CN107034433B - 一种TiCN梯度涂层的制备方法 - Google Patents
一种TiCN梯度涂层的制备方法 Download PDFInfo
- Publication number
- CN107034433B CN107034433B CN201710313056.6A CN201710313056A CN107034433B CN 107034433 B CN107034433 B CN 107034433B CN 201710313056 A CN201710313056 A CN 201710313056A CN 107034433 B CN107034433 B CN 107034433B
- Authority
- CN
- China
- Prior art keywords
- coating
- ticn
- gradient
- graphite
- carburizer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/60—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes
- C23C8/62—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes only one element being applied
- C23C8/64—Carburising
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
- C23C14/325—Electric arc evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5846—Reactive treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明公开了一种TiCN梯度涂层的制备方法,包括以下步骤:S1:将固体渗碳剂填满石墨坩埚,然后将TiN涂层块体填埋在渗碳剂中,然后用石墨盖子密封石墨坩埚;S2:将S1中用石墨盖子密封石墨坩埚置于真空碳管炉中;再于Ar气或真空条件下,从室温升温至800~850℃,然后保温4‑8h,以进行渗碳反应,即得TiCN梯度涂层。该TiCN梯度涂层不仅具有心部层富氮、表层富碳的成分梯度分布特征,而且能显著降低涂层的摩擦系数;同时固态渗碳兼具退火处理功效,能进一步消除涂层沉积过程中基体与涂层之间的界面应力,提高涂层与基体之间的附着力。
Description
技术领域
本发明属于切削工具涂层制备技术领域,具体涉及一种TiCN梯度涂层的制备方法。
背景技术
随着现代机械加工工业朝着高精度、高速切削、干式切削技术等方向的发展,传统的硬质合金刀具已较难适应难加工材料的新要求。研究表明,在硬质合金基体表面涂覆诸如TiN、Al2O3等硬质涂层可显著提高刀具的综合力学性能及及使用寿命。因此,与传统硬质合金刀具产品相比,涂层硬质合金刀具作为高附加值产品更具市场竞争力。、
TiCN涂层是一种在TiN二元涂层基础上发展起来的三元涂层。传统TiCN涂层是一种利用Ti、C、N元素共沉积方法获得的,在显微组织中具有元素成分均匀分布特征的涂层。该涂层未呈现成分梯度变化,不能充分发挥TiN涂层韧性好和TiC涂层硬度高的优点。根据现有梯度结构材料的共性特征来看,制备一种具有连续成分梯度变化结构的TiCN涂层将有利于展示更佳的综合力学性能。
中国发明专利(201510607505.9)公开了一种等离子辅助电弧技术制备Ti(C, N)成分梯度硬质涂层的方法,主要分两阶段调节反应气体流量实现硬质涂层心部层富氮、表层富碳的成分结构。尽管该专利技术可通过调节N2和C2H2气体流量来控制TiCN涂层的C、N元素含量分布,但存在增加C2H2流量易引起涂层在PVD沉积过程中弧电流不稳定的技术问题,从而导致涂层显微组织中易出现大颗粒、气孔等组织缺陷,影响涂层性能。另外,沉积涂层未经退火处理,涂层与基体之间的内应力较大,涂层结合强度提高有限。
发明内容
针对现有技术存在的上述不足,本发明提供一种TiCN梯度涂层的制备方法,旨在制备的TiCN梯度涂层不仅具有心部层富氮、表层富碳的成分梯度分布特征,而且能显著降低涂层的摩擦系数;同时固态渗碳兼具退火处理功效,能进一步消除涂层沉积过程中基体与涂层之间的界面应力,提高涂层与基体之间的附着力。
为了实现上述目的,本发明采用的技术方案如下:
一种TiCN梯度涂层的制备方法,包括以下步骤:
S1:将固体渗碳剂填满石墨坩埚,然后将TiN涂层块体填埋在渗碳剂中,然后用石墨盖子密封石墨坩埚;
S2:将S1中用石墨盖子密封石墨坩埚置于真空碳管炉中;再于Ar气或真空条件下,从室温升温至800~850℃,然后保温4-8h,以进行渗碳反应,即得TiCN梯度涂层。
所述的固体渗碳剂包括以下组分:活性炭20~30wt%、KBF4 10~20 wt %、Al 5~10 wt%,余量为SiC。
所述石墨盖子与石墨坩埚之间采用螺纹连接。
所述TiN涂层块体为采用多弧离子镀法在硬质合金基体上沉积获得的。
所述的硬质合金基体为YT15硬质合金基体。
所述的多弧离子镀法的工艺条件为:氮气流量360sccm、氩气流量40sccm、弧电流100A、脉冲偏压200V、占空比50%、基体温度250℃。
本发明制备的TiCN梯度涂层不仅具有心部层富氮、表层富碳的成分梯度分布特征,这是由于在高温渗碳过程中,渗碳剂中的活性C原子能扩散进入TiN涂层,取代TiN晶格中部分N原子形成TiCN固溶体相;扩散进入涂层表层的C原子最多,形成表层富碳成分结构;扩散至涂层心部的C原子少,形成心部层富氮成分结构。这一特征可以显著降低涂层的摩擦系数;同时固态渗碳兼具退火处理功效,能进一步消除涂层沉积过程中基体与涂层之间的界面应力,提高涂层与基体之间的附着力。
与现有的技术相比,本发明具有如下有益效果:
1、本发明涉及的TiCN梯度涂层制备方法,可克服现有技术获得的TiCN梯度涂层易出现大颗粒、气孔等组织缺陷,所制备的涂层组织结构致密。
2、本发明涉及的TiCN梯度涂层制备方法,除了使TiCN涂层组织成分呈现梯度分布,能显著降低涂层的摩擦系数外,同时还可实现TiCN涂层退火处理功效,消除涂层沉积过程中基体与涂层之间的界面应力,提高涂层与基体之间的附着力。
3、本发明所述方法工艺稳定,渗碳剂可重复利用,操作方便,适合工业化生产。
附图说明
图1为实施例1的TiCN梯度涂层截面线扫描SEM形貌图;
图2为实施例1线扫描C元素含量分布图;
图3为实施例1线扫描N元素含量分布图;
图4为实施例1线扫描Ti元素含量分布图。
具体实施方式
下面结合具体实施例对本发明作进一步详细说明。
实施例1
A、制备TiN涂层块体
利用多弧离子镀膜机在氮气流量360sccm,氩气流量40sccm,弧电流100A,脉冲偏压200V,占空比50%,基体温度250℃的工艺条件下,在YT15硬质合金基体表面沉积获得TiN涂层,制得TiN涂层块体,其涂层附着力和平均摩擦系数分别为48.5 N和0.65。
B、制备固体渗碳剂
按活性炭:20%,KBF4:20%,Al:10%, SiC:50%(以重量百分含量计)的比例称量配制固体渗碳剂,并在普通球磨机中干混24h,球磨机转速为45 r/min。
C、制备具有TiCN梯度涂层
S1:将混合好的固体渗碳剂装满石墨坩埚,同时将TiN涂层块体填埋渗碳剂粉末中间,然后用石墨盖子拧紧坩埚。
S2:将封装好的石墨坩埚放入真空碳管炉中,抽真空至1×10-1Pa,在850℃保温4h进行渗碳反应,得到TiCN梯度涂层。
经测试,该TiCN梯度涂层的附着力为59.4N和0.42。该TiCN梯度涂层的截面SEM形貌如图1所示,其线扫描元素含量分布如图2-4所示,其中:图2为线扫描C元素含量分布图、图3为线扫描N元素含量分布图、图4为线扫描Ti元素含量分布图。由图1可知,TiCN涂层的表面富碳、心部富氮。
实施例2
A、制备TiN涂层块体
利用多弧离子镀膜机在氮气流量360sccm,氩气流量40sccm,弧电流100A,脉冲偏压200V,占空比50%,基体温度250℃的工艺条件下,在YT15硬质合金基体表面沉积获得TiN涂层,其涂层附着力和平均摩擦系数分别为48.5 N和0.65。
B、制备固体渗碳剂
按活性炭:30%,KBF4:10%,Al:5%, SiC:50%(以重量百分含量计)的比例称量配制固体渗碳剂,并在普通球磨机中干混24h,球磨机转速为45 r/min。
C、制备具有TiCN梯度涂层
S1:将混合好的固体渗碳剂装满石墨坩埚,同时将TiN涂层块体填埋渗碳剂粉末中间,然后用石墨盖子拧紧坩埚。
S2:将封装好的石墨坩埚放入真空碳管炉中,抽真空至1×10-1Pa,在800℃保温4h进行渗碳反应,得到TiCN梯度涂层。该TiCN梯度涂层的附着力为65.6N和0.37。
实施例3
A、制备TiN涂层块体
利用多弧离子镀膜机在氮气流量360sccm,氩气流量40sccm,弧电流100A,脉冲偏压200V,占空比50%,基体温度250℃的工艺条件下,在YT15硬质合金基体表面沉积获得TiN涂层,其涂层附着力和平均摩擦系数分别为48.5 N和0.65。
B、制备固体渗碳剂
按活性炭:25%,KBF4:15%,Al:7.5%, SiC:52.5%(以重量百分含量计)的比例称量配制固体渗碳剂,并在普通球磨机中干混24h,球磨机转速为45 r/min。
C、制备具有TiCN梯度涂层
S1:将混合好的固体渗碳剂装满石墨坩埚,同时将TiN涂层块体填埋渗碳剂粉末中间,然后用石墨盖子拧紧坩埚。
S2:将封装好的石墨坩埚放入真空碳管炉中,先抽真空至1×10-1Pa,然后停止抽真空并通入流动Ar气(流量50ml/min),随后在800℃保温8h进行渗碳反应,得到TiCN梯度涂层。该TiCN梯度涂层的附着力为62.8N和0.39。
本发明的上述实施例仅仅是为说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化和变动。这里无法对所有的实施方式予以穷举。凡是属于本发明的技术方案所引申出的显而易见的变化或变动仍处于本发明的保护范围之列。
Claims (2)
1.一种TiCN梯度涂层的制备方法,其特征在于,包括以下步骤:
Sl:将固体渗碳剂填满石墨坩埚,然后将TiN涂层块体填埋在渗碳剂中,然后用石墨盖子密封石墨坩埚;
S2:将Sl中用石墨盖子密封石墨坩埚置于真空碳管炉中;再于Ar气或真空条件下,从室温升温至800~850℃,然后保温4-8h,以进行渗碳反应,即得TiCN梯度涂层;
所述TiN涂层块体为采用多弧离子镀法在硬质合金基体上沉积获得的;
所述的固体渗碳剂包括以下组分:活性炭20~30wt%、KBF410~20wt%、Al5~10wt%,余量为SiC;
所述的多弧离子镀法的工艺条件为:氮气流量360sccm、氢气流量40sccm、弧电流100A、脉冲偏压200V、占空比50%、基体温度250℃。
2.根据权利要求1所述的TiCN梯度涂层的制备方法,其特征在于,所述石墨盖子与石墨坩埚之间采用螺纹连接。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710313056.6A CN107034433B (zh) | 2017-05-05 | 2017-05-05 | 一种TiCN梯度涂层的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710313056.6A CN107034433B (zh) | 2017-05-05 | 2017-05-05 | 一种TiCN梯度涂层的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107034433A CN107034433A (zh) | 2017-08-11 |
CN107034433B true CN107034433B (zh) | 2019-04-26 |
Family
ID=59537994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710313056.6A Active CN107034433B (zh) | 2017-05-05 | 2017-05-05 | 一种TiCN梯度涂层的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107034433B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109979802B (zh) * | 2017-12-28 | 2020-12-22 | 中国科学院苏州纳米技术与纳米仿生研究所 | 高功函数可调的过渡金属氮化物材料、其制备方法及应用 |
CN109402564B (zh) * | 2018-11-14 | 2020-07-24 | 天津职业技术师范大学 | 一种AlCrSiN和AlCrSiON双层纳米复合涂层及其制备方法 |
CN109576637B (zh) * | 2018-12-20 | 2021-03-16 | 株洲硬质合金集团有限公司 | 一种硬质合金的渗碳方法 |
CN113529012B (zh) * | 2021-07-21 | 2024-01-26 | 国网天津市电力公司电力科学研究院 | 一种用于输变电设备表面Al改性的MoSi2-SiC涂层的制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004244688A (ja) * | 2003-02-14 | 2004-09-02 | Tanaka:Kk | 窒化チタン被覆チタン材およびその製造方法 |
CN101712215A (zh) * | 2009-10-30 | 2010-05-26 | 华南理工大学 | 一种TiCN系列纳米梯度复合多层涂层及其制备方法 |
CN105177456A (zh) * | 2015-07-28 | 2015-12-23 | 宁波市镇海甬鼎紧固件制造有限公司 | 一种耐腐蚀螺栓合金材料及螺栓的制造方法 |
CN105621378A (zh) * | 2015-12-27 | 2016-06-01 | 北京工业大学 | 一种TiN(1-x)Cx定比化合物粉体的制备方法 |
-
2017
- 2017-05-05 CN CN201710313056.6A patent/CN107034433B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004244688A (ja) * | 2003-02-14 | 2004-09-02 | Tanaka:Kk | 窒化チタン被覆チタン材およびその製造方法 |
CN101712215A (zh) * | 2009-10-30 | 2010-05-26 | 华南理工大学 | 一种TiCN系列纳米梯度复合多层涂层及其制备方法 |
CN105177456A (zh) * | 2015-07-28 | 2015-12-23 | 宁波市镇海甬鼎紧固件制造有限公司 | 一种耐腐蚀螺栓合金材料及螺栓的制造方法 |
CN105621378A (zh) * | 2015-12-27 | 2016-06-01 | 北京工业大学 | 一种TiN(1-x)Cx定比化合物粉体的制备方法 |
Non-Patent Citations (1)
Title |
---|
气体总流量对多弧离子镀TiN涂层表面形貌和力学性能的影响;陈昌浩等;《稀有金属与硬质合金》;20160831;第44卷(第4期);第43-47页 |
Also Published As
Publication number | Publication date |
---|---|
CN107034433A (zh) | 2017-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107034433B (zh) | 一种TiCN梯度涂层的制备方法 | |
CN105624618B (zh) | TiAlSiZrN基复合涂层、具有该复合涂层的梯度超细硬质合金刀具及其制备方法 | |
CN105671551B (zh) | 金刚石复合涂层、具有该复合涂层的梯度超细硬质合金刀具及其制备方法 | |
CN105908126B (zh) | 一种高Al含量的AlTiN复合涂层及制备方法 | |
CN107130222A (zh) | 高功率脉冲磁控溅射CrAlSiN纳米复合涂层及其制备方法 | |
CN101709470B (zh) | 一种含有原位生成扩散障的复合涂层制备方法 | |
CN108642535B (zh) | 一种二氧化铈改性铝化物梯度涂层体系的制备方法 | |
CN106252682A (zh) | 抑制柱状晶的燃料电池金属极板多相涂层及其制备方法 | |
CN109913796A (zh) | 一种钛合金表面的TiAlN复合涂层及其制备方法 | |
CN102560338B (zh) | 一种金属陶瓷涂层及其制备方法 | |
JP5555835B2 (ja) | 耐摩耗性にすぐれたターニング加工用表面被覆切削工具およびその製造方法 | |
CN108998794B (zh) | 一种Re-Si共改性铝化物涂层及其制备方法 | |
Agudelo et al. | Synthesis of Ti/TiN/TiCN coatings grown in graded form by sputtering dc | |
CN109385566B (zh) | Pvd用高强高耐磨多主元合金涂层材料及其制备方法 | |
CN116121700A (zh) | 一种耐火元素掺杂的耐磨梯度HfMSiCN陶瓷层及其制备方法 | |
CN110241419A (zh) | 一种表面具有抗高温氧化和耐磨涂层的钛合金材料及应用 | |
CN104313530A (zh) | 一种硬质合金表面纳米涂层及其制备方法 | |
CN112553580B (zh) | 一种二硼化物复合涂层及其制备方法和应用 | |
CN109898056B (zh) | 一种基于pvd技术的块体金属/金属陶瓷纳米梯度材料及其制备方法和应用 | |
CN108149198A (zh) | 一种wc硬质合金薄膜及其梯度层技术室温制备方法 | |
CN110184558B (zh) | 一种反应等离子喷涂制备纳米晶TiVN涂层的方法 | |
CN108193178B (zh) | 一种晶态wc硬质合金薄膜及其缓冲层技术室温生长方法 | |
CN207031529U (zh) | 具有复合渗层的钛铝合金件、具有金刚石涂层的钛铝合金件 | |
CN109576662A (zh) | 一种基于pvd技术的块体金属陶瓷/金属/金属陶瓷双向纳米梯度材料及其制备方法 | |
CN108505038A (zh) | 一种钛合金表面耐磨复合陶瓷涂层及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |