CN106992841A - 一种分组马尔可夫叠加编码的硬判决迭代译码方法 - Google Patents

一种分组马尔可夫叠加编码的硬判决迭代译码方法 Download PDF

Info

Publication number
CN106992841A
CN106992841A CN201710168035.XA CN201710168035A CN106992841A CN 106992841 A CN106992841 A CN 106992841A CN 201710168035 A CN201710168035 A CN 201710168035A CN 106992841 A CN106992841 A CN 106992841A
Authority
CN
China
Prior art keywords
node
information
hard decision
decoding
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710168035.XA
Other languages
English (en)
Other versions
CN106992841B (zh
Inventor
马啸
林妮娜
蔡穗华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN201710168035.XA priority Critical patent/CN106992841B/zh
Publication of CN106992841A publication Critical patent/CN106992841A/zh
Application granted granted Critical
Publication of CN106992841B publication Critical patent/CN106992841B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0059Convolutional codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1105Decoding
    • H03M13/1108Hard decision decoding, e.g. bit flipping, modified or weighted bit flipping
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/23Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using convolutional codes, e.g. unit memory codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/005Iterative decoding, including iteration between signal detection and decoding operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Error Detection And Correction (AREA)

Abstract

本发明属于数字通信和数字存储领域,公开了一种分组马尔可夫叠加编码的硬判决迭代译码方法,其对应由输入k长输出n长的二元成分码编码器构造的记忆为m的分组马尔可夫叠加编码,用于从L+m个均为nB长的硬判决向量中恢复经过叠加编码的L组均为kB长的二元信息序列对于译码延迟为d的硬判决迭代译码方法,仅使用{0,1,e}为迭代信息,其中e表示状态“删除”,接收端接收到 组硬判决向量后开始译码,获取发送信息的估计本发明还提出了硬判决迭代译码方法中各个节点处理器的处理方法等。本发明提出的分组马尔可夫叠加编码的硬判决迭代译码方法,性能良好,复杂度低,实现简单,可以应用于光纤通信等具有低误比特率和低译码时延要求的通信系统中。

