CN105719853A - 一种碳/钴酸镍气凝胶纳米复合材料的制备方法 - Google Patents

一种碳/钴酸镍气凝胶纳米复合材料的制备方法 Download PDF

Info

Publication number
CN105719853A
CN105719853A CN201610172578.4A CN201610172578A CN105719853A CN 105719853 A CN105719853 A CN 105719853A CN 201610172578 A CN201610172578 A CN 201610172578A CN 105719853 A CN105719853 A CN 105719853A
Authority
CN
China
Prior art keywords
preparation
carbon
solution
cobalt acid
acid nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610172578.4A
Other languages
English (en)
Other versions
CN105719853B (zh
Inventor
杨东江
李建江
朱小奕
孙瑾
佘希林
赵小亮
杨双磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN201610172578.4A priority Critical patent/CN105719853B/zh
Publication of CN105719853A publication Critical patent/CN105719853A/zh
Application granted granted Critical
Publication of CN105719853B publication Critical patent/CN105719853B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

一种碳/钴酸镍气凝胶纳米复合材料的制备方法,步骤包括:将Ni(NO3)2·6H2O和Co(NO3)2·6H2O溶于蒸馏水中,配制成Ni2+/Co2+摩尔比为1∶2的混合溶液A,总离子浓度为0.03~3mol/L;配置浓度为0.5~3wt%的海藻酸钠溶液B;将溶液B滴入溶液A中进行离子交换一定时间获得凝胶C,将C进行洗涤后冷冻干燥;将干燥后的样品进行碳化处理,碳化温度为600~800℃,碳化时间60~180min;将碳化产物再进行氧化处理,氧化温度200~350℃,氧化时间30~300min。本发明方法工艺简单、成本低,环境友好,适于规模化生产,适用于超级电容器电极材料,具有较高的比电容值。

Description

一种碳/钴酸镍气凝胶纳米复合材料的制备方法
技术领域
本发明属于电化学储能领域,具体涉及一种超级电容器用碳/钴酸镍气凝胶纳米复合材料的制备。
背景技术
超级电容器是介于传统电容器和锂电池之间的一种新型储能装置,具有较高的功率密度和能量密度,近年来成为电化学储能领域的研究热点。其中,电极材料对超级电容器储能性能影响巨大,根据其储能机理的不同,目前常用的电极材料可具体分为碳材料、金属氧化物和导电聚合物,其中金属氧化物以其高比电容和稳定性而备受关注。
虽然目前二氧化钌已经实现了工业应用,但是其毒性和高昂的成本严重限制了其应用。钴酸镍(NiCo2O4)是一种尖晶石结构的双金属复合氧化物,在其晶体结构中,镍占据八面体位置,钴离子即占据八面体位置又占据四面体位置,具有优异的电容性能,成本低,原料充足,环境友好,使其在超级电容器应用领域备受关注。
目前,钴酸镍的合成方法主要有高温固相法、溶胶-凝胶法、机械化学合成法、液相沉淀法等,但是这些方向工艺相对复杂,能量消耗相对较大,成本高,产量低,所得产物的导电性差,电化学性能不够稳定,不适合大规模工业化推广,所以开发一种工艺简单,成本低,过程可控,适合工业化生产的制备钴酸镍的方法成为急需。
海藻酸钠,作为一种海洋生物质高分子,是从褐藻中提取出来的,资源丰富,是由β-D-甘露糖醛酸(简称M)和α-L-古罗糖醛酸(简称G)通过1-4糖苷键连接而成,二者的区别为C-5上羧基位置的不同。海藻酸盐独有一个特征是当遇到二价金属离子,如镍离子和钴离子,会形成凝胶,这种凝胶结构被描述为“蛋盒结构”,海藻酸钠的很多应用都是基于这种特殊的性质。
发明内容
本发明的目的就是为了克服上述技术缺陷,利用丰富的海藻酸钠提供碳源,通过离子交换和碳化、氧化工艺过程,实现了碳与钴酸镍的同步复合,简化了制备工艺,提高了钴酸镍的导电性,制备了具有较高电容性能的碳/钴酸镍气凝胶纳米材料。
实现本发明的目的主要通过下述技术方案来实现:
(1)称取一定量Ni(NO3)2·6H2O和Co(NO3)2·6H2O溶于蒸馏水中,配制成含Ni2+/Co2+摩尔比为1∶2的混合溶液A,其中Ni2+和Co2+总摩尔浓度为0.03~3mol/L;
(2)称取一定质量海藻酸钠溶于蒸馏水中配成溶液B,所得溶液质量分数为0.5~3wt%;
(3)将溶液B逐滴加入溶液A中进行离子交换,获得凝胶C,将C进行充分洗涤后冷冻干燥;
(4)将步骤(3)获得的干燥后的样品在惰性气氛炉中进行碳化处理,所用惰性气体为氮气或氩气,碳化温度为600~800℃,升温速率为5℃/min,碳化时间60~180min,后自然随炉降至室温;
(5)将步骤(4)获得的碳化产物在空气气氛下进行氧化处理,氧化温度200~350℃,升温速率为5℃/min,氧化时间30~300min,得到碳/钴酸镍气凝胶纳米材料;
(6)将步骤(5)获得的碳/钴酸镍气凝胶纳米材料进行电容性能测试。
与现有技术相比,本发明工艺简单,成本低,在获得钴酸镍的同时保留部分碳提高了产物的导电性,所得的碳/钴酸镍气凝胶既具有较高的导电性,又同时具有钴酸镍的优异电容性能,材料的空心结构利于提供较大的比较面积和电解液的扩散,用作电容器电极材料具有优异的电容性能,在电流密度为1A/g时,其比电容高达1122F/g。
附图说明
图1为本发明制备的碳/钴酸镍气凝胶的XRD图。
图2为本发明制备的碳/钴酸镍气凝胶的SEM图。
图3为本发明制备的碳/钴酸镍气凝胶的HRTEM图。
图4为本发明制备的碳/钴酸镍气凝胶在不同扫描速率下的循环伏安图(电解液为6MKOH)。
图5为本发明制备的碳/钴酸镍气凝胶在不同电流密度下的放电图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
(1)称取一定量Ni(NO3)2·6H2O和Co(NO3)2·6H2O溶于200毫升蒸馏水中,配制成含Ni2+/Co2+摩尔比为1∶2的混合溶液A,其中Ni2+和Co2+总摩尔浓度为0.3mol/L;
(2)称取一定质量海藻酸钠溶于200毫升蒸馏水中配成溶液B,其浓度为1wt%;
(3)将溶液B逐滴加入溶液A中进行离子交换,磁力搅拌2h,获得凝胶C,将C进行充分洗涤后冷冻干燥;
(4)将干燥好的样品在氮气气氛炉中进行碳化处理,碳化温度600℃,升温速率5℃/min,碳化时间60min,后自然随炉降至室温;
(5)将碳化产物在空气气氛下进行氧化处理,氧化温度300℃,氧化时间240min,得到碳/钴酸镍气凝胶纳米材料;
图1为本实施例所制备的碳/钴酸镍气凝胶的XRD图;图2和图3为本实施例所得碳/钴酸镍气凝胶的SEM图和TEM图,可以看出气凝胶主要由纳米球堆砌而成,每个纳米球呈空心结构,直径为50nm左右,壁厚大约为5-8nm,在HRTEM图中可看出纳米球外壁附着无定形碳;图4为本实施例所得碳/钴酸镍气凝胶在不同扫描速率下的循环伏安图,电解液为6MKOH溶液,可以看出CV曲线中存在明显的氧化还原峰表明其主要通过法拉第反应产生电容;图5为本实施例所得碳/钴酸镍气凝胶在不同电流密度下的放电曲线图,放电曲线中存在明显的赝电容放电平台,通过放电时间计算在电流密度为1A/g时,其比电容达到1122F/g。
实施例2
(1)称取一定量Ni(NO3)2·6H2O和Co(NO3)2·6H2O溶于200毫升蒸馏水中,配制成含Ni2+/Co2+摩尔比为1∶2的混合溶液A,其中Ni2+和Co2+总摩尔浓度为3mol/L;
(2)称取一定质量海藻酸钠溶于200毫升蒸馏水中配成溶液B,其浓度为3wt%;
(3)将溶液B逐滴加入溶液A中进行离子交换,磁力搅拌2h,获得凝胶C,将C进行充分洗涤后冷冻干燥;
(4)将干燥好的样品在氮气气氛炉中进行碳化处理,碳化温度600℃,升温速率5℃/min,碳化时间60min,后自然随炉降至室温;
(5)将碳化产物在空气气氛下进行氧化处理,氧化温度350℃,氧化时间30min,得到碳/钴酸镍气凝胶纳米材料。
实施例3
(1)称取一定量Ni(NO3)2·6H2O和Co(NO3)2·6H2O溶于200毫升蒸馏水中,配制成含Ni2+/Co2+摩尔比为1∶2的混合溶液A,其中Ni2+和Co2+总摩尔浓度为0.6mol/L;
(2)称取一定质量海藻酸钠溶于200毫升蒸馏水中配成溶液B,其浓度为0.5wt%;
(3)将溶液B逐滴加入溶液A中进行离子交换,磁力搅拌2h,获得凝胶C,将C进行充分洗涤后冷冻干燥;
(4)将干燥好的样品在氮气气氛炉中进行碳化处理,碳化温度600℃,升温速率5℃/min,碳化时间60min,后自然随炉降至室温;
(5)将碳化产物在空气气氛下进行氧化处理,氧化温度200℃,氧化时间300min,得到碳/钴酸镍气凝胶纳米材料。
实施例4
(1)称取一定量Ni(NO3)2·6H2O和Co(NO3)2·6H2O溶于200毫升蒸馏水中,配制成含Ni2+/Co2+摩尔比为1∶2的混合溶液A,其中Ni2+和Co2+总摩尔浓度为1.2mol/L;
(2)称取一定质量海藻酸钠溶于200毫升蒸馏水中配成溶液B,其浓度为1wt%;
(3)将溶液B逐滴加入溶液A中进行离子交换,磁力搅拌2h,获得凝胶C,将C进行充分洗涤后冷冻干燥;
(4)将干燥好的样品在氮气气氛炉中进行碳化处理,碳化温度800℃,升温速率5℃/min,碳化时间180min,后自然随炉降至室温;
(5)将碳化产物在空气气氛下进行氧化处理,氧化温度300℃,氧化时间180min,得到碳/钴酸镍气凝胶纳米材料。
实施例5
(1)称取一定量Ni(NO3)2·6H2O和Co(NO3)2·6H2O溶于200毫升蒸馏水中,配制成含Ni2+/Co2+摩尔比为1∶2的混合溶液A,其中Ni2+和Co2+总摩尔浓度为1.2mol/L;
(2)称取一定质量海藻酸钠溶于200毫升蒸馏水中配成溶液B,其浓度为1wt%;
(3)将溶液B逐滴加入溶液A中进行离子交换,磁力搅拌2h,获得凝胶C,将C进行充分洗涤后冷冻干燥;
(4)将干燥好的样品在氮气气氛炉中进行碳化处理,碳化温度600℃,升温速率1℃/min,碳化时间60min,后自然随炉降至室温;
(5)将碳化产物在空气气氛下进行氧化处理,氧化温度250℃,氧化时间240min,得到碳/钴酸镍气凝胶纳米材料。
实施例6
(1)称取一定量Ni(NO3)2·6H2O和Co(NO3)2·6H2O溶于200毫升蒸馏水中,配制成含Ni2+/Co2+摩尔比为1∶2的混合溶液A,其中Ni2+和Co2+总摩尔浓度为0.3mol/L;
(2)称取一定质量海藻酸钠溶于200毫升蒸馏水中配成溶液B,其浓度为1wt%;
(3)将溶液B逐滴加入溶液A中进行离子交换,磁力搅拌2h,获得凝胶C,将C进行充分洗涤后冷冻干燥;
(4)将干燥好的样品在氮气气氛炉中进行碳化处理,碳化温度600℃,升温速率5℃/min,碳化时间60min,后自然随炉降至室温;
(5)将碳化产物在空气气氛下进行氧化处理,氧化温度300℃,氧化时间180min,得到碳/钴酸镍气凝胶纳米材料。

Claims (5)

1.一种碳/钴酸镍气凝胶纳米复合材料的制备方法,其特征在于,由以下步骤组成:
(1)称取一定量Ni(NO3)2·6H2O和Co(NO3)2·6H2O溶于蒸馏水中,配制成含Ni2+/Co2+摩尔比为1∶2的混合溶液A;
(2)称取一定量海藻酸钠溶于蒸馏水中配成溶液B;
(3)将溶液B滴入溶液A中进行离子交换,同时保持搅拌2h,获得凝胶C,将C进行充分洗涤后冷冻干燥;
(4)将步骤(3)干燥后的样品在惰性气氛炉中进行碳化处理;
(5)将步骤(4)获得的碳化产物进行氧化处理,得到碳/钴酸镍气凝胶纳米复合材料;
(6)将碳/钴酸镍气凝胶纳米复合材料进行超级电容器电化学性能测试。
2.根据权利要求1所述的制备方法,其特征在于摩尔比为1∶2的Ni2+/Co2+混合溶液中,Ni2+和Co2+总摩尔浓度为0.03~3mol/L。
3.根据权利要求1所述的制备方法,其特征在于海藻酸钠溶液的浓度为0.5~3wt%。
4.根据权利要求1所述的制备方法,其特征在于碳化过程中的保护性气体为氮气或氩气,碳化温度为600~800℃,升温速率为5℃/min,碳化时间60~180min。
5.根据权利要求1所述的制备方法,其特征在于氧化气氛为空气,氧化温度为200~350℃,升温速率为5℃/min,氧化时间30~300min。
CN201610172578.4A 2016-03-21 2016-03-21 一种碳/钴酸镍气凝胶纳米复合材料的制备方法 Active CN105719853B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610172578.4A CN105719853B (zh) 2016-03-21 2016-03-21 一种碳/钴酸镍气凝胶纳米复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610172578.4A CN105719853B (zh) 2016-03-21 2016-03-21 一种碳/钴酸镍气凝胶纳米复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN105719853A true CN105719853A (zh) 2016-06-29
CN105719853B CN105719853B (zh) 2018-01-09

Family

ID=56158978

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610172578.4A Active CN105719853B (zh) 2016-03-21 2016-03-21 一种碳/钴酸镍气凝胶纳米复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN105719853B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109821541A (zh) * 2019-03-15 2019-05-31 王丹亮 一种室温去除甲醛的催化剂及其制备方法
CN109859953A (zh) * 2017-11-30 2019-06-07 北京化工大学 一种竹基活性炭/锰气凝胶复合材料的制备方法
CN113140717A (zh) * 2021-04-15 2021-07-20 北京化工大学 一种用于锂离子电池的海藻酸钠基双网络炭气凝胶负极材料制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140217330A1 (en) * 2009-01-27 2014-08-07 Lawrence Livermore National Security, Llc High surface area, electrically conductive nanocarbon-supported metal oxide
CN104907016A (zh) * 2014-03-11 2015-09-16 北京化工大学 一种炭气凝胶的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140217330A1 (en) * 2009-01-27 2014-08-07 Lawrence Livermore National Security, Llc High surface area, electrically conductive nanocarbon-supported metal oxide
CN104907016A (zh) * 2014-03-11 2015-09-16 北京化工大学 一种炭气凝胶的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHUNXIAO LV,ET AL: "Architecture-controlled synthesis of MxOy(M=Ni,Fe,Cu) microfibres from seaweed biomass for high performance lithium ion battery anodes", 《JOURNAL OF MATERIALS CHEMISTRY A》 *
DAOHAO LI,ET AL: "Egg-box structure in cobalt alginate:A new approach to multifunctional hierarchical mesoporous N-doped carbon nanofibers for efficient catalysis and energy storage", 《ACS CENTRAL SCIENCE》 *
张立杰: "基于海藻酸钠的碳气凝胶材料的制备及结构性能研究", 《中国硕士学位论文期刊全文库》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109859953A (zh) * 2017-11-30 2019-06-07 北京化工大学 一种竹基活性炭/锰气凝胶复合材料的制备方法
CN109821541A (zh) * 2019-03-15 2019-05-31 王丹亮 一种室温去除甲醛的催化剂及其制备方法
CN113140717A (zh) * 2021-04-15 2021-07-20 北京化工大学 一种用于锂离子电池的海藻酸钠基双网络炭气凝胶负极材料制备方法
CN113140717B (zh) * 2021-04-15 2022-05-27 北京化工大学 一种用于锂离子电池的海藻酸钠基双网络炭气凝胶负极材料制备方法

Also Published As

Publication number Publication date
CN105719853B (zh) 2018-01-09

Similar Documents

Publication Publication Date Title
Wang et al. Highly stable three-dimensional nickel–cobalt hydroxide hierarchical heterostructures hybridized with carbon nanotubes for high-performance energy storage devices
Guo et al. Hierarchical structured Ni3S2@ rGO@ NiAl-LDHs nanoarrays: a competitive electrode material for advanced asymmetrical supercapacitors
Yan et al. Self-supported FeNi-P nanosheets with thin amorphous layers for efficient electrocatalytic water splitting
Liao et al. Hydrothermal synthesis of mesoporous MnCo2O4/CoCo2O4 ellipsoid-like microstructures for high-performance electrochemical supercapacitors
Qiu et al. Ni-doped cobalt hexacyanoferrate microcubes as battery-type electrodes for aqueous electrolyte-based electrochemical supercapacitors
Feng et al. Template synthesis of a heterostructured MnO2@ SnO2 hollow sphere composite for high asymmetric supercapacitor performance
Zhu et al. Hollow TiNb2O7@ C spheres with superior rate capability and excellent cycle performance as anode material for lithium‐ion batteries
CN107308977A (zh) 钴氮硫共掺杂碳气凝胶双功能氧催化剂及其制备方法和应用
Ju et al. Prussian blue analogue derived low-crystalline Mn2O3/Co3O4 as high-performance supercapacitor electrode
Li et al. Preparation and electrochemical properties of graphene quantum dots/biomass activated carbon electrodes
CN103467498B (zh) 一种对过氧化氢具有电催化活性的铜配合物及其制备方法
Ghasemi et al. Porous gel polymer electrolyte for the solid state metal oxide supercapacitor with a wide potential window
Wu et al. Controlled growth of hierarchical FeCo2O4 ultrathin nanosheets and Co3O4 nanowires on nickle foam for supercapacitors
Fu et al. Sn-doped nickel sulfide (Ni3S2) derived from bimetallic MOF with ultra high capacitance
Huang et al. Hollow FeS2 nanospheres encapsulated in N/S co-doped carbon nanofibers as electrode material for electrochemical energy storage
Hussain et al. Binder-free cupric-ion containing zinc sulfide nanoplates-like structure for flexible energy storage devices
Lv et al. Construction of nickel ferrite nanoparticle-loaded on carboxymethyl cellulose-derived porous carbon for efficient pseudocapacitive energy storage
Sun et al. Study on the properties of Cu powder modified 3-D Co-MOF in electrode materials of lithium ion batteries
Gong et al. Prussian blue analogues derived electrocatalyst with multicatalytic centers for boosting oxygen reduction reaction in the wide pH range
CN105719853A (zh) 一种碳/钴酸镍气凝胶纳米复合材料的制备方法
Tang et al. Hemispherical flower-like N-doped porous carbon/NiCo2O4 hybrid electrode for supercapacitors
Munawar et al. Surfactant-assisted facile synthesis of petal-nanoparticle interconnected nanoflower like NiO nanostructure for supercapacitor electrodes material
Zhang et al. One-step synthesis based on non-aqueous sol-gel conductive polymer-coated SnO2 nanoparticles as advanced anode materials for lithium-ion batteries
Dong et al. Atomically dispersed Co-N4C2 catalytic sites for wide-temperature Na-Se batteries
Hu et al. A telluride-doped porous carbon as highly efficient bifunctional catalyst for rechargeable Zn-air batteries

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: 266071 Shandong city of Qingdao province Ningxia City Road No. 308

Patentee after: QINGDAO University

Address before: 266071 Ningxia Road, Shandong, China, No. 308, No.

Patentee before: QINGDAO University