CN107033350B - 质子交换膜用膦酸和1,2,3-三唑功能化聚醚砜及其制备方法 - Google Patents

质子交换膜用膦酸和1,2,3-三唑功能化聚醚砜及其制备方法 Download PDF

Info

Publication number
CN107033350B
CN107033350B CN201710207489.3A CN201710207489A CN107033350B CN 107033350 B CN107033350 B CN 107033350B CN 201710207489 A CN201710207489 A CN 201710207489A CN 107033350 B CN107033350 B CN 107033350B
Authority
CN
China
Prior art keywords
follows
phosphonic acids
proton exchange
exchange membrane
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710207489.3A
Other languages
English (en)
Other versions
CN107033350A (zh
Inventor
严六明
岳宝华
曾广波
胡益栋
王胜楠
高惠琦
陶盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201710207489.3A priority Critical patent/CN107033350B/zh
Publication of CN107033350A publication Critical patent/CN107033350A/zh
Application granted granted Critical
Publication of CN107033350B publication Critical patent/CN107033350B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • C08G75/23Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/06Polysulfones; Polyethersulfones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

本发明涉及一种质子交换膜用膦酸和1,2,3‑三唑功能化聚醚砜及其制备方法。其酸性基团膦酸和碱性基团1,2,3‑三唑连接在同一聚醚砜链上,将其直接进行热压成膜。本发明的制备工艺简单,原材料皆为工业级产品,价格低廉,易于实现大规模生产。制备得到酸碱两性膜具有良好的质子电导率,可用于质子交换膜燃料电池的应用。