Description

一种分组马尔可夫叠加编码的硬判决迭代译码方法
技术领域
本发明属于数字通信和数字存储领域,特别涉及一种分组马尔可夫叠加编码的硬判决迭代译码方法。
背景技术
在光通信系统中,一般将硬判决迭代译码方法应用于高码率(一般高于0.8)的级联/乘积纠错编码,以获得高信息传输率,低时延和极低的误比特率(bit error rate,BER)(一般为10-10至10-15数量级)。例如,在International Telegraph UnionTelecommunication Standardization Sector(ITU-T)的标准G.975.1中,开销为6.7%的BCH-BCH乘积码可以在输出误比特率为10-15处提供9.24dB的净编码增益(net codinggain,NCG)。在使用同样开销的条件下,阶梯码(staircase code)可以在相同的误比特率下获得9.41dB的净编码增益。然而,它们在不同帧长和冗余度的设计要求下缺乏灵活性。在设计过程中,阶梯码往往需要采用暴力搜索的方式获取符合性能要求的设计参数,大大增加了设计过程的复杂度和工作量。
分组马尔可夫叠加编码(中山大学,一种分组马尔可夫叠加编码方法[P]:CN105152060A)是一种由短码构造大卷积码的编码方法,其中的短码称为基本码。分组马尔可夫叠加编码的性能下界可以由基本码的性能及其记忆长度m来界定,由此可以得到一套简单规范化的设计流程。分组马尔可夫叠加编码方法一般通过基于软信息的滑窗迭代算法或者两阶段译码算法(中山大学,一种关于分组马尔可夫叠加编码的两阶段译码算法[P]:CN 103944590A)来译码。软信息迭代译码方法对于现阶段光通信系统而言,复杂度高,不符合光通信系统低时延的性能要求。
发明内容
本发明所要解决的技术问题在于针对上述现有技术中的不足,提供了一种分组马尔可夫叠加编码的硬判决迭代译码方法,其方法步骤简单,实现方便,复杂度低。
本发明应用于分组马尔可夫叠加编码方法,其以码长为n,信息位长度为k的二元信道编码为成份码,用于将长度K=kBL的二元信息序列u编码为长度N=nB(L+m)的码字c,B,L为正整数,其编码方法包括以下步骤:
(1)将长度K=kBL的信息序列u划分为L个等长分组u=(u (0),u (1),…u (L-1)),每个分组长度为kB;对于时刻t=-1,-2,…,-(m-1),-m,把长度为nB的序列v (t)初始化;t为取值范围为-m≤t≤L-1的整数;m为编码记忆长度,为大于等于1的正整数;
(2)在t=0,1,…,L-1时刻,将长度为kB的序列分成B组进行[n,k]二元成分码编码,得到长度为nB的编码序列并结合v (t-1),v (t -2),…v (t-m)计算码字c的第t个子序列c (t)。所述的v (t)结合v (t-1),v (t-2),…,v (t-m)计算码字c的第t(t≥0)个子序列c (t)按如下步骤进行:
首先,对于1≤i≤m,将序列v (t-i)送入交织器Πi,得到交织后长度为nB的序列w (i)
然后,将v (t)w (1),w (2),…,w (m)送入逐符号混叠器S,得到长度为nB的序列c (t)
本发明所述的编码方法中,信息序列u是二元序列,逐符号混叠器S是逐比特模2和运算器。编码器C可以是任意类型的编码器。交织器Πi可以是任意类型的交织器,1≤i≤m。
本发明的技术方案如下:
本发明提出一种分组马尔可夫叠加编码的硬判决迭代译码方法。码字c经调制后送入信道,接收端根据硬判决向量z=(z (0),z (1),…z (L+m-1)),使用本发明提出的一种分组马尔可夫叠加编码的硬判决迭代译码方法得到发送序列u的估计译码器框图如图1所示,方框表示编码约束,称之为节点。在下文的译码流程描述中,我们用方框内的符号指代各节点,具体包括“C”、“=”、“Πi”和“S”节点。节点是处理器,节点之间通过连线传递信息。节点之间的连线表示变量,取值范围为{0,1,e},其中e表示状态“删除”。设定译码滑窗窗口d和最大迭代次数Imax。当接收端接收到硬判决向量z (t),z (t+1),…,z (t+d)(t=0,1,2,…,L-1),开始译码,获取发送信息u (t)的估计具体包括以下步骤:
(S1)初始化迭代次数计数器I=0;
(S2)对于τ=t,t+1,…,t+d,如果τ≤L+m-1,处理第τ层信息,并把第τ层信息传递到第τ+1,τ+2,…,min{τ+m,t+d}层;对于τ=t+d,t+d-1,…,t,如果τ≤L+m-1,处理第τ层信息,并把第τ层信息传递到第τ-1,τ-2,…,max{τ-m,t}层;
