CN106920621B - 一种可自钝化绝缘的铁硅铝软磁合金粉体的制备方法 - Google Patents

一种可自钝化绝缘的铁硅铝软磁合金粉体的制备方法 Download PDF

Info

Publication number
CN106920621B
CN106920621B CN201710246821.7A CN201710246821A CN106920621B CN 106920621 B CN106920621 B CN 106920621B CN 201710246821 A CN201710246821 A CN 201710246821A CN 106920621 B CN106920621 B CN 106920621B
Authority
CN
China
Prior art keywords
powder
passivation
silicon
self
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710246821.7A
Other languages
English (en)
Other versions
CN106920621A (zh
Inventor
汪涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou New Mstar Technology Ltd
Original Assignee
Guangzhou New Mstar Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou New Mstar Technology Ltd filed Critical Guangzhou New Mstar Technology Ltd
Priority to CN201710246821.7A priority Critical patent/CN106920621B/zh
Publication of CN106920621A publication Critical patent/CN106920621A/zh
Application granted granted Critical
Publication of CN106920621B publication Critical patent/CN106920621B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明提供了一种可自钝化绝缘的铁硅铝软磁合金粉体的制备方法,即在合金熔炼过程中元素P,急冷铸造获得晶体材料;然后缓慢升温、保温、再缓慢降温,使元素P迁移到晶体界面并富集在晶体表面;接着氨分解退火,气氛中微量的H2O结合粉体表面的元素P,使粉体产生自钝化形成磷化层,这种钝化后的铁硅铝粉具有很好的绝缘特性。使用本发明方法制备的粉体,自身绝缘性决定了不需要磷化工序,直接添加树脂和润滑剂便可压制,在降低生产成本的同时又避免了磷化工序带来的环保和安全问题。用这种粉体生产的铁硅铝磁芯,具有极低的磁损耗特性、较高的磁芯的Bs值,优良的直流叠加特性;成型压力降低,压机和模具寿命延长。