Description

质子交换膜用膦酸和1,2,3-三唑功能化聚醚砜及其制备方法
技术领域
本发明涉及一种功能化质子交换膜及其制备方法,特别是一种质子交换膜用膦酸和1,2,3-三唑功能化聚醚砜及其制备方法。
背景技术
当今世界,随着煤、石油和天然气等传统化石燃料的加速消耗,能源危机日益凸显,成为制约各国经济和社会发展的瓶颈,寻找一种来源丰富、安全洁净的新能源成为全社会共同关注的焦点。燃料电池就在这样的背景下走进了人们的视野,给人们带来了新的希望。燃料电池是一种将燃料和氧化剂中的化学能直接转化为电能的装置,能量转化效率高。质子交换膜燃料电池(proton exchange membrane fuel cells,PEMFC)是其中的一种,近年来发展尤为迅速。相较于其他燃料电池,它具有转换效率高、启动速度快、安全性能高、使用寿命长、比功率大、环境友好等诸多优势,因此其发展更受关注。作为PEMFC的核心组件之一,质子交换膜研究进展迅速,但也面临着诸多问题,如高温低湿环境下质子交换膜的电导率大大下降、膜的价格太高等。因此,寻找一种新型的质子交换膜成为各方研究的重点。
含膦酸基团聚醚砜因其质子电导率高、热稳定性高、和机械强度好成为质子交换膜的新选择,而且其成本相较Nafion膜低,市场前景广阔;其缺陷膦酸基团多以掺杂和接枝的方式引入,使膦酸取代率较低。此外,1,2,3-三唑基团引入膦酸化聚砜可提高其在质子电导率和氧化稳定性等方面的性能,但如果以三唑化聚醚砜加入混合的形式引入,酸碱复合膜的综合性能提高有限。如果通过功能化单体聚合的方式在聚醚砜中同时引入膦酸和1,2,3-三唑基团,对提高膦酸取代率进而提高其综合性能有很大作用。本发明正是着眼于此,制备了膦酸和1,2,3-三唑功能化聚醚砜一种新型质子交换膜。
发明内容
本发明的目的之一在于提供了一种质子交换膜用膦酸和1,2,3-三唑功能化聚醚砜。
本发明的目的之二在于提供了该功能化聚醚砜质子交换膜的制备方法。
为达到上述目的,本发明采用如下技术方案:
一种膦酸和1,2,3-三唑功能化聚醚砜质子交换膜,其特征在于该质子交换膜的结构式为:
n=9~15。
一种制备上述的膦酸和1,2,3-三唑功能化聚醚砜质子交换膜的方法,其特征在于该方法的具体步骤为:
a.在惰性气氛保护下,将膦酸化双酚和3,3’-二乙炔基-4,4,-二氟二苯砜按1:1~1:1.2的摩尔比溶于吡咯烷酮中,加入催化量的碳酸钾,甲苯为带水剂,进行缩聚反应,先在135~145℃下反应18~22h,再升温至175~185℃下反应6~10h,反应结束后将所得溶液倒入体积比为浓度12mol/L的盐酸中沉淀,再经过滤、水洗、过滤、烘干后得到的淡黄色固体即为二乙炔基膦酸酯化聚醚砜,其结构式为:
所述的膦酸化双酚的结构式为:
所述的3,3’-二乙炔基-4,4,-二氟二苯砜的结构式为:
b.将步骤a中所得的二乙炔基膦酸酯化聚醚砜与特戊酸叠氮甲酯按1:2.2~1:2.5的摩尔比进行‘click’反应,在室温下反应24~26h,得到含膦酸酯和三氮唑的聚醚砜,其结构式为:
所述的特戊酸叠氮甲酯的结构式为:
c.将步骤b中所得到的含膦酸酯和三氮唑的聚醚砜按1:1~1:1.2的摩尔比溶于水和甲醇按1:1的体积比的混合溶剂中,再加入KOH的条件下进行碱性水解,回流2d;然后在所得产物中加入足量浓盐酸使其浸没,再回流水解2d,水解反应结束后将产物进行过滤、水洗至溶液pH在6.5~7,得到最终产物膦酸和1,2,3-三唑功能化聚醚砜质子交换膜,其结构式为:
上述步骤b中‘click’反应的具体步骤为:在惰性气体保护下,将二乙炔基膦酸酯化聚醚砜溶于二甲基甲酰胺,依次加入特戊酸叠氮甲酯,以及催化量的五水合硫酸铜和抗坏血酸钠,室温下搅拌反应24~26h。
本发明成功合成和制备了一种新型质子交换膜—膦酸和1,2,3-三唑功能化聚醚砜,其创新之处在于膦酸基和1,2,3-三唑基连接在同一聚合物链上。重要的是,合成它使用的原材料大部分有工业规模生产,没有经过特别提纯,成本低廉;且制备工艺简单,操作流程便捷,有利于大规模工业生产。本发明制备的膦酸和1,2,3-三唑功能化聚醚砜是新的物质,它的合成方法未见国内外专利或文献报道。
本发明制备的质子交换膜中,烷基上的膦酸基是质子给体,苯环上的1,2,3-三唑基是质子受体,两者之间形成复杂的氢键网络,有利于质子的传导、从而提高质子传导率。可用于直接甲醇燃料电池、质子交换膜燃料电池。
附图说明
图1 PES-diEtylPE、PES-1R-TriPE和PES-TriPA的核磁共振氢谱。
图2 PES-TriPA电导率与温度关系图。
具体实施方法
下面结合实施实例对本发明进行详细说明。
实施例一:
本实例的第(1)步为PES-diEtylPE的制备,第(2)步为PES-1R-TriPE的制备,第(3)步为PES-TriPA的制备。
一、PES-diEtylPE的制备
1.取一干燥洁净的三口瓶,三口分别接上三通、分水器和玻璃塞;在分水器上依次连接球形冷凝管和接有氮气球的三通,将所有接口用封口膜密闭处理。组装好装置后在三口瓶中加入磁子,然后在上下两个三通处接上抽气装置,在抽气进行的同时开始烤瓶。
2.烤瓶结束后引入N2气流,将磷酸酯双酚(0.6223g,1.0equiv.)与3,3’-二乙炔基-4,4,-二氟二苯砜(0.5593g,1.0equiv.)、K2CO3(0.3069g,1.2equiv.)在增大N2气流的条件下依次加入到三口瓶中;固体药品加完后用注射器分别加入5mL NMP和15mL甲苯,控制好N2流速,在140℃的反应18h,再升温至180℃下反应6h。反应结束后将所得溶液倒入倒入1/1(v/v)盐酸/水溶液中沉淀,析出的粗产物抽滤后再倒入装有去离子水的烧杯中进行搅拌处理,然后再进行抽滤。所得产物在在70℃的真空干燥箱中干燥24h,烘干后得到的淡黄色固体即为PES-diEtylPE,其结构式为:
二、PES-1R-TriPE的制备
取PES-diEtylPE(1.0219g,1.0equiv.)溶于15ml的DMF中,之后将特戊酸叠氮甲酯(0.5900g,2.2equiv.),CuSO4·5H2O(0.0426g,0.1equiv.)和NaAsc(0.1691g,0.5equiv.)依次加入到溶液中,常温下搅拌反应24h。所得粗产物在去离子水中析出,之后抽滤,去离子水中洗涤3次。最后在70℃的真空干燥箱中干燥24h得到淡黄色粉末状固体PES-1R-TriP,其结构式为:
三、PES-TriPA的制备
PES-1R-TriPE(1.2665g,1.0equiv.)中依次加入KOH((1.3097g,14.0equiv.)、3mlH2O和6ml CH3OH进行碱性水解,45℃下回流2d,在盐酸中析出,去离子水洗涤3次,最后在70℃的真空干燥箱中干燥24h得到黄色粉末状固体。取适量该固体(0.8162)与烧瓶中,然后加入15ml浓盐酸,接上球形冷凝管,在100℃油浴锅中回流水解2d。水解结束后,进行抽滤处理,抽滤过程中不断用去离子水洗涤,直至溶液PH呈中性为止。将所得产物在70℃的真空干燥箱中干燥24h,即得到水解后的PES-TriPA,其结构式为:
实施例二
本实例的第(1)步为PES-diEtylPE的制备,第(2)步为PES-1R-TriPE的制备,第(3)步为PES-TriPA的制备。
一、PES-diEtylPE的制备
1.取一干燥洁净的三口瓶,三口分别接上三通、分水器和玻璃塞;在分水器上依次连接球形冷凝管和接有氮气球的三通,将所有接口用封口膜密闭处理。组装好装置后在三口瓶中加入磁子,然后在上下两个三通处接上抽气装置,在抽气进行的同时开始烤瓶。
2.烤瓶结束后引入N2气流,将磷酸酯双酚(0.9077g,1.0equiv.)与3,3’-二乙炔基-4,4,-二氟二苯砜(0.8162g,1.0equiv.)、K2CO3(0.4478g,1.2equiv.)在增大N2气流的条件下依次加入到三口瓶中;固体药品加完后用注射器分别加入7mL NMP和20mL甲苯,控制好N2流速,在140℃的反应22h,再升温至180℃下反应7h。反应结束后将所得溶液倒入倒入1/1(v/v)盐酸/水溶液中沉淀,析出的粗产物抽滤后再倒入装有去离子水的烧杯中进行搅拌处理,然后再进行抽滤。所得产物在在70℃的真空干燥箱中干燥24h,烘干后得到的淡黄色固体即为PES-diEtylPE,其结构式为:
二、PES-1R-TriPE的制备
取PES-diEtylPE(2.1377g,1.0equiv.)溶于30ml的DMF中,之后将特戊酸叠氮甲酯(1.2343g,2.2equiv.),CuSO4·5H2O(0.0892g,0.1equiv.)和NaAsc(0.3537g,0.5equiv.)依次加入到溶液中,常温下搅拌反应25h。所得粗产物在去离子水中析出,之后抽滤,去离子水中洗涤3次。最后在70℃的真空干燥箱中干燥24h得到淡黄色粉末状固体PES-1R-TriP,其结构式为:
三、PES-TriPA的制备
PES-diEtylPE(1.2553g,1.0equiv.)中依次加入KOH(1.2990g,14.0equiv.)、2.8ml H2O和2.8ml CH3OH进行碱性水解,45℃下回流2d,在盐酸中析出,去离子水洗涤3次,最后在70℃的真空干燥箱中干燥24h得到黄色粉末状固体。取适量该固体(1.5852g)与烧瓶中,然后加入16ml浓盐酸,接上球形冷凝管,在100℃油浴锅中回流水解2d。水解结束后,进行抽滤处理,抽滤过程中不断用去离子水洗涤,直至溶液PH呈中性为止。将所得产物在70℃的真空干燥箱中干燥24h,即得到水解后的PES-TriPA,其结构式为:
实施例三
本实例的第(1)步为PES-diEtylPE的制备,第(2)步为PES-1R-TriPE的制备,第(3)步为PES-TriPA的制备,第(4)步为膜的制备及电导率测试。
一、PES-diEtylPE的制备
1.取一干燥洁净的三口瓶,三口分别接上三通、分水器和玻璃塞;在分水器上依次连接球形冷凝管和接有氮气球的三通,将所有接口用封口膜密闭处理。组装好装置后在三口瓶中加入磁子,然后在上下两个三通处接上抽气装置,在抽气进行的同时开始烤瓶。
2.烤瓶结束后引入N2气流,将磷酸酯双酚(1.6351g,1.0equiv.)与3,3’-二乙炔基-4,4,-二氟二苯砜(1.4697g,1.0equiv.)、K2CO3(0.8063g,1.2equiv.)在增大N2气流的条件下依次加入到三口瓶中;固体药品加完后用注射器分别加入12mL NMP和36mL甲苯,控制好N2流速,在140℃的反应18h,再升温至180℃下反应6h。反应结束后将所得溶液倒入倒入1/1(v/v)盐酸/水溶液中沉淀,析出的粗产物抽滤后再倒入装有去离子水的烧杯中进行搅拌处理,然后再进行抽滤。所得产物在在70℃的真空干燥箱中干燥24h,烘干后得到的淡黄色固体即为PES-diEtylPE,其结构式为:
二、PES-1R-TriPE的制备
取PES-diEtylPE(2.5235g,1.0equiv.)溶于30ml的DMF中,之后将特戊酸叠氮甲酯(1.4570g,2.2equiv.),CuSO4·5H2O(0.1053g,0.1equiv.)和NaAsc(0.4176g,0.5equiv.)依次加入到溶液中,常温下搅拌反应24h。所得粗产物在去离子水中析出,之后抽滤,去离子水中洗涤3次。最后在70℃的真空干燥箱中干燥24h得到淡黄色粉末状固体PES-1R-TriP,其结构式为:
三、PES-TriPA的制备
PES-1R-TriPE(2.5146g,1.0equiv.)中依次加入KOH(2.6025g,14.0equiv.)、5.5ml H2O和5.5ml CH3OH进行碱性水解,45℃下回流2d,在盐酸中析出,去离子水洗涤3次,最后在70℃的真空干燥箱中干燥24h得到黄色粉末状固体。取适量该固体(2.3509g)与烧瓶中,然后加入30ml浓盐酸,接上球形冷凝管,在100℃油浴锅中回流水解2d。水解结束后,进行抽滤处理,抽滤过程中不断用去离子水洗涤,直至溶液PH呈中性为止。将所得产物在70℃的真空干燥箱中干燥24h,即得到水解后的PES-TriPA,其结构式为:
四、膜的制备及电导率测试
将制备的PES-TriPA置于研钵中,研成粉末后,置于两模板之间,设置温度为160℃,在FM1202型真空压膜机压制成膜。采用两极法测试膜的质子电导率,高低温湿热试验箱将相对湿度恒定为90%,测试在不同温度下膜的质子电导率,参见图2。

Claims (3)

1.一种膦酸和1,2,3-三唑功能化聚醚砜质子交换膜,其特征在于该质子交换膜的结构式为:
n=9~15。
2.一种制备根据权利要求1所述的膦酸和1,2,3-三唑功能化聚醚砜质子交换膜的方法,其特征在于该方法的具体步骤为:
a.在惰性气氛保护下,将膦酸化双酚和3,3’-二乙炔基-4,4’-二氟二苯砜按1:1~1:1.2的摩尔比溶于吡咯烷酮中,加入催化量的碳酸钾,甲苯为带水剂,进行缩聚反应,先在135~145℃下反应18~22h,再升温至175~185℃下反应6~10h,反应结束后将所得溶液倒入体积比为浓度12mol/L的盐酸中沉淀,再经过滤、水洗、过滤、烘干后得到的淡黄色固体即为二乙炔基膦酸酯化聚醚砜,其结构式为:
所述的膦酸化双酚的结构式为:所述的3,3’-二乙炔基-4,4’-二氟二苯砜的结构式为:
b.将步骤a中所得的二乙炔基膦酸酯化聚醚砜与特戊酸叠氮甲酯按1:2.2~1:2.5的摩尔比进行‘click’反应,在室温下反应24~26h,得到含膦酸酯和三氮唑的聚醚砜,其结构式为:
所述的特戊酸叠氮甲酯的结构式为:
c.将步骤b中所得到的含膦酸酯和三氮唑的聚醚砜按1:1~1:1.2的摩尔比溶于水和甲醇按1:1的体积比的混合溶剂中,再加入KOH的条件下进行碱性水解,回流2d;然后在所得产物中加入足量浓盐酸使其浸没,再回流水解2d,水解反应结束后将产物进行过滤、水洗至溶液pH在6.5~7,得到最终产物膦酸和1,2,3-三唑功能化聚醚砜质子交换膜,其结构式为:
3.根据权利要求2所述的方法,其特征在于所述步骤b中‘click’反应的具体步骤为:在惰性气体保护下,将二乙炔基膦酸酯化聚醚砜溶于二甲基甲酰胺,依次加入特戊酸叠氮甲酯,以及催化量的五水合硫酸铜和抗坏血酸钠,室温下搅拌反应24~26h。
CN201710207489.3A 2017-03-31 2017-03-31 质子交换膜用膦酸和1,2,3-三唑功能化聚醚砜及其制备方法 Expired - Fee Related CN107033350B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710207489.3A CN107033350B (zh) 2017-03-31 2017-03-31 质子交换膜用膦酸和1,2,3-三唑功能化聚醚砜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710207489.3A CN107033350B (zh) 2017-03-31 2017-03-31 质子交换膜用膦酸和1,2,3-三唑功能化聚醚砜及其制备方法

Publications (2)

Publication Number Publication Date
CN107033350A CN107033350A (zh) 2017-08-11
CN107033350B true CN107033350B (zh) 2019-07-23

Family

ID=59533852

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710207489.3A Expired - Fee Related CN107033350B (zh) 2017-03-31 2017-03-31 质子交换膜用膦酸和1,2,3-三唑功能化聚醚砜及其制备方法

Country Status (1)

Country Link
CN (1) CN107033350B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101230113A (zh) * 2006-12-21 2008-07-30 丰田北美设计生产公司 用于质子传导性电解质的接枝有磺酰基的杂环材料
CN102167785A (zh) * 2011-01-20 2011-08-31 中科院广州化学有限公司 一种全钒液流电池用磷酸化聚合物复合膜及其制备方法
CN103755650A (zh) * 2013-10-24 2014-04-30 上海大学 三唑官能化的4,4’-二氟二苯砜类化合物及其合成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101230113A (zh) * 2006-12-21 2008-07-30 丰田北美设计生产公司 用于质子传导性电解质的接枝有磺酰基的杂环材料
CN102167785A (zh) * 2011-01-20 2011-08-31 中科院广州化学有限公司 一种全钒液流电池用磷酸化聚合物复合膜及其制备方法
CN103755650A (zh) * 2013-10-24 2014-04-30 上海大学 三唑官能化的4,4’-二氟二苯砜类化合物及其合成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
聚砜膦酸的合成及其酸碱复合质子交换膜材料制备;胡益栋等;《中国化学会第30届学术年会摘要集-第三十分会:化学电源》;20160731;第1段,图1

Also Published As

Publication number Publication date
CN107033350A (zh) 2017-08-11

Similar Documents

Publication Publication Date Title
CN101798386A (zh) 水溶性导电聚苯胺的制备方法
CN111554525B (zh) 一种碳布支载的双金属氢氧化物材料的制备方法
CN112048071B (zh) 一种质子传导性能可调的mof材料的制备方法与应用
CN104835933A (zh) 一种接枝型聚合物质子交换膜及其制备方法
CN109908969A (zh) 一种V掺杂的Ni2P电催化剂的制备方法
CN107737614A (zh) 一种以氢氧化铝作为中间界面层催化剂的双极膜及其制备方法
CN108976169A (zh) 一种咪唑类离子液体及其制备方法和应用
CN110492088A (zh) 一种zif-8@还原氧化石墨烯负载硫复合材料及其制备方法及锂硫电池正极和锂硫电池
CN101938002A (zh) 全氟磺酸树脂/磺化SiO2分子筛复合质子交换膜及其制备方法
CN111697263A (zh) 一种有机无机杂化聚合物电解质、其制备和应用
CN110041519B (zh) 一种长支链聚芳醚腈阴离子交换膜及其制备方法
CN110372857A (zh) 一种含三季铵盐侧链的含氟聚芳醚阴离子交换膜及其制备方法
CN107033350B (zh) 质子交换膜用膦酸和1,2,3-三唑功能化聚醚砜及其制备方法
CN110437438A (zh) 一种用于全钒液流电池的密集磺化含氟聚芳醚质子交换膜及其制备方法
CN109119662A (zh) 一种长支链双梳状聚芳基吲哚阴离子交换膜及其制备方法
CN113480741A (zh) 螯合Cu2+金属有机框架材料的制备方法及其在壳聚糖复合阴离子膜中的应用
KR101379361B1 (ko) 술폰산 기를 갖는 이온성 액체가 함유된 고분자 전해질 막 및 이의 제조방법
CN104610674A (zh) 聚苯乙烯膦酸/聚苯乙烯-1,2,3-三唑酸碱复合质子交换膜及其制备方法
CN111871222A (zh) 一种基于柱[5]芳烃的季铵盐功能化含氟聚芴醚阴离子交换膜的制备方法
CN114874211B (zh) 一类酰亚胺衍生物及制备方法和在液流电池中的应用
CN108878740B (zh) 一种非离子型侧链修饰聚苯并咪唑膜及其制备方法
CN105719853A (zh) 一种碳/钴酸镍气凝胶纳米复合材料的制备方法
CN113501959B (zh) 一类钒流电池用聚芳醚砜聚合物及其制备方法
CN102443183A (zh) 磺化苯磷酸铈掺杂聚苯并咪唑高温质子交换膜的制备方法
CN102108113B (zh) 一种长链含磷酸侧链的聚酰亚胺及其制备方法和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190723