(S3)设置I=I+1。如果译码达到最大迭代次数I=Imax,停止迭代,获取发送信息u (t)的估计否则,回到步骤(S2)。
本发明所述的译码方法中,所述步骤(S2)中的处理第τ层信息,按如下步骤进行:
(S2.1)在“C”节点处,使用二元成分码的纠错纠删译码方法,根据结果输出迭代信息和译码信息。输出迭代信息时,如果该译码方法成功得到码字,则输出该二元成分码码字;若该译码方法失败,则输出只含“e”的序列(e,e,…,e)。更新译码器的译码输出信息时,对可能存在的符号e,可以任意取0或1。
(S2.2)在“=”节点处,处理并传递到“Πi”(1≤i≤m)节点、“C”节点和“S”节点的信息。如图2所示,设与“=”节点相连的第i条边上的输入和输出信息分别为xi和yi,0≤i≤m+1。特别的,与“C”节点相连的边使用下标0来表示。则在“=”节点,按如下方法根据输入信息计算输出信息:
以及,当i>0时,
(S2.3)在“Πi”(1≤i≤m)节点处,处理并传递从节点“=”到节点“S”或从“S”到节点“=”的信息。
(S2.4)在“S”节点处,处理并传递到“Πi”(1≤i≤m)节点和“=”节点的信息。如图3所示,设与“S”节点相连的第i条边上的输入和输出信息分别为ai和bi,0≤i≤m+1。则在“S”节点,按如下方法由输入信息计算输出信息,
其中运算符号表示模2加。
本发明的仿真结果和理论分析表明,本发明具有良好的纠错性能。其方法步骤简单,实现方便,复杂度更低,减少工作量。
附图说明
图1为本发明的译码框图。
图2为“=”节点迭代信息示意图。
图3为“S”节点迭代信息示意图。
图4为本发明应用于码长为n=660,信息位长度为k=550的缩短二元BCH码为成分码的分组马尔可夫叠加编码,编码记忆长度m=2,译码滑窗窗口为d=4时,在BPSK-AWGN信道下的BER性能曲线。
具体实施方式
实施例
本实施例针对使用码长为n=660,信息位长度为k=550的缩短二元BCH码为成分码的分组马尔可夫编码,编码记忆长度m=2,译码滑窗窗口为d=4,相关参数选取为L=1000和B=100,150,200,分别将长度K=5.5e7,8.25e7,1.1e8的二元信息序列u编码为长度N=6.6132e7,9.9198e7,1.32264e8的码字c=(c(0),c(1),…,c(999))。
码字c经调制后送入信道,接收端接收到码字c的噪声版本后进行硬判决得到二元序列z=(z (0),z (1),…z (999))。设定译码滑窗窗口d=4和最大迭代次数Imax=15。当接收端接收到硬判决向量z (t),z (t+1),…,z (t+4)(t=0,1,2,…,L-1),开始译码,获取发送信息u (t)的估计具体包括以下步骤:
(1)初始化迭代次数计数器I=0;
(2)对于τ=t,t+1,…,t+d,如果τ≤L+m-1,处理第τ层信息,并把第τ层信息传递到第τ+1,τ+2,…,min{τ+m,t+d}层;对于τ=t+d,t+d-1,…,t,如果τ≤L+m-1,处理第τ层信息,并把第τ层信息传递到第τ-1,τ-2,…,max{τ-m,t}层;
(3)设置I=I+1。如果译码达到最大迭代次数I=Imax,停止迭代,获取发送消息发送信息u (t)的估计否则,回到步骤(2)。
本实例所述的译码方法中,步骤(2)中的处理第τ层信息,按如下步骤进行:
(2.1)在“C”节点处,使用二元成分码的纠错纠删译码方法,根据结果输出迭代信息和译码信息。输出迭代信息时,如果该译码方法成功得到码字,则输出该二元成分码码字;若该译码方法失败,则输出只含“e”的序列(e,e,…,e)。更新译码器的译码输出信息时,对可能存在的符号e,可以任意取0或1。
(2.2)在“=”节点处,处理并传递到“Πi”(1≤i≤2)节点、“C”节点和“S”节点的信息。如图2所示,设与“=”节点相连的第i条边上的输入和输出信息分别为xi和yi,0≤i≤3。特别的,与“C”节点相连的边使用下标0来表示。则在“=”节点,按如下方法根据输入信息计算输出信息:
以及,当i>0时,
(2.3)在“Πi”(1≤i≤2)节点处,处理并传递从节点“=”到节点“S”或从“S”到节点“=”的信息。
(2.4)在“S”节点处,处理并传递到“Πi”(1≤i≤2)节点和“=”节点的信息。如图3所示,设与“S”节点相连的第i条边上的输入和输出信息分别为ai和bi,0≤i≤3。则在“S”节点,按如下方法由输入信息计算输出信息,
其中运算符号表示模2加。
在BPSK-AWGN信道下的BER性能曲线如图4所示。

Claims (5)

1.一种分组马尔可夫叠加编码的硬判决迭代译码方法,应用于以码长为n,信息位长度为k的二元信道编码为成份码的分组马尔可夫叠加编码,当编码记忆长度为m时,其将长度K=kBL的二元信息序列u,划分为L个长度为kB的等长分组进行编码,从而得到编码后长度N=nB(L+m)的码字c,B,L为正整数,其特征是:译码过程中迭代信息的取值范围为{0,1,e},其中e表示状态“删除”,设定译码滑窗窗口d和最大迭代次数Imax,当接收端接收到z (t),z (t +1),…,z (t+d)(t=0,1,2,…,L-1)开始译码,获取发送信息u (t)的估计具体包括以下步骤:
(1).初始化迭代次数计数器I=0;
(2).对于τ=t,t+1,…,t+d,如果τ≤L+m-1,处理第τ层信息,并把第τ层信息传递到第τ+1,τ+2,…,min{τ+m,t+d}层;对于τ=t+d,t+d-1,…,t,如果τ≤L+m-1,处理第τ层信息,并把第τ层信息传递到第τ-1,τ-2,…,max{τ-m,t}层;
(3).设置I=I+1,如果译码达到最大迭代次数I=Imax,停止迭代,获取发送信息u (t)的估计否则,回到步骤(2)。
2.根据权利要求1所述的一种分组马尔可夫叠加编码的硬判决迭代译码方法,其特征是:本发明所述的译码方法中,步骤(2)中所述的处理第τ层信息,按如下步骤进行:
(2.1)在“C”节点处,使用二元成分码的纠错纠删译码方法,根据结果输出迭代信息和译码信息;
(2.2)在“=”节点处,处理并传递到“Πi”(1≤i≤m)节点、“C”节点和“S”节点的信息;
(2.3)在“Πi”(1≤i≤m)节点处,处理并传递从节点“=”到节点“S”或从“S”到节点“=”的信息;
(2.4)在“S”节点处,处理并传递到“Πi”(1≤i≤m)节点和“=”节点的信息。
3.根据权利要求2所述的一种分组马尔可夫叠加编码的硬判决迭代译码方法,其特征是:所述步骤(2.1)中在“C”节点处,当输出迭代信息时,如果该译码方法成功得到码字,则输出该二元成分码码字;若该译码方法失败,则输出只含“e”的序列(e,e,…,e);更新译码器的译码输出信息,其中对符号e,可以任意取0或1。
4.根据权利要求2所述的一种分组马尔可夫叠加编码的硬判决迭代译码方法,其特征是:所述步骤(2.2)中在“=”节点处,处理并传递到“Πi”(1≤i≤m)节点、“C”节点和“S”节点的信息,设与“=”节点相连的第i条边上的输入和输出信息分别为xi和yi,0≤i≤m+1,其中与“C”节点相连的边使用下标0来表示,则在“=”节点,按如下方法根据输入信息计算输出信息:
以及,当i>0时,
5.根据权利要求2所述的一种分组马尔可夫叠加编码的硬判决迭代译码方法,其特征是:所述步骤(2.4)中在“S”节点处,处理并传递到“Πi”(1≤i≤m)节点和“=”节点的信息,设与“S”节点相连的第i条边上的输入和输出信息分别为ai和bi,0≤i≤m+1,则在“S”节点,按如下方法有输入信息计算输出信息,
其中运算符号表示模2加。
CN201710168035.XA 2017-03-21 2017-03-21 一种分组马尔可夫叠加编码的硬判决迭代译码方法 Active CN106992841B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710168035.XA CN106992841B (zh) 2017-03-21 2017-03-21 一种分组马尔可夫叠加编码的硬判决迭代译码方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710168035.XA CN106992841B (zh) 2017-03-21 2017-03-21 一种分组马尔可夫叠加编码的硬判决迭代译码方法

Publications (2)

Publication Number Publication Date
CN106992841A true CN106992841A (zh) 2017-07-28
CN106992841B CN106992841B (zh) 2020-06-02

Family

ID=59412311

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710168035.XA Active CN106992841B (zh) 2017-03-21 2017-03-21 一种分组马尔可夫叠加编码的硬判决迭代译码方法

Country Status (1)

Country Link
CN (1) CN106992841B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108199723A (zh) * 2018-01-12 2018-06-22 暨南大学 一种基于双递归的分组马尔可夫叠加编码方法
CN108880569A (zh) * 2018-07-24 2018-11-23 暨南大学 一种基于反馈分组马尔科夫叠加编码的速率兼容编码方法
CN109639290A (zh) * 2018-11-29 2019-04-16 中山大学 一种半随机分组叠加编码及译码方法
WO2019096184A1 (zh) * 2017-11-15 2019-05-23 中兴通讯股份有限公司 阶梯码的解码方法、装置及存储介质
CN110739977A (zh) * 2019-10-30 2020-01-31 华南理工大学 一种基于深度学习的bch码译码方法
CN110958025A (zh) * 2019-12-17 2020-04-03 中山大学 一种基于叠加的短帧长编码及译码方法
CN115347980A (zh) * 2022-08-09 2022-11-15 中山大学 面向5g ldpc码的部分叠加传输方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103152060A (zh) * 2013-01-17 2013-06-12 中山大学 一种分组马尔可夫叠加编码方法
CN103888151A (zh) * 2014-03-28 2014-06-25 中山大学 一种基于分组马尔可夫叠加编码的多码率码编码方法
CN106059596A (zh) * 2016-06-24 2016-10-26 中山大学 以二元bch码为成份码的分组马尔可夫叠加编码方法及其译码方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103152060A (zh) * 2013-01-17 2013-06-12 中山大学 一种分组马尔可夫叠加编码方法
CN103888151A (zh) * 2014-03-28 2014-06-25 中山大学 一种基于分组马尔可夫叠加编码的多码率码编码方法
CN106059596A (zh) * 2016-06-24 2016-10-26 中山大学 以二元bch码为成份码的分组马尔可夫叠加编码方法及其译码方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUNG-YIH JIAN ET AL.: "Approaching capacity at high rates with iterative hard-decision decoding", 《2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11184034B2 (en) 2017-11-15 2021-11-23 Xi'an Zhongxing New Software Co., Ltd. Method and device for decoding staircase code, and storage medium
WO2019096184A1 (zh) * 2017-11-15 2019-05-23 中兴通讯股份有限公司 阶梯码的解码方法、装置及存储介质
CN108199723B (zh) * 2018-01-12 2021-01-26 暨南大学 一种基于双递归的分组马尔可夫叠加编码方法
CN108199723A (zh) * 2018-01-12 2018-06-22 暨南大学 一种基于双递归的分组马尔可夫叠加编码方法
CN108880569B (zh) * 2018-07-24 2021-11-09 暨南大学 一种基于反馈分组马尔科夫叠加编码的速率兼容编码方法
CN108880569A (zh) * 2018-07-24 2018-11-23 暨南大学 一种基于反馈分组马尔科夫叠加编码的速率兼容编码方法
CN109639290A (zh) * 2018-11-29 2019-04-16 中山大学 一种半随机分组叠加编码及译码方法
CN109639290B (zh) * 2018-11-29 2021-08-06 中山大学 一种半随机分组叠加编码及译码方法
CN110739977A (zh) * 2019-10-30 2020-01-31 华南理工大学 一种基于深度学习的bch码译码方法
CN110739977B (zh) * 2019-10-30 2023-03-21 华南理工大学 一种基于深度学习的bch码译码方法
CN110958025A (zh) * 2019-12-17 2020-04-03 中山大学 一种基于叠加的短帧长编码及译码方法
CN110958025B (zh) * 2019-12-17 2023-03-31 中山大学 一种基于叠加的短帧长编码及译码方法
CN115347980A (zh) * 2022-08-09 2022-11-15 中山大学 面向5g ldpc码的部分叠加传输方法
CN115347980B (zh) * 2022-08-09 2023-06-09 中山大学 面向5g ldpc码的部分叠加传输方法

Also Published As

Publication number Publication date
CN106992841B (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
CN106992841A (zh) 一种分组马尔可夫叠加编码的硬判决迭代译码方法
CN106059596B (zh) 以二元bch码为成份码的分组马尔可夫叠加编码方法及其译码方法
Alamdar-Yazdi et al. A simplified successive-cancellation decoder for polar codes
CN106972865B (zh) 一种递归的分组马尔可夫叠加编码方法
US5633881A (en) Trellis encoder and decoder based upon punctured rate 1/2 convolutional codes
US8281209B2 (en) Encoding method and device for low density generator matrix codes
CN106330199B (zh) 基于因子图的scma和ldpc联合检测译码算法及装置
EP2134018A1 (en) Method for recovery of lost and/ or corrupted data
CN107395319B (zh) 基于打孔的码率兼容极化码编码方法及系统
CN106571831A (zh) 一种基于深度学习的ldpc硬判决译码方法及译码器
CN102164025A (zh) 基于重复编码和信道极化的编码器及其编译码方法
CN109921803B (zh) 基于神经网络的高密度线性分组码译码方法
CN108199723B (zh) 一种基于双递归的分组马尔可夫叠加编码方法
WO2019197043A1 (en) Multi-composition coding for signal shaping
CN107911195A (zh) 一种基于cva的咬尾卷积码信道译码方法
CN103152060A (zh) 一种分组马尔可夫叠加编码方法
CN106209305B (zh) 一种多址信道下的喷泉码译码方法
WO2009043261A1 (fr) Procédé de codage et de décodage, codeur et décodeur
CN110601699B (zh) 码率动态可变的多元ldpc码实现方法
US9419656B2 (en) Decoder and method for decoding an encoded sequence of bits
CN109194336B (zh) 级联Spinal码的编码和译码方法、系统及装置
CN110730011A (zh) 一种基于部分叠加的递归分组马尔可夫叠加编码方法
CN116743189A (zh) 一种采用哈希函数的咬尾卷积码编码方法和译码方法
Wang et al. Near-capacity joint source and channel coding of symbol values from an infinite source set using Elias gamma error correction codes
CN103138769B (zh) 一种具有不等错误保护的编码方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170728

Assignee: Guangdong yousuan Technology Co.,Ltd.

Assignor: SUN YAT-SEN University

Contract record no.: X2023980053712

Denomination of invention: A Hard Decision Iterative Decoding Method for Grouped Markov Overlay Coding

Granted publication date: 20200602

License type: Common License

Record date: 20231222

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170728

Assignee: Foshan Lianrong New Technology Co.,Ltd.

Assignor: SUN YAT-SEN University

Contract record no.: X2023980054160

Denomination of invention: A Hard Decision Iterative Decoding Method for Grouped Markov Overlay Coding

Granted publication date: 20200602

License type: Common License

Record date: 20231227

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170728

Assignee: Spectrum Blue Cloud (Guangzhou) Digital Technology Co.,Ltd.

Assignor: SUN YAT-SEN University

Contract record no.: X2023980054593

Denomination of invention: A Hard Decision Iterative Decoding Method for Grouped Markov Overlay Coding

Granted publication date: 20200602

License type: Common License

Record date: 20231228

Application publication date: 20170728

Assignee: Guangzhou Zhanyi Information Technology Co.,Ltd.

Assignor: SUN YAT-SEN University

Contract record no.: X2023980054591

Denomination of invention: A Hard Decision Iterative Decoding Method for Grouped Markov Overlay Coding

Granted publication date: 20200602

License type: Common License

Record date: 20231228

Application publication date: 20170728

Assignee: Guangzhou Zhanpeng Information Technology Co.,Ltd.

Assignor: SUN YAT-SEN University

Contract record no.: X2023980054590

Denomination of invention: A Hard Decision Iterative Decoding Method for Grouped Markov Overlay Coding

Granted publication date: 20200602

License type: Common License

Record date: 20231228

Application publication date: 20170728

Assignee: Guangzhou Kangpusi Network Technology Co.,Ltd.

Assignor: SUN YAT-SEN University

Contract record no.: X2023980054586

Denomination of invention: A Hard Decision Iterative Decoding Method for Grouped Markov Overlay Coding

Granted publication date: 20200602

License type: Common License

Record date: 20231228

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170728

Assignee: Guangzhou Ruizhi Computer Technology Co.,Ltd.

Assignor: SUN YAT-SEN University

Contract record no.: X2023980054790

Denomination of invention: A Hard Decision Iterative Decoding Method for Grouped Markov Overlay Coding

Granted publication date: 20200602

License type: Common License

Record date: 20240104

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170728

Assignee: Siteng Heli (Tianjin) Technology Co.,Ltd.

Assignor: SUN YAT-SEN University

Contract record no.: X2024980000510

Denomination of invention: A Hard Decision Iterative Decoding Method for Grouped Markov Overlay Coding

Granted publication date: 20200602

License type: Common License

Record date: 20240112

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170728

Assignee: TIANJIN TEDA ZHONGHUAN ELECTRONIC SYSTEM ENGINEERING CO.,LTD.

Assignor: SUN YAT-SEN University

Contract record no.: X2024980000641

Denomination of invention: A Hard Decision Iterative Decoding Method for Grouped Markov Overlay Coding

Granted publication date: 20200602

License type: Common License

Record date: 20240115

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170728

Assignee: Dongguan Boxuan Intelligent Technology Co.,Ltd.

Assignor: SUN YAT-SEN University

Contract record no.: X2024980015753

Denomination of invention: A hard decision iterative decoding method based on grouped Markov superposition coding

Granted publication date: 20200602

License type: Common License

Record date: 20240919

Application publication date: 20170728

Assignee: Shenzhen Leading Road Automotive Electronics Co.,Ltd.

Assignor: SUN YAT-SEN University

Contract record no.: X2024980015720

Denomination of invention: A hard decision iterative decoding method based on grouped Markov superposition coding

Granted publication date: 20200602

License type: Common License

Record date: 20240919

EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170728

Assignee: Tianhong (Jinan) Intelligent Equipment Industry Research Co.,Ltd.

Assignor: SUN YAT-SEN University

Contract record no.: X2024980016046

Denomination of invention: A hard decision iterative decoding method based on grouped Markov superposition coding

Granted publication date: 20200602

License type: Common License

Record date: 20240923

Application publication date: 20170728

Assignee: SHANDONG CHENGKUN INFORMATION TECHNOLOGY CO.,LTD.

Assignor: SUN YAT-SEN University

Contract record no.: X2024980016023

Denomination of invention: A hard decision iterative decoding method based on grouped Markov superposition coding

Granted publication date: 20200602

License type: Common License

Record date: 20240923