种改善超级奥氏体不锈钢热塑性的方法
技术领域
本发明属于超级奥氏体不锈钢冶炼与加工领域,具体涉及一种复合添加硼和稀土改善超级奥氏体不锈钢热塑性的方法。
技术背景
超级奥氏体不锈钢是一种合金含量(铬、钼、镍、氮等)显著高于普通奥氏体不锈钢的奥氏体合金,在海水、高浓度氯离子介质等极端恶劣的服役环境中具有优异的耐点蚀、耐缝隙腐蚀和耐应力腐蚀性能,被广泛应用于海水脱盐处理系统、纸浆漂白系统、湿法冶金设备等领域。然而高的合金含量使该类钢高温变形抗力显著增大,热塑性急剧变差,在热加工过程中极易开裂,尤其是边裂十分严重。此外,钢中硫含量也是影响超级奥氏体不锈钢热塑性的关键因素。因为硫原子易在晶界偏聚形成低熔点的硫化物,降低晶界的强度,严重恶化钢的热加工性能。因此,采用合理的措施改善超级奥氏体不锈钢热塑性,突破其热裂纹的技术瓶颈成为该类钢生产过程中的关键环节。
在奥氏体不锈钢中加入微量硼能显著改善其热塑性。首先,硼和硫都是晶界偏聚倾向很强的元素,但在相同温度下,硼的扩散系数更大,因此在冷却过程中硼优先扩散到晶界,占据偏聚位置,抑制硫原子在晶界的偏析,大幅降低硫对热塑性的危害。其次,硼在晶界偏聚能提高晶界的强度,抑制晶界处显微空洞的形成及扩展。此外,硼作为间隙原子,还能显著促进热变形过程动态再结晶的发生,有效改善钢的热塑性。然而,当硼的加入量过高时,在钢中会形成低熔点的硼化物,恶化钢的热加工性能。向奥氏体不锈钢中加入稀土同样能提高其热加工性能。稀土能净化晶界,抑制硫元素在晶界的偏聚,从而消除了塑性低凹区,改善热加工性能。稀土在晶界上偏聚,占据晶界中的空位和畸变区,增大晶界结合力并且降低晶界扩散速度,使晶界滑动受到阻碍,从而细化晶粒,减缓了晶界裂纹的萌生和扩展。钢中添加适量稀土后,夹杂物尺寸大幅减小,分布更加均匀,形貌为球状或近似球状,熔点升高、硬度降低,这些特征也有助于提高钢的热塑性。但加入过量稀土时,钢中会出现较大尺寸的稀土夹杂物,又会恶化钢的性能。
加入适量的硼和稀土能显著改善超级奥氏体不锈钢的热塑性,有效解决热加工开裂难题,切实提高产品质量。但合理控制硼和稀土的加入量、加入方式和加入时机,对于更好地实现其改善热塑性的作用、获得高表面质量的超级奥氏体不锈钢产品至关重要。
发明内容
本发明提供了一种复合添加硼和稀土改善超级奥氏体不锈钢热塑性的方法,适用于冶炼目标钢种成分重量百分比为:C:≤0.02%、Si:≤0.5%、Mn:2.0~4.0%、Cr:24.0~25.0%、Ni:21.0~23.0%、Mo:7.0~8.0%、Cu:0.3~0.6%、N:0.45~0.55%、S:≤0.005%、P:≤0.03%,余量为Fe及其他不可避免的杂质元素。
为了更好的发挥硼和稀土元素改善超级奥氏体不锈钢热塑性的作用,首先对钢液进行深脱氧和脱硫处理,待钢中氧、硫含量控制到较低水平后,向钢液中加入硼和稀土进行微合金化。合理控制硼和稀土的加入量,利用硼和稀土元素的协同作用净化晶界、强化晶界、细化晶粒并变性有害夹杂物,改善超级奥氏体不锈钢的热塑性,从而获得高表面质量、性能优异的超级奥氏体不锈钢产品。
本发明为一种复合添加硼和稀土改善超级奥氏体不锈钢热塑性的方法,包括如下具体步骤:
(1)配料与装料:依据目标钢种的元素成分,计算所需原料的重量,配制冶炼原料,原料种类为:工业纯铁、金属铬、金属钼、金属镍、电解铜、金属锰、工业硅、氮化铬、电解铝、镍镁合金、稀土和硼,其中稀土的质量百分数为:0.01~0.10%,硼的质量百分数为:0.001~0.008%;将工业纯铁、金属铬、金属钼、金属镍、电解铜、金属锰、工业硅放入真空感应炉的坩埚中,将氮化铬、电解铝、镍镁合金、稀土和硼置于加料仓中;
(2)熔炼:将炉内抽真空至5Pa以下,通电升温开始熔炼;
(3)氮合金化及脱氧、脱硫:待坩埚内的物料熔清后立即充入0.08~0.10MPa的氮气,并加入氮化铬进行氮合金化,然后加入电解铝和镍镁合金进行深脱氧和脱硫处理;
(4)稀土和硼微合金化:待脱氧和脱硫处理完毕后,向钢液中依次加入稀土和硼进行微合金化;
(5)浇铸:向真空感应炉再次充入氮气至0.10~0.12MPa进行浇铸;浇铸结束后,冷却,破真空取出铸锭。
在步骤(4)中,作为优选,硼的加入量控制在占冶炼原料质量百分数:0.002~0.006%。
在步骤(4)中,作为优选,稀土的加入量控制在占冶炼原料质量百分数:0.03~0.07%。
进一步地,所述的稀土为稀土铈、稀土镧或稀土镧铈的混合物。
本发明的有益效果为:
(1)通过复合添加硼和稀土元素,达到了净化晶界、强化晶界、细化晶粒、变性夹杂物等效果,显著改善了超级奥氏体不锈钢的热塑性。
(2)在进行硼和稀土微合金化前,先对钢液进行深脱氧和脱硫处理,能更好地发挥硼和稀土协同改善钢热塑性的作用。
(3)钢中最终氧和硫的含量(质量百分数)控制在:O≤0.002%,S≤0.0015%,实现了超级奥氏体不锈钢的高纯净度冶炼。
本发明提出了一种更为合理、高效的改善不锈钢热塑性的方法,为提升超级奥氏体不锈钢热加工性能、突破热轧开裂的技术瓶颈、获得高表面质量且性能优异的超级奥氏体不锈钢产品提供技术保障。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,下面结合具体实施例对本发明的方案进一步描述。应当指出本发明的具体实施方式不局限于下述的实施例。
本发明所举实施例中,冶炼设备为200kg真空感应炉,装炉量为160kg,冶炼钢种为超级奥氏体不锈钢24.5Cr22Ni7.3Mo0.5N,其成分控制范围及控制目标如表1所示,所用冶炼原料的主要成分如表2所示。
表1超级奥氏体不锈钢24.5Cr22Ni7.3Mo0.5N成分控制范围及控制目标(wt%)
表2冶炼原料主要成分(wt%)
具体步骤如下:
(1)配料与装料:依据目标钢种的元素成分,计算所需原料的重量,配制冶炼原料,计算得到冶炼一炉超级奥氏体不锈钢24.5Cr22Ni7.3Mo0.5N所需原料重量如表3所示,脱氧剂加入量分别为电解铝69g,镍镁合金160g。将工业纯铁、金属铬、金属钼、金属镍、电解铜、金属锰、工业硅放入真空感应炉的坩埚中,将氮化铬、电解铝、镍镁合金、稀土铈和硼铁合金置于加料仓中。
表3冶炼一炉超级奥氏体不锈钢24.5Cr22Ni7.3Mo0.5N需要原料的重量(kg)
原料种类 工业硅 金属锰 金属铬 金属镍 金属钼 电解铜 氮化铬 工业纯铁
加入量 0.56 5.16 32.95 35.a07 11.68 0.80 7.48 余量
(2)熔炼:将炉内抽真空至3Pa,通电升温至炉料全部熔化。
(3)氮合金化及脱氧、脱硫:待坩埚内的物料熔清后立即充入0.09MPa的氮气,并加入氮化铬进行氮合金化,然后加入电解铝和镍镁合金进行深脱氧和脱硫处理。
(4)硼和稀土微合金化:待脱氧和脱硫处理完毕后,向钢液中依次加入稀土铈和硼铁合金进行微合金化,加入量如表4所示。
表4硼铁合金和稀土铈的加入量(g)
原料种类 硼铁合金 稀土铈
实施例1 19 560
实施例2 38 400
实施例3 57 240
对比例 0 0
(5)浇铸:再次向真空感应炉充入氮气至0.10MPa进行浇铸;浇铸结束后,冷却,破真空取出铸锭。
表5为冶炼所得超级奥氏体不锈钢24.5Cr22Ni7.3Mo0.5N的化学成分,可以看出硼和稀土的收得率稳定,加入硼和稀土后,钢中氧和硫含量都很低,实现了超纯净化冶炼。表6为冶炼所得超级奥氏体不锈钢24.5Cr22Ni7.3Mo0.5N的高温力学性能,可以看出,实施例1、实施例2和实施例3中加入硼和稀土后,钢在整个温度区间的热塑性均得到了显著改善,低塑性区间明显变窄并向低温区移动,而对比例中未添加硼和稀土,钢在整个温度区间的热塑性相对较差,高塑性区间较窄。
本发明合理控制了钢中硼和稀土的加入量,有效解决了加入过低含量的硼和稀土致使钢的热塑性改善效果不明显的问题,也成功避免了加入过高含量硼和稀土造成氮化硼析出、大颗粒稀土夹杂物形成而恶化钢的热塑性、降低成品率等问题。
表5成品超级奥氏体不锈钢24.5Cr22Ni7.3Mo0.5N化学成分(wt%)
序号 C Si Mn Cr Ni Mo Cu N S P O B Re Fe
实施例1 0.014 0.39 3.04 24.46 21.95 7.27 0.48 0.502 0.0013 0.0024 0.0018 0.0019 0.067 余量
实施例2 0.015 0.37 2.96 24.51 22.07 7.31 0.51 0.498 0.0011 0.0021 0.0016 0.0041 0.048 余量
实施例3 0.014 0.37 3.02 24.49 22.05 7.29 0.48 0.500 0.0010 0.0022 0.0015 0.0058 0.031 余量
对比例 0.015 0.38 3.08 24.48 22.02 7.25 0.49 0.504 0.0026 0.0035 0.0025 0 0 余量
表6成品超级奥氏体不锈钢24.5Cr22Ni7.3Mo0.5N不同温度时的断面收缩率(%)
高温拉伸温度(℃) 850 900 950 1000 1050 1100 1150 1200
实施例1 38.82 40.43 43.36 62.70 64.27 65.02 60.68 64.39
实施例2 35.34 41.58 45.23 65.85 68.43 72.29 65.89 68.72
实施例3 34.21 36.87 39.92 60.39 62.20 68.94 63.57 65.10
对比例 29.87 31.25 33.49 48.89 52.42 50.17 53.03 55.07

Claims (8)

1.一种改善超级奥氏体不锈钢热塑性的方法,其特征在于,包括以下具体步骤:
(1)配料与装料:依据目标钢种的元素成分,计算所需原料的重量,配制冶炼原料,原料种类为:工业纯铁、金属铬、金属钼、金属镍、电解铜、金属锰、工业硅、氮化铬、电解铝、镍镁合金、稀土和硼,其中稀土的质量百分数为:0.01~0.10%,硼的质量百分数为:0.001~0.008%;将工业纯铁、金属铬、金属钼、金属镍、电解铜、金属锰、工业硅放入真空感应炉的坩埚中,将氮化铬、电解铝、镍镁合金、稀土和硼置于加料仓中;
(2)熔炼:将炉内抽真空至5Pa以下,通电升温开始熔炼;
(3)氮合金化及脱氧、脱硫:待坩埚内的物料熔清后立即充入0.08~0.10MPa的氮气,并加入氮化铬进行氮合金化,然后加入电解铝和镍镁合金进行深脱氧和脱硫处理;
(4)稀土和硼微合金化:待脱氧和脱硫处理完毕后,向钢液中依次加入稀土和硼进行微合金化;
(5)浇铸:向真空感应炉再次充入氮气至0.10~0.12MPa进行浇铸;浇铸结束后,冷却,破真空取出铸锭。
2.根据权利要求1所述的一种改善超级奥氏体不锈钢热塑性的方法,其特征在于,所述目标钢种成分质量百分比为:C:≤0.02%、Si:≤0.5%、Mn:2.0~4.0%、Cr:24.0~25.0%、Ni:21.0~23.0%、Mo:7.0~8.0%、Cu:0.3~0.6%、N:0.45~0.55%、S:≤0.005%、P:≤0.03%,余量为Fe及其他不可避免的杂质元素的超级奥氏体不锈钢。
3.根据权利要求1或2中所述的一种改善超级奥氏体不锈钢热塑性的方法,其特征在于,步骤(4)中,硼的加入量控制在占冶炼原料质量百分数:0.002~0.006%。
4.根据权利要求1或2中所述的一种改善超级奥氏体不锈钢热塑性的方法,其特征在于,步骤(4)中,稀土的加入量控制在占冶炼原料质量百分数:0.03~0.07%。
5.根据权利要求3中所述的一种改善超级奥氏体不锈钢热塑性的方法,其特征在于,步骤(4)中,稀土的加入量控制在占冶炼原料质量百分数:0.03~0.07%。
6.根据权利要求1或2或5中所述的一种改善超级奥氏体不锈钢热塑性的方法,其特征在于,所述的稀土为稀土铈、稀土镧或稀土镧铈的混合物。
7.根据权利要求3中所述的一种改善超级奥氏体不锈钢热塑性的方法,其特征在于,所述的稀土为稀土铈、稀土镧或稀土镧铈的混合物。
8.根据权利要求4中所述的一种改善超级奥氏体不锈钢热塑性的方法,其特征在于,所述的稀土为稀土铈、稀土镧或稀土镧铈的混合物。
CN201710143972.XA 2017-03-13 2017-03-13 一种改善超级奥氏体不锈钢热塑性的方法 Active CN107058909B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710143972.XA CN107058909B (zh) 2017-03-13 2017-03-13 一种改善超级奥氏体不锈钢热塑性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710143972.XA CN107058909B (zh) 2017-03-13 2017-03-13 一种改善超级奥氏体不锈钢热塑性的方法

Publications (2)

Publication Number Publication Date
CN107058909A true CN107058909A (zh) 2017-08-18
CN107058909B CN107058909B (zh) 2018-11-20

Family

ID=59622573

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710143972.XA Active CN107058909B (zh) 2017-03-13 2017-03-13 一种改善超级奥氏体不锈钢热塑性的方法

Country Status (1)

Country Link
CN (1) CN107058909B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109182897A (zh) * 2018-08-24 2019-01-11 东北大学 一种改善超级铁素体不锈钢耐硫酸腐蚀性能的方法
CN110106452A (zh) * 2019-05-06 2019-08-09 太原理工大学 复合添加B和Ce改善6Mo型超级奥氏体不锈钢sigma相析出及抗晶间腐蚀性的方法
CN111411288A (zh) * 2020-03-19 2020-07-14 淮南普玖机械设备有限公司 一种高温合金冶炼方法
CN112122567A (zh) * 2020-09-07 2020-12-25 东北大学 一种结晶器喂不锈钢包芯线提升铸坯凝固质量的方法
CN112853041A (zh) * 2021-01-06 2021-05-28 包头钢铁(集团)有限责任公司 一种利用稀土Ce改善钢高温塑性的方法
CN115058632A (zh) * 2022-06-20 2022-09-16 东北大学 一种改善超级奥氏体不锈钢凝固组织的方法
CN115074633A (zh) * 2022-07-05 2022-09-20 太原理工大学 一种抑制超级奥氏体不锈钢析出相的方法
CN115976417A (zh) * 2023-02-17 2023-04-18 东北大学 一种高氮低钼超级奥氏体不锈钢及其制备方法
CN116162845A (zh) * 2022-12-30 2023-05-26 兰州理工大学温州泵阀工程研究院 一种改善高硅奥氏体不锈钢热塑性的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004238700A (ja) * 2003-02-07 2004-08-26 Nisshin Steel Co Ltd 表面平滑性の良好なプレス成形品に適したオーステナイト系ステンレス鋼板
CN1589335A (zh) * 2001-11-22 2005-03-02 山特维克公司 超奥氏体不锈钢
JP2006089837A (ja) * 2004-09-27 2006-04-06 Nachi Fujikoshi Corp ステンレス極細線の金網及びその製造方法
CN105543711A (zh) * 2015-12-22 2016-05-04 东北大学 抑制超级奥氏体不锈钢的铬和钼元素中心偏析的铸轧方法
CN106319396A (zh) * 2016-08-31 2017-01-11 浙江恒源钢业有限公司 一种耐高温无缝不锈钢管及其制备方法
CN106367694A (zh) * 2016-08-31 2017-02-01 浙江恒源钢业有限公司 超低碳奥氏体无缝不锈钢管以及无缝不锈钢管的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1589335A (zh) * 2001-11-22 2005-03-02 山特维克公司 超奥氏体不锈钢
JP2004238700A (ja) * 2003-02-07 2004-08-26 Nisshin Steel Co Ltd 表面平滑性の良好なプレス成形品に適したオーステナイト系ステンレス鋼板
JP2006089837A (ja) * 2004-09-27 2006-04-06 Nachi Fujikoshi Corp ステンレス極細線の金網及びその製造方法
CN105543711A (zh) * 2015-12-22 2016-05-04 东北大学 抑制超级奥氏体不锈钢的铬和钼元素中心偏析的铸轧方法
CN106319396A (zh) * 2016-08-31 2017-01-11 浙江恒源钢业有限公司 一种耐高温无缝不锈钢管及其制备方法
CN106367694A (zh) * 2016-08-31 2017-02-01 浙江恒源钢业有限公司 超低碳奥氏体无缝不锈钢管以及无缝不锈钢管的制备方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109182897A (zh) * 2018-08-24 2019-01-11 东北大学 一种改善超级铁素体不锈钢耐硫酸腐蚀性能的方法
CN110106452A (zh) * 2019-05-06 2019-08-09 太原理工大学 复合添加B和Ce改善6Mo型超级奥氏体不锈钢sigma相析出及抗晶间腐蚀性的方法
CN111411288B (zh) * 2020-03-19 2021-08-20 靖江新舟合金材料有限公司 一种高温合金冶炼方法
CN111411288A (zh) * 2020-03-19 2020-07-14 淮南普玖机械设备有限公司 一种高温合金冶炼方法
CN112122567A (zh) * 2020-09-07 2020-12-25 东北大学 一种结晶器喂不锈钢包芯线提升铸坯凝固质量的方法
CN112122567B (zh) * 2020-09-07 2021-07-09 东北大学 一种结晶器喂不锈钢包芯线提升铸坯凝固质量的方法
CN112853041A (zh) * 2021-01-06 2021-05-28 包头钢铁(集团)有限责任公司 一种利用稀土Ce改善钢高温塑性的方法
CN115058632A (zh) * 2022-06-20 2022-09-16 东北大学 一种改善超级奥氏体不锈钢凝固组织的方法
CN115058632B (zh) * 2022-06-20 2023-05-12 东北大学 一种改善超级奥氏体不锈钢凝固组织的方法
CN115074633A (zh) * 2022-07-05 2022-09-20 太原理工大学 一种抑制超级奥氏体不锈钢析出相的方法
CN116162845A (zh) * 2022-12-30 2023-05-26 兰州理工大学温州泵阀工程研究院 一种改善高硅奥氏体不锈钢热塑性的方法
CN116162845B (zh) * 2022-12-30 2024-02-27 兰州理工大学温州泵阀工程研究院 一种改善高硅奥氏体不锈钢热塑性的方法
CN115976417A (zh) * 2023-02-17 2023-04-18 东北大学 一种高氮低钼超级奥氏体不锈钢及其制备方法
CN115976417B (zh) * 2023-02-17 2024-04-19 东北大学 一种高氮低钼超级奥氏体不锈钢及其制备方法

Also Published As

Publication number Publication date
CN107058909B (zh) 2018-11-20

Similar Documents

Publication Publication Date Title
CN107058909B (zh) 一种改善超级奥氏体不锈钢热塑性的方法
CN103266287B (zh) 一种中碳铁素体-珠光体型非调质钢及其制造方法
CN106661705B (zh) 渗碳合金钢及其制备方法和应用
CN102703834B (zh) 一种晶粒细化的齿轮钢及其生产工艺
CN103160729B (zh) 中碳微合金化工程机械履带链片用钢及其生产工艺
CN102181806B (zh) 一种加氢设备用大厚度铬钼钢板及其生产方法
CN103695803B (zh) 低碳当量低温使用的大厚度齿条钢及其制造方法
CN102330017B (zh) 小压缩比条件下使用连铸坯生产特厚钢板的方法
CN104975235A (zh) 一种120ksi钢级高强韧中碳调质圆钢及其制造方法
CN111394639B (zh) 一种高耐磨齿轮钢的制造方法
CN112746217B (zh) 一种高强度低膨胀因瓦合金线材及其制造方法
CN106939391A (zh) 一种Ca微合金化易切削高强度胀断连杆用钢及制造方法
CN108411192A (zh) 一种高淬透性工程机械支重轮用钢及制备方法
CN104087874B (zh) 一种高速钢轧辊及其制备方法
CN104451421B (zh) 一种高强韧性双金属带锯条背材用钢及其制备方法
CN109338214B (zh) 高强高韧的凿岩钎具用钢及其生产方法
CN109280743B (zh) 一种轧辊用高强度耐磨钢及其生产方法
CN114672723B (zh) 一种胀断连杆用46MnVS系列钢及其制造方法
CN109182669B (zh) 高硬度高韧性易焊接预硬化塑料模具钢及其制备方法
CN110453151A (zh) 一种低成本高强度耐磨钢板nm600及其生产方法
CN104561829B (zh) 一种铁路辙叉用高耐磨钢及其制造方法
CN105970109A (zh) 一种高性能热作钢及其制备方法
CN101724783B (zh) 一种耐热型合金结构钢板及其生产方法
JPH05214484A (ja) 高強度ばね用鋼およびその製造方法
CN112708826B (zh) 一种适用于超厚截面改良型9%Ni钢及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant