CN106991076A - 基于梯度法极值搜索的多峰极值搜索方法 - Google Patents
基于梯度法极值搜索的多峰极值搜索方法 Download PDFInfo
- Publication number
- CN106991076A CN106991076A CN201710117618.XA CN201710117618A CN106991076A CN 106991076 A CN106991076 A CN 106991076A CN 201710117618 A CN201710117618 A CN 201710117618A CN 106991076 A CN106991076 A CN 106991076A
- Authority
- CN
- China
- Prior art keywords
- search
- extremum
- initial point
- multimodal
- gradient method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/15—Correlation function computation including computation of convolution operations
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Computational Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Algebra (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
本发明公开了一种基于梯度法极值搜索的多峰极值搜索方法,针对单输入单输出系统,给定输入初始点采用梯度法极值搜索进行预设时间的极值搜索,通过判断搜索结束时段两个相近时间点的差值来确定是否搜索到局部极值,如果搜索到局部极值,则更新输入初始点搜索下一个局部极值,否则延长搜索时间继续搜索该初始点对应的局部极值。本发明基于梯度法极值搜索算法进行了扩展,增加了改变输入初始点的外循环,通过对初始点的改变,利用梯度法极值搜索算法搜索出不同初始点附近的极值,从而完成对多峰函数的极值搜索过程。
Description
技术领域
本发明属于极值搜索技术领域,更为具体地讲,涉及一种基于梯度法极值搜索的多峰极值搜索方法。
背景技术
对于单输入单输出系统,其输入和输出会满足一定的函数关系。在实际应用中,通常需要将输入调整到合适的值,以使输出达到极值,此时就需要用到极值搜索方法。目前传统的极值搜索算法只能搜索到局部峰值,如果系统函数为多峰函数,那么就只能搜索到初始点附近的一个峰值,对于其他峰值的搜索无能为力,而局部峰值并不一定是全局峰值。显然,要想搜索得到多峰函数系统的极值,极大地依赖于初始点的设置,而初始点一般是人为设置的,很难摆脱主观因素的影响,因此亟需一种能够对多峰函数的极值进行搜索的方法。
发明内容
本发明的目的在于克服现有技术的不足,提供一种基于梯度法极值搜索的多峰极值搜索方法,通过不断更新初始点进行极值搜索,以实现对系统函数为多峰函数的单输入单输出系统的多峰极值搜索。
为实现上述发明目的,本发明基于梯度法极值搜索的多峰极值搜索方法包括以下步骤:
S1:设定极值搜索的输入初始点x0;
S2:以初始点x0作为系统输入,采用梯度法极值搜索算法进行时长为t+m的极值搜索,记录时刻t的系统输出yt和时刻t+m的系统输出yt+m,t和m都是根据实际情况设置的时间参数;梯度法极值搜索算法的具体步骤包括:
S2.1:令系统输入
S2.2:将系统输入与扰动S(t)相加,得到输入
S2.3:将系统输入x输入系统,得到对应的系统输出y,通过滤波器滤去不稳定的波形,得到稳定的输出
S2.4:将输出与扰动M(t)相乘,得到信号再经过一个自闭环系统产生变量Δy,自闭环系统的过程为:ΔE先乘以一个常系数b1,再经过低通滤波产生信号Δy,将其求导后乘以常系数b2后反馈给ΔE;
S2.5:将Δy乘以一个常系数-k后进行积分,其中k>0,在估计点处寻找到下一个估计迭代点即令返回步骤S2.2;
S3:判断是否|yt+m-yt|<ε,ε表示预设阈值,ε>0,如果是,则将yt+m作为当前初始点x0对应的极值,进入步骤S6,否则进入步骤S4;
S4:延长梯度法极值搜索算法的搜索时间,延长的搜索时间为τ+m,τ表示延长时间参数,记录本次延长搜索时间中时刻τ的系统输出yτ和时刻τ+m的系统输出yτ+m;
S5:判断是否|yτ+m-yτ|<ε,ε表示预设阈值,如果是,则将yτ+m作为当前初始点x0对应的极值,进入步骤S6,否则返回步骤S4;
S6:令初始点x0=x0+h,返回步骤S2,h表示初始点更新步长;
在步骤S2至步骤S6循环执行期间,对搜索结束参数进行监测,一旦达到搜索结束条件,则多峰极值搜索结束。
本发明基于梯度法极值搜索的多峰极值搜索方法,针对单输入单输出系统,给定输入初始点采用梯度法极值搜索进行预设时间的极值搜索,通过判断搜索结束时段两个相近时间点的差值来确定是否搜索到局部极值,如果搜索到局部极值,则更新输入初始点搜索下一个局部极值,否则延长搜索时间继续搜索该初始点对应的局部极值。
本发明针对传统极值搜索算法无法对系统函数为多峰函数的单输入单输出系统进行多峰极值搜索的情况,基于梯度法极值搜索算法进行了扩展,增加了改变输入初始点的外循环,通过对初始点的改变,利用梯度法极值搜索算法搜索出不同初始点附近的极值,从而完成对多峰函数的极值搜索过程。通过仿真验证可以发现,本发明是一个双闭环系统,可以准确搜索到不同输入初始点相对应的极值,搜索速度快,稳定性好。
附图说明
图1是本发明基于梯度法极值搜索的多峰极值搜索方法的具体实施方式流程图;
图2是本发明中梯度法极值搜索算法示意图;
图3是本实施例中系统函数的曲线图;
图4是本实施例中采用本发明多峰极值搜索方法得到的波峰值与时间的变化图;
图5是图4中对应极值点与时间的变化图;
图6是输入初始点为3时梯度法极值搜索算法的波峰值与时间的变化图;
图7是输入初始点为4时梯度法极值搜索算法的波峰值与时间的变化图;
图8是输入初始点为5时梯度法极值搜索算法的波峰值与时间的变化图;
图9是输入初始点为6时梯度法极值搜索算法的波峰值与时间的变化图;
图10是本实施例中采用本发明多峰极值搜索方法得到的波谷值与时间的变化图;
图11是图10中对应极值点与时间的变化图;
图12是初始点为3时梯度法极值搜索算法的波谷值与时间的变化图;
图13是初始点为4时梯度法极值搜索算法的波谷值与时间的变化图;
图14是初始点为5时梯度法极值搜索算法的波谷值与时间的变化图。
具体实施方式
下面结合附图对本发明的具体实施方式进行描述,以便本领域的技术人员更好地理解本发明。需要特别提醒注意的是,在以下的描述中,当已知功能和设计的详细描述也许会淡化本发明的主要内容时,这些描述在这里将被忽略。
实施例
图1是本发明基于梯度法极值搜索的多峰极值搜索方法的具体实施方式流程图。如图1所示,本发明基于梯度法极值搜索的多峰极值搜索方法的具体步骤包括:
S101:设定初始参数:
设定极值搜索的输入初始点x0。
S102:梯度法极值搜索:
以初始点x0作为系统输入,采用梯度法极值搜索算法进行时长为t+m的极值搜索,记录时刻t的系统输出yt和时刻t+m的系统输出yt+m,t和m都是根据实际情况设置的时间参数。
图2是本发明中梯度法极值搜索算法示意图。如图2所示,梯度法极值搜索算法的具体过程包括以下步骤:
S201:令系统输入
S202:输入扰动处理:
将系统输入与扰动S(t)相加,得到输入
本实施例中采用的扰动表示式为:
S(t)=a(h1cos(W(t))+h2sin(W(t))) (1)
其中,η(t)=[cos(W(t)),sin(W(t))]T是布朗单位圆运动,h1>0,h2>0和a>0是设计参数。
S203:获取对应系统输出:
将系统输入x输入系统,得到对应的系统输出y,通过滤波器滤去不稳定的波形,得到稳定的输出
S204:输出扰动处理:
将输出分别与扰动M(t)相乘,得到信号再经过一个自闭环系统产生变量Δy,自闭环系统的过程为:ΔE先乘以一个常系数b1,再经过低通滤波产生信号Δy,将其求导后乘以常系数b2后反馈给ΔE。
本实施例中扰动M(t)可表示为:
S205:寻找下一个估计迭代点:
将Δy乘以一个常系数-k后进行积分,其中k>0,在估计点处寻找到下一个估计迭代点即令返回步骤S202。
梯度法的迭代公式为:x(k+1)=x(k)+λ(k)d(k),其中d(k)=-▽y(x(k)),λ(k)是迭代系数,在此处二个估计点的差值:所以积分后能寻找到下一个估计迭代点
S103:判断是否搜索得到局部极值:
通过比较时刻t的系统输出yt和时刻t+m的系统输出yt+m的差值是否小于预设阈值即可判定是否搜索得到局部极值,即判断是否|yt+m-yt|<ε,ε表示预设阈值,ε>0,如果是,则将yt+m作为当前初始点x0对应的极值,进入步骤S107,否则进入步骤S104。显然,m是一个较短的时间间隔。
S104:延长搜索时间:
如果还未搜索到当前初始点x0对应的极值,则需要延长梯度法极值搜索算法的搜索时间,延长的搜索时间为τ+m,τ表示延长时间参数,记录本次延长搜索时间中时刻τ的系统输出yτ和时刻τ+m的系统输出yτ+m。
S105:判断延长搜索是否搜索得到局部极值:
与步骤S103类似,通过比较延长搜索时间中时刻τ的系统输出yτ和时刻τ+m的系统输出yτ+m的差值是否小于预设阈值即可判定是否搜索得到局部极值,即判断是否|yτ+m-yτ|<ε,ε表示预设阈值ε>0,如果是,则将yτ+m作为当前初始点x0对应的极值,进入步骤S106,否则返回步骤S104。
可见,如果从以初始点x0作为梯度法极值搜索的初始输入开始计时,首先会进行时长为t+m的极值搜索,如果搜索不到极值,还会继续进行时长τ+m的极值搜索,以此类推,每次延长时长为τ+m的搜索,一直搜索下去。
S106:更新初始点:
令初始点x0=x0+h,返回步骤S102,h表示初始点更新步长,是根据实际情况来设置的。
可见,步骤S102至步骤S106形成了一个循环,持续搜索得到系统的各个极值。在步骤S102至步骤S106循环执行期间,对搜索结束参数进行监测,一旦达到搜索结束条件,则多峰极值搜索结束。一般来说,搜索结束参数可以设置为两种,一种是多峰极值搜索方法的总体运行时间,即采用一个计时器来记录多峰极值搜索方法的总体运行时间,当总体运行时间达到预设阈值,则多峰极值搜索结束;一种是当前初始点的值,即如果初始点x0超出预设范围,则多峰极值搜索结束。用户可以根据实际系统的情况来选择采用哪种搜索结束条件进行判定。
为了说明本发明的可行性和正确性,下面分别通过理论推导和仿真验证两种方式来对本发明的技术方案进行分析说明。
本发明在对每个初始值进行局部峰值搜索时,采用的是梯度法极值搜索算法,该方法对于一个给定初始值,能通过不断的迭代进行自闭环循环,从而搜索到给定初始点附近的峰值,其证明的具体过程如下。
对于任意统函数为二次方程的系统:
其中x*,f*和f″是未知的,任意函数f(x)在x=x*处有极值,当f″≠0时(3)式为其局部近似方程,不失一般性,假设f″>0,设计一个算法使x-x*尽可能的小,那么输出y=f(ω)就会趋近于极值f*。
定义为最优输入x*的估计值,令
为输入估计误差。
根据图2所示的基于梯度法的极值搜索方法可知:
上标“·”表示一阶导数,h>0,b1>0,b2>0,c>0和a>0是设计参数,1-b1b2c>0,是输出y的低频分量,s表示拉普拉斯算子。
将式(4)带入式(6)并由式(7)和式(8),可得:
由式(4)和式(5)可得:
将式(12)带入式(3),可得输出
定义输出误差变量Φ=h/(s+h)[y]-f*,x(t)=W(σt),σ表示尺度变换参数,可得误差动态系统:
对于系统(14)使用均值理论,可得其均值系统:
由均值系统可得均衡点:
与其相应的雅可比矩阵:
由h>0,f″>0,k>0,1-b1b2c>0,c>0,b1>0和a>0,可知雅可比矩阵经行变换后即为赫尔维兹矩阵,那么均值系统在均衡点处是指数稳定的,至此证明了对任意一给定初始点,可通过梯度法极值搜索算法稳定的搜索到其附近的极值。
本发明多峰极值搜索方法通过比较两个相近时间点输出值的差值是否小于一阀值来判断是否搜索到该初始点附近的极值,若搜索到,则将初始点每次增加h后作为新的初始点。通过更新初始点的值,即可实现对单输入单输出系统的多峰极值搜索。
为了证明本发明的技术效果,采用一个具体的系统进行了仿真验证。所采用系统的系统函数如下:
图3是本实施例中系统函数的曲线图。如图3所示,本实施例中系统函数是一个周期函数,有无穷多个峰值。本实施例中仅对其中几个峰值进行仿真验证。
首先采用本发明方法对该系统的进行峰值搜索,然后利用梯度法极值搜索算法进行局部单峰的搜索以作为对比,由于梯度法极值搜索算法每次只能搜索到一个峰值,因此采用本发明方法的输入初始值进行多次搜索。
在采用本发明方法对该系统进行峰值搜索时,各参数设置如下:初始值x0=3,初始值更新步长h=1,搜索时间参数t=20,m=1,延长时间参数τ=4,局部极值的判断阈值ε=0.1,搜索结束条件采用搜索的总体运行时间t总=50。为了更好地进行对比,本次仿真验证中对波峰和波谷分别进行搜索,即波峰判断局部极值点的条件为0≤yt+m-yt<ε和0≤yτ+m-yτ<ε,波谷判断局部极值点的条件为0≤yt-yt+m<ε和0≤yτ-yτ+m<ε。
图4是本实施例中采用本发明多峰极值搜索方法得到的波峰值与时间的变化图。图5是图4中对应极值点与时间的变化图。如图4和图5所示,可知共搜索到了3个不同的波峰值,对应的初始点分别为3、4和5,当初始点x0=3时y0=3.596,当x0=4时y1=6.170,当x0=5时y2=14.476。将图3和图4中搜索到的波峰值和对应极值点与图3相比较,可以看出是相吻合的。
分别设置初始值x0为3、4、5采用梯度法极值搜索算法进行单峰搜索。图6是输入初始点为3时梯度法极值搜索算法的波峰值与时间的变化图。图7是输入初始点为4时梯度法极值搜索算法的波峰值与时间的变化图。图8是输入初始点为5时梯度法极值搜索算法的波峰值与时间的变化图。如图6至图8所示,对于梯度法极值搜索算法,当给定的初始值x0=3时y=3.608,当给定的初始值x0=4时y=6.175,当给定的初始值x0=5时y=6.157,将这三幅图的搜索结果与图4的搜索结果进行对比可知,前两幅图误差均小于0.1,而第三幅图相差较大,这是由于在多峰极值搜索中因为不断的搜索使扰动量有所积累,所以搜索到了x0=5右边的峰值,而梯度法极值搜索算法中扰动量每次都是从0开始的,搜索到x0=5左边的峰值。再对x0=6进行搜索。图9是输入初始点为6时梯度法极值搜索算法的波峰值与时间的变化图。由图9可知,当给定的初始值x0=6时y=14.480,与图3中x0=5搜索到的峰值误差小于0.1,由此可以说明在搜索不同初始点附近的峰值方面我们方法的正确性。
图10是本实施例中采用本发明多峰极值搜索方法得到的波谷值与时间的变化图。图11是图10中对应极值点与时间的变化图。如图10和图11所示,可知共搜索到了3个不同的波谷值,对应的初始点分别为3、4和5,当初始点x0=3时y0=-2.623,当x0=4时y1=-3.588,当x0=5时y2=-12.841。将图10和图11中搜索到的波谷值和对应极值点与图3相比较,可以看出是相吻合的。
同样地,分别设置初始点x0为3、4、5采用梯度法极值搜索算法对波谷值进行单峰搜索。图12是初始点为3时梯度法极值搜索算法的波谷值与时间的变化图。图13是初始点为4时梯度法极值搜索算法的波谷值与时间的变化图。图14是初始点为5时梯度法极值搜索算法的波谷值与时间的变化图。如图12至图14所示,对于梯度法极值搜索算法,当给定的初始点x0=3时y=-2.635,当给定的初始点x0=4时y=-3.582,当给定的初始点x0=5时y=-12.862,将这三幅图的搜索结果与图10的搜索结果进行对比可知,误差均小于0.1,由此可以说明在搜索波谷方面本发明方法也是正确的。
综上所述,可知本文所提算法能够准确稳定的搜索到多峰函数的峰值,对于波峰和波谷的搜索都适用。
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。
Claims (3)
1.一种基于梯度法极值搜索的多峰极值搜索方法,其特征在于,包括以下步骤:
S1:设定极值搜索的输入初始点x0;
S2:以初始点x0作为系统输入,采用梯度法极值搜索算法进行时长为t+m的极值搜索,记录时刻t的系统输出yt和时刻t+m的系统输出yt+m,t和m都是根据实际情况设置的时间参数;梯度法极值搜索算法的具体步骤包括:
S2.1:令系统输入
S2.2:将系统输入与扰动S(t)相加,得到输入
S2.3:将系统输入x输入系统,得到对应的系统输出y,通过滤波器滤去不稳定的波形,得到稳定的输出
S2.4:将输出与扰动M(t)相乘,得到信号再经过一个自闭环系统产生变量Δy,自闭环系统的过程为:ΔE先乘以一个常系数b1,再经过低通滤波产生信号Δy,将其求导后乘以常系数b2后反馈给ΔE;
S2.5:将Δy乘以一个常系数-k后进行积分,其中k>0,在估计点处寻找到下一个估计迭代点即令返回步骤S2.2;
S3:判断是否|yt+m-yt|<ε,ε表示预设阈值,ε>0,如果是,则将yt+m作为当前初始点x0对应的极值,进入步骤S6,否则进入步骤S4;
S4:延长梯度法极值搜索算法的搜索时间,延长的搜索时间为τ+m,记录本次延长搜索时间中时刻τ的系统输出yτ和时刻τ+m的系统输出yτ+m;
S5:判断是否|yτ+m-yτ|<ε,ε表示预设阈值,如果是,则将yτ+m作为当前初始点x0对应的极值,进入步骤S6,否则返回步骤S4;
S6:令初始点x0=x0+h,返回步骤S2,h表示初始点更新步长;
在步骤S2至步骤S6循环执行期间,对搜索结束参数进行监测,一旦达到搜索结束条件,则多峰极值搜索结束。
2.根据权利要求1所述的多峰极值搜索方法,其特征在于,所述搜索结束参数采用多峰极值搜索方法的总体运行时间,即当总体运行时间达到预设阈值,则多峰极值搜索结束。
3.根据权利要求1所述的多峰极值搜索方法,其特征在于,所述搜索结束参数采用初始点的值,即如果初始点x0超出预设范围,则多峰极值搜索结束。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710117618.XA CN106991076A (zh) | 2017-03-01 | 2017-03-01 | 基于梯度法极值搜索的多峰极值搜索方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710117618.XA CN106991076A (zh) | 2017-03-01 | 2017-03-01 | 基于梯度法极值搜索的多峰极值搜索方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106991076A true CN106991076A (zh) | 2017-07-28 |
Family
ID=59412581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710117618.XA Pending CN106991076A (zh) | 2017-03-01 | 2017-03-01 | 基于梯度法极值搜索的多峰极值搜索方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106991076A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109386934A (zh) * | 2017-08-02 | 2019-02-26 | 江森自控科技公司 | 具有协作极值搜索控制的建筑物控制系统 |
CN110134048A (zh) * | 2019-05-27 | 2019-08-16 | 国家能源投资集团有限责任公司 | 报警方法、装置、存储介质和处理器 |
CN110262618A (zh) * | 2019-06-19 | 2019-09-20 | 电子科技大学 | 一种基于无稳态振荡极值搜索的光伏峰值功率跟踪方法 |
CN112183473A (zh) * | 2020-10-28 | 2021-01-05 | 电子科技大学 | 一种地质曲面视觉语义特征提取方法 |
-
2017
- 2017-03-01 CN CN201710117618.XA patent/CN106991076A/zh active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109386934A (zh) * | 2017-08-02 | 2019-02-26 | 江森自控科技公司 | 具有协作极值搜索控制的建筑物控制系统 |
US10907846B2 (en) | 2017-08-02 | 2021-02-02 | Johnson Controls Technology Company | Building control system with cooperative extremum-seeking control |
CN109386934B (zh) * | 2017-08-02 | 2021-03-12 | 江森自控科技公司 | 具有协作极值搜索控制的建筑物控制系统 |
CN110134048A (zh) * | 2019-05-27 | 2019-08-16 | 国家能源投资集团有限责任公司 | 报警方法、装置、存储介质和处理器 |
CN110262618A (zh) * | 2019-06-19 | 2019-09-20 | 电子科技大学 | 一种基于无稳态振荡极值搜索的光伏峰值功率跟踪方法 |
CN110262618B (zh) * | 2019-06-19 | 2020-07-31 | 电子科技大学 | 一种基于无稳态振荡极值搜索的光伏峰值功率跟踪方法 |
CN112183473A (zh) * | 2020-10-28 | 2021-01-05 | 电子科技大学 | 一种地质曲面视觉语义特征提取方法 |
CN112183473B (zh) * | 2020-10-28 | 2023-03-24 | 电子科技大学 | 一种地质曲面视觉语义特征提取方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106991076A (zh) | 基于梯度法极值搜索的多峰极值搜索方法 | |
CN106096298B (zh) | 基于观测器的变换器参数在线辨识方法 | |
CN107742885B (zh) | 基于正则匹配追踪的配电网电压功率灵敏度估计方法 | |
CN107529644B (zh) | 一种电力系统静态电压稳定域边界线性近似方法 | |
CN104866465A (zh) | 敏感文本检测方法及装置 | |
CN105608266B (zh) | 基于分数阶微积分的pwm整流器建模方法 | |
CN104933307B (zh) | 基于粒子群优化算法的太阳电池隐式方程参数辨识方法 | |
CN106991075A (zh) | 基于牛顿法极值搜索的多峰极值搜索方法 | |
CN114967460B (zh) | 时滞非线性多智能体系统的分布式协同控制方法 | |
CN105787126A (zh) | k-d树生成方法和k-d树生成装置 | |
CN111060823A (zh) | 一种基于dp模型的低温环境下电池sop在线估计方法 | |
CN109634350B (zh) | 一种基于神经网络来调整占空比实现最大功率跟踪的方法 | |
CN108398642B (zh) | 一种锂离子动力电池soc在线校准方法 | |
CN117498440A (zh) | 并网逆变器混合并联系统暂态电流边界的分析方法及装置 | |
Bhowmik et al. | Power flow analysis of power system using power perturbation method | |
CN112487748B (zh) | 一种考虑时频域特性的锂离子电池分数阶模型建立方法 | |
CN108649585B (zh) | 一种电力系统静态电压稳定域边界快速搜索的直接法 | |
CN117154851A (zh) | 一种基于空间域的光伏输出控制方法、电子设备及介质 | |
CN116682997A (zh) | 燃料电池发动机供氢系统控制方法、装置和电子设备 | |
CN109884884A (zh) | 一种系统控制品质的调整方法及相关装置 | |
CN106105036A (zh) | 用于调节时钟信号频率的方法和电路 | |
CN110262618B (zh) | 一种基于无稳态振荡极值搜索的光伏峰值功率跟踪方法 | |
CN114374202A (zh) | 平衡点无关的电力系统暂态同步稳定性分析方法及系统 | |
CN113036769A (zh) | 一种电力系统静态电压稳定分析方法及系统 | |
CN106774612B (zh) | 局部阴影下基于梯度法极值搜索的光伏最大功率跟踪方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170728 |
|
RJ01 | Rejection of invention patent application after publication |