Description

一种可自钝化绝缘的铁硅铝软磁合金粉体的制备方法
技术领域
本发明属于磁性材料领域,具体涉及到一种可自钝化软磁合金粉体的制备方法。
背景技术
金属粉芯是一种具有磁电转换特种功能的新型软磁材料,主要包括铁粉芯、铁硅铝磁粉芯、高通量磁粉芯和钼坡莫磁粉芯四大系列。随着电子元器件向高频化、小型化、大电流化以及节能化方面发展,上游行业对金属软磁粉芯的磁损耗、直流叠加特性等质量性能不断地提出更高的要求。
铁硅铝磁粉芯是用含铝5.4%、硅9.6%、其余为铁的合金制成的粉体生产出来的一种金属软磁粉芯。铁硅铝合金又称为Sendust合金。跟其它金属磁粉芯相比,铁硅铝磁粉芯在有效磁导率、损耗、磁性能稳定性、饱和磁通密度和性能可控性等方面都具有优良的特性,因此成为一种性价比最好的金属软磁材料。
铁硅铝合金粉体是铁硅铝软磁粉芯的基体材料,它的质量水平很大程度上决定了铁硅铝磁粉芯性能特性。传统的铁硅铝软磁合金粉体的制备工艺流程为:合金熔炼→铸锭→破碎→球磨→分级筛分→退火热处理→成品。
现有的铸造+球磨的方法生产的铁硅铝软磁合金粉体普遍存在如下不足:1、粉体钝化绝缘不好,导致磁损耗高,直流叠加特性不好,粉体形状异形化,导致成型困难。2、传统的铸件破碎,球磨工艺晶粒度大,制粉困难,电耗高。3、现有的铁硅铝粉体制作磁粉芯时采用的传统磷化技术,磷化层不受控,容易导致磷化层太厚,晶格氧化畸变,同时材料破碎较严重,降低了初始磁导率,磁损随之增加。
发明内容
本发明目的是针对目前合金粉体制备过程中存在的这些不足,提供了一种可自钝化绝缘的铁硅铝软磁合金粉体的制备方法。
本发明的技术步骤及原理说明:
步骤1,元素P加入:在铁硅铝合金熔炼的时间加入元素P。
步骤2,急冷铸造:以一定的降温速率急冷铸造,获得晶粒度小于70μm的晶体材料。
步骤3,升温保温:晶体材料缓慢升温到650℃~700℃之间,保温30分钟以上。
步骤4,再缓慢降温:这样元素P会不断迁移到晶体界面,形成近球形的多棱角晶体。获得的晶体材料晶粒细小、极易破碎成粉体,而且该粉体材料表面富集元素P。
步骤5,球磨过筛:球磨过筛即可获得指定粒径的富集元素P的粉体。
步骤6,氨分解气氛退火:把筛分后的粉体放入到在氨分解气氛中退火,由于N2的存在对退火有一定的保护作用,同时由于微量的H2O结合粉体表面的元素P粉体产生自钝化现象,这种自钝化可以形成很薄且坚硬的磷化层,而氧元素对晶格的畸变影响非常微弱。
进一步的,步骤1中,元素P在铁硅铝合金熔融过程中可加入元素P。
进一步的,步骤1中,元素P的使用量为铁硅铝合金总质量的0.05~0.5%,可根据产品性能的要求作出调整。
进一步的,步骤2中,采用一定的降温速率进行急冷铸造,降温速率大于25℃/S。
进一步的,步骤3中,采用一定的升温速率升温,最高温度到达650℃~700℃之间。在最高温段保温30分钟以上。
进一步的,步骤4中,采用一点的降温速率缓慢降温来获取表面富集元素P多棱角晶体,温度从最高温度下降到100℃,时间要求在60分钟左右。
进一步的,步骤5中,球磨时间为1.5~2.5小时。
进一步的,步骤6中,采用氨分解的退火方式。
进一步的,步骤6中,采用氨分解气氛中,微量的H2O结合粉体表面的元素P粉体产生自钝化现象,形成很薄且坚硬的磷化层。
本发明优点及有益效果:本发明方法采用在合金铸造过程中加入元素P,通过急冷铸造的方式获得一定粒度大小的晶体,接着通过特别的温度处理,使得晶体富集元素P,最后通过氨分解的退火工艺来获得自钝化铁硅铝软磁合金粉体。由于这种铁硅铝软磁粉体具有很好的绝缘特性,这种粉体不需要再经过磷化工序,直接可以添加树脂和润滑剂便可成型压制,减少制备成本以及磷化工序的环保和安全问题。使用它制作的磁芯,具有极低的磁损耗特性;此外,由于元素P的加入,P元素在晶界,合金很容易磨成粉,大大缩短了球磨时间,晶体受应力产生的晶格缺陷也少;同时形成的粉体近球形,可以获得磁芯的较高密度,从而磁芯Bs高,直流叠加优良;而且可以降低磁芯成型压力,延长压机和模具寿命,减少生产成本。
具体实施方式
为了更好地理解本发明,下面结合具体的实施例对本发明方法做进一步的描述。
实施例
步骤1,熔炼加入元素P:按铝5.4%、硅9.6%、其余为铁的比例投放原材料,然后在铁硅铝合金熔融过程中,加入元素P;元素P的添加量为所投放铁硅铝合金原料总质量的0.1%。
步骤2,急冷铸造:熔炼温度达到1450℃后静置20分钟后,进行急冷铸造。以30℃/秒的降温速率让熔融的合金液由1450℃急速降温至100℃,获得晶粒度小于70μm的晶体材料。
步骤3,升温保温:接着升温,让晶体材料由100℃缓慢升温到695℃,并在695℃维持50分钟的保温时间。
步骤4,再缓慢降温:保温结束后,再开始缓慢降温,温度由695℃下降到100℃,注意降温时间控制在65分钟。
步骤5,球磨分筛:球磨,时间控制在2小时。然后过筛,得到指定粒度的粉末。
步骤5,氨分解气氛退火:粉末在氨分解气氛进行退火,在氨分解产生的N2对退火起了保护作用,微量的H2O结合粉体表面的元素P粉体产生自钝化,形成一层又薄有硬的磷化层。
按照以上工艺步骤制备的粉体,粉体的晶粒细化,近球形,粉体表面生成一层很薄但很坚硬的磷化层。这种铁硅铝软磁粉体拥有良好的绝缘特性,用它制作的磁芯,磁损耗特性极低;磁芯的密度较高、从而磁芯Bs高,直流叠加优良。此外,这种粉体制作磁芯时,成型压力也降低了,有利于延长压机和模具寿命,从而减少了生产成本,带来很好的经济效益。
以上所揭露的仅为本发明的优选实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明申请专利范围所作的等同变化,仍属于本发明所涵盖的范围。

Claims (3)

1.一种可自钝化绝缘的铁硅铝软磁合金粉体的制备方法,其特征在于,包括以下工艺步骤:
步骤1,元素P加入:在铁硅铝合金熔炼过程中加入元素P,元素P的使用量为铁硅铝合金总质量的0.05~0.5%;
步骤2,急冷铸造:以大于25℃/S降温速率急冷铸造,获得晶粒度小于70μm的晶体材料;
步骤3,升温保温:晶体材料缓慢升温到650℃~700℃之间,保温30分钟以上;
步骤4,缓慢降温:元素P会不断迁移到晶体界面,形成近球形的表面富集元素P、晶粒细小的多棱角晶体;
步骤5,球磨过筛:富集元素P的晶体球球磨过筛即可获得指定粒径的富集元素P的粉体;
步骤6,氨分解气氛退火:粉体在在氨分解气氛中退火,由于N2的存在对退火有一定的保护作用,同时由于微量的H2O结合粉体表面的元素P粉体产生自钝化形成很薄且坚硬的磷化层。
2.根据权利要求1所述的方法,其特征在于,步骤4中,采用一定的降温速率缓慢降温来获取表面富集元素P多棱角晶体,从最高温度降到100℃,时间要求在60分钟左右。
3.根据权利要求1所述的方法,其特征在于,步骤5中,球磨时间为1.5~2.5小时。
CN201710246821.7A 2017-04-16 2017-04-16 一种可自钝化绝缘的铁硅铝软磁合金粉体的制备方法 Active CN106920621B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710246821.7A CN106920621B (zh) 2017-04-16 2017-04-16 一种可自钝化绝缘的铁硅铝软磁合金粉体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710246821.7A CN106920621B (zh) 2017-04-16 2017-04-16 一种可自钝化绝缘的铁硅铝软磁合金粉体的制备方法

Publications (2)

Publication Number Publication Date
CN106920621A CN106920621A (zh) 2017-07-04
CN106920621B true CN106920621B (zh) 2019-05-10

Family

ID=59568543

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710246821.7A Active CN106920621B (zh) 2017-04-16 2017-04-16 一种可自钝化绝缘的铁硅铝软磁合金粉体的制备方法

Country Status (1)

Country Link
CN (1) CN106920621B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106205935A (zh) * 2016-08-29 2016-12-07 张听 一种非晶态软磁复合磁粉芯及其制备方法
CN106229104A (zh) * 2016-08-31 2016-12-14 北京康普锡威科技有限公司 一种软磁复合粉末及其磁粉芯制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5148824B2 (ja) * 2005-09-06 2013-02-20 株式会社三徳 マグネタイト粉末、マグネタイト粉末の製造方法
EP2509081A1 (en) * 2011-04-07 2012-10-10 Höganäs AB New composition and method
CN104425093B (zh) * 2013-08-20 2017-05-03 东睦新材料集团股份有限公司 一种铁基软磁复合材料及其制备方法
CN104361968A (zh) * 2014-09-29 2015-02-18 惠州市科力磁元有限公司 一种低损耗高磁导率铁硅铝磁粉芯的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106205935A (zh) * 2016-08-29 2016-12-07 张听 一种非晶态软磁复合磁粉芯及其制备方法
CN106229104A (zh) * 2016-08-31 2016-12-14 北京康普锡威科技有限公司 一种软磁复合粉末及其磁粉芯制备方法

Also Published As

Publication number Publication date
CN106920621A (zh) 2017-07-04

Similar Documents

Publication Publication Date Title
CN104036902A (zh) 一种金属磁粉芯的制备方法
CN104851545B (zh) 一种具有晶界扩散层的永磁材料制备方法
US10121586B2 (en) Method for manufacturing Fe-based amorphous metal powder and method for manufacturing amorphous soft magnetic cores using same
CN102303116A (zh) 一种μ40铁硅铝磁粉芯的制造方法
CN105014065B (zh) 一种铁硅铝软磁粉末
CN102360671A (zh) 一种μ75铁硅铝磁粉芯的制造方法
CN103456480A (zh) 软磁纳米晶磁粉芯的一步热处理制备工艺方法
CN103745790A (zh) 金属磁粉芯用混合软磁粉末
CN104078180A (zh) 一种纳米晶软磁复合材料及其制备方法
CN103649357B (zh) Fe基非晶质合金及使用了Fe基非晶质合金粉末的压粉磁芯
CN104028762A (zh) 一种软磁复合材料的制备方法
JP6024831B2 (ja) Fe基ナノ結晶合金の製造方法及びFe基ナノ結晶合金磁心の製造方法
KR20220063764A (ko) 철계 비금합금 분말 및 이의 제조방법과 용도
CN107424711B (zh) 用于制造磁粉芯和模压电感的铁基复合粉末及其制备方法
CN102268605A (zh) 一种铁硅软磁合金及其粉末的制备方法
CN103578679A (zh) 一种软磁电感铁芯材料及制造方法
CN109202092B (zh) 一种使用非真空气雾化制备铁硅铝粉末并制作磁芯的工艺
CN106920621B (zh) 一种可自钝化绝缘的铁硅铝软磁合金粉体的制备方法
JP2014170877A (ja) 軟磁性金属粉末及び圧粉磁心
CN112447350B (zh) 一种稀土永磁体及其制备方法
CN103834862A (zh) 一种铁钴合金及其充磁极头的制备方法
CN103680915A (zh) 一种Fe-Co-Zr-Nb-B-Ga纳米晶磁芯的制备方法
CN105810382A (zh) 一种铁硅材料的制造方法
CN103489556B (zh) 极异方环状烧结铁氧体转子磁石及其制备方法
CN108950434B (zh) 一种激磁功率小的铁基非晶带材及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant