CN106915967A - 一种锌锗掺杂锰氮化合物-氮化锰复合材料及其制备方法 - Google Patents

一种锌锗掺杂锰氮化合物-氮化锰复合材料及其制备方法 Download PDF

Info

Publication number
CN106915967A
CN106915967A CN201510997600.4A CN201510997600A CN106915967A CN 106915967 A CN106915967 A CN 106915967A CN 201510997600 A CN201510997600 A CN 201510997600A CN 106915967 A CN106915967 A CN 106915967A
Authority
CN
China
Prior art keywords
powder
composite
manganese
furnace
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510997600.4A
Other languages
English (en)
Inventor
吕澎沸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201510997600.4A priority Critical patent/CN106915967A/zh
Publication of CN106915967A publication Critical patent/CN106915967A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明的目的在于提供一种Mn3(ZnxGe1-x)N/Mn2N复合材料,通过调整其中x的值,实现复合材料的平均线热膨胀系数在较宽的温度区间内,可正,可负或者近零。其制备方法如下:(1)称取纯度为99.9%的锰粉,然后将其放入管式炉中,在流动的高纯(99.99%)氮气的气氛下,以15℃/分钟的速率升温至800℃,保温25小时,随炉冷却,合成Mn2N;(2)称取过量Mn2N,同时按照化学计量比称量Zn粉和Ge粉,混合均匀,在玛瑙研钵中研磨30分钟;(3)将粉末样品均匀倒入小瓷舟中,再将小瓷舟放入石英管中并同时抽真空至10-5Pa,然后密封石英管;(4)将石英管放进管式炉中,升温至850℃,保温25小时,冷却至室温,关闭电源,随炉冷却至室温,即得到目标产物Mn3(ZnxGe1-x)N/Mn2N。

Description

一种锌锗掺杂锰氮化合物-氮化锰复合材料及其制备方法
技术领域
本发明涉及复合材料领域,具体涉及一种锌锗掺杂锰氮化合物-氮化锰复合材料及其制备方法。
背景技术
材料热膨胀性能对提高航空航天结构和电子设备等的热几何稳定性有重要意义,卫星天线和电子器件等工作环境复杂,不均匀温度分布和大的温度变化引起较大的热变形,造成信号失真;大的温度变化往往引起大的温度应力,造成结构破坏,因此,(近)零膨胀材料的研制备受关注;多年来已经获得系统研究的近零膨胀材料,如磷酸盐陶瓷材料、钛酸铝陶瓷、微晶玻璃等,其低热膨胀材料或零膨胀材料的研究和开发,可以大大的增强材料的抗热冲击性能,提高材料的使用寿命,扩大材料的适用范围,近年来,近零膨胀陶瓷复合材料的设计合成,可以通过如下三种途径实现:(1)通过成分调整获得单一物相的近零膨胀陶瓷材料。如日本Suzuki等人以(HfMg)(WO4)3和Al2(WO4)3为原材料制备出(Al2x(HfMg)1-x)(WO4)3,当x=0.15时,其热膨胀系数接近为零;(2)采用拓扑优化技术设计复合材料中各相材料在单胞域的分布形式,以获得零膨胀材料的微结构形式,并通过有限元法进行模拟验证;也可通过结构设计来实现均质材料的一维或者二维方向上的热膨胀系数的控制,从而在获得近零膨胀系数的同时,保障材料具有优良的力学性能;(3)根据Turner和Kerner经验公式,将具有正的热膨胀系数和负的热膨胀系数的陶瓷材料,通过体积比例的调整,获得近零膨胀的复合材料。
2005年,具有负热膨胀特性的磁性材料(Mn0.96Fe0.04)3(Zn0.5Ge0.5)N的发现,为制备新型高导电高导热近零膨胀材料提供了可能,其基本结构是具有“反钙钛矿”结构的锰氮化物Mn3XN,利用Ge取代部分X,其具有各向同性的负热膨胀性能,体积变化不仅平缓,而且连续,因此即使反复升降温,也不易生产缺陷和变形,化学性能稳定,可当作负热膨胀材料来使用,通过调整元素及其比例来组合X,可调配出负热膨胀系数为-25×10-6K-1的材料,这是目前公开报道负热膨胀特性最为显著的材料,此外,他们还预测该材料具有如下特点:(1)以前发现的负热膨胀材料全部为绝缘体,而此次的新材料具备高导电性和导热性等金属特性,因此可作为散热片来使用;(2)具有与铁和铝等金属材料匹敌的机械强度;(3)其合成主要原料不仅价格便宜,而且具有良好环保性;(4)可用于精密光学和微电子器部件领域;目前利用Al,Ga,Zn,In,Sn取代Mn3XN中的X组元,以获得新型反钙钛矿结构的化合物得到了国内外相关科研机构的广泛研究。
我们通过对该类材料的研究,利用原位反应复合工艺方法,通过调整Mn3(ZnxGe1-x)N/Mn2N复合材料中x的值,可以实现复合材料的平均线热膨胀系数在较宽的温度区间内,可正,可负或者近零,以满足不同应用领域对复合材料的热膨胀系数的不同需求。
发明内容
本发明的目的在于克服现有技术中存在的缺陷,提供一种锌锗掺杂锰氮化合物-氮化锰复合材料,通过调整其中x的值,实现复合材料的平均线热膨胀系数在较宽的温度区间内,可正,可负或者近零,该材料可用于航空航天,微电子器件,光信息传播器件和建筑材料等领域。
为实现上述目的,本发明的技术方案是一种锌锗掺杂锰氮化合物-氮化锰复合材料,分子式为Mn3(ZnxGe1-x)N/Mn2N,其x=0.4,0.6,0.8,其晶体结构为反钙钛矿立方结构,通过调整x的值,在室温10℃至267℃区间内,其复合材料呈正膨胀,负膨胀或近零膨胀,当x=0.4时,其复合材料呈近零膨胀,其平均线热膨胀系数为-2.3×10-7K-1;当x=0.6时,其复合材料呈现负热膨胀,其平均线热膨胀系数为-48.9×10-6K-1;当x=0.8时,其复合材料呈正膨胀,其平均线膨胀系数为35.7×10-6K-1。
其制备方法为:
(1)称取纯度为99.9%的锰粉,然后将其放入管式炉中,在纯度为99.99%的流动氮气气氛下,以15℃/分钟的速率升温至800℃,保温25小时,随炉冷却,合成Mn2N;
(2)称取Mn2N,Zn和Ge粉末,按化学计量数比混合均匀,在玛瑙研钵中研磨30分钟;
(3)将粉末样品均匀倒入小瓷舟中,再将小瓷舟放入石英管中并同时抽真空至10-5Pa,然后密封石英管;
(4)将石英管放进管式炉中,升温至850℃,保温25小时,冷却至室温,关闭电源,随炉冷却至室温,即得到目标产物Mn3(ZnxGe01-x)N/Mn2N。
本发明提供一种锌锗掺杂锰氮化合物-氮化锰复合材料,通过调整其中x的值,实现复合材料的平均线热膨胀系数在较宽的温度区间内,可正,可负或者近零,该材料可用于航空航天,微电子器件,光信息传播器件和建筑材料等领域。
具体实施方式
下面结合实施例,对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
实施例1:(1)称取纯度为99.9%的锰粉,然后将其放入管式炉中,在纯度为99.99%的流动氮气气氛下,以15℃/分钟的速率升温至800℃,保温25小时,随炉冷却,合成Mn2N;
(2)称取Mn2N,Zn和Ge粉末,化学计量数比Mn2N∶Zn∶Sn=15∶2∶3,混合均匀,在玛瑙研钵中研磨30分钟;
(3)将粉末样品均匀倒入小瓷舟中,再将小瓷舟放入石英管中并同时抽真空至10-5Pa,然后密封石英管;
(4)将石英管放进管式炉中,升温至850℃,保温25小时,冷却至室温,关闭电源,随炉冷却至室温,即得到目标产物Mn3(Zn0.4Ge0.6)N/Mn2N。
实施例2:(1)称取纯度为99.9%的锰粉,然后将其放入管式炉中,在纯度为99.99%的流动氮气气氛下,以15℃/分钟的速率升温至800℃,保温25小时,随炉冷却,合成Mn2N;
(2)称取Mn2N,Zn和Ge粉末,摩尔比Mn2N∶Zn∶Sn=15∶3∶2,均匀,在玛瑙研钵中研磨30分钟;
(3)将粉末样品均匀倒入小瓷舟中,再将小瓷舟放入石英管中并同时抽真空至10-5Pa,然后密封石英管;
(4)将石英管放进管式炉中,升温至850℃,保温25小时,冷却至室温,关闭电源,随炉冷却至室温,即得到目标产物Mn3(Zn0.6Ge0.4)N/Mn2N。
实施例3:(1)称取纯度为99.9%的锰粉,然后将其放入管式炉中,在纯度为99.99%的流动氮气气氛下,以15℃/分钟的速率升温至800℃,保温25小时,随炉冷却,合成Mn2N;
(2)称取Mn2N,Zn和Sn粉末,摩尔比Mn2N∶Zn∶Sn=15∶4∶1,混合均匀,在玛瑙研钵中研磨30分钟;
(3)将粉末样品均匀倒入小瓷舟中,再将小瓷舟放入石英管中并同时抽真空至10-5Pa,然后密封石英管;
(4)将石英管放进管式炉中,升温至850℃,保温25小时,冷却至室温,关闭电源,随炉冷却至室温,即得到目标产物Mn3(Zn0.8Ge0.2)N/Mn2N。
当x=0.4时,其复合材料呈近零膨胀,其平均线热膨胀系数为-2.3×10-7K-1;当x=0.6时,其复合材料呈现负热膨胀,其平均线热膨胀系数为-48.9×10-6K-1;当x=0.8时,其复合材料呈正膨胀,其平均线膨胀系数为35.7×10-6K-1
本发明提供一种锌锗掺杂锰氮化合物-氮化锰复合材料,通过调整其中x的值,实现复合材料的平均线热膨胀系数在较宽的温度区间内,可正,可负或者近零,该材料可用于航空航天,微电子器件,光信息传播器件和建筑材料等领域。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (4)

1.一种锌锗掺杂锰氮化合物-氮化锰复合材料,其特征在于,所述材料的分子式为Mn3(ZnxGe1-x)N/Mn2N,其x=0.4,0.6,0.8,其晶体结构为反钙钛矿立方结构,通过调整x的值,在室温10℃至267℃区间内,其复合材料呈正膨胀,负膨胀或近零膨胀,当x=0.4时,其复合材料呈近零膨胀,其平均线热膨胀系数为-2.3×10-7K-1;当x=0.6时,其复合材料呈现负热膨胀,其平均线热膨胀系数为-48.9×10-6K-1;当x=0.8时,其复合材料呈正膨胀,其平均线膨胀系数为35.7×10-6K-1
2.如权利要求1所述的锌锗掺杂锰氮化合物-氮化锰复合材料,其特征在于,(1)称取纯度为99.9%的锰粉,然后将其放入管式炉中,在纯度为99.99%的流动氮气气氛下,以15℃/分钟的速率升温至800℃,保温25小时,随炉冷却,合成Mn2N;
(2)称取Mn2N,Zn和Ge粉末,化学计量数比Mn2N∶Zn∶Sn=15∶2∶3,混合均匀,在玛瑙研钵中研磨30分钟;
(3)将粉末样品均匀倒入小瓷舟中,再将小瓷舟放入石英管中并同时抽真空至10-5Pa,然后密封石英管;
(4)将石英管放进管式炉中,升温至850℃,保温25小时,冷却至室温,关闭电源,随炉冷却至室温,即得到目标产物Mn3(Zn0.4Ge0.6)N/Mn2N。
3.如权利要求1所述的一种锌锗掺杂锰氮化合物-氮化锰复合材料的制备方法,包括以下步骤:
(1)称取纯度为99.9%的锰粉,然后将其放入管式炉中,在纯度为99.99%的流动氮气气氛下,以15℃/分钟的速率升温至800℃,保温25小时,随炉冷却,合成Mn2N;
(2)称取Mn2N,Zn和Ge粉末,摩尔比Mn2N∶Zn∶Sn=15∶3∶2,均匀,在玛瑙研钵中研磨30分钟;
(3)将粉末样品均匀倒入小瓷舟中,再将小瓷舟放入石英管中并同时抽真空至10-5Pa,然后密封石英管;
(4)将石英管放进管式炉中,升温至850℃,保温25小时,冷却至室温,关闭电源,随炉冷却至室温,即得到目标产物Mn3(Zn0.6Ge0.4)N/Mn2N。
4.如权利要求1所述的一种锌锗掺杂锰氮化合物-氮化锰复合材料的制备方法,包括以下步骤:
(1)称取纯度为99.9%的锰粉,然后将其放入管式炉中,在纯度为99.99%的流动氮气气氛下,以15℃/分钟的速率升温至800℃,保温25小时,随炉冷却,合成Mn2N;
(2)称取Mn2N,Zn和Sn粉末,摩尔比Mn2N∶Zn∶Sn=15∶4∶1,混合均匀,在玛瑙研钵中研磨30分钟;
(3)将粉末样品均匀倒入小瓷舟中,再将小瓷舟放入石英管中并同时抽真空至10-5Pa,然后密封石英管;
(4)将石英管放进管式炉中,升温至850℃,保温25小时,冷却至室温,关闭电源,随炉冷却至室温,即得到目标产物Mn3(Zn0.8Ge0.2)N/Mn2N。
CN201510997600.4A 2015-12-28 2015-12-28 一种锌锗掺杂锰氮化合物-氮化锰复合材料及其制备方法 Pending CN106915967A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510997600.4A CN106915967A (zh) 2015-12-28 2015-12-28 一种锌锗掺杂锰氮化合物-氮化锰复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510997600.4A CN106915967A (zh) 2015-12-28 2015-12-28 一种锌锗掺杂锰氮化合物-氮化锰复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN106915967A true CN106915967A (zh) 2017-07-04

Family

ID=59454939

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510997600.4A Pending CN106915967A (zh) 2015-12-28 2015-12-28 一种锌锗掺杂锰氮化合物-氮化锰复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106915967A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109652672A (zh) * 2019-02-28 2019-04-19 哈尔滨工业大学 一种反钙钛矿锰氮化合物/铝双连通结构复合材料及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109652672A (zh) * 2019-02-28 2019-04-19 哈尔滨工业大学 一种反钙钛矿锰氮化合物/铝双连通结构复合材料及其制备方法
CN109652672B (zh) * 2019-02-28 2020-10-16 哈尔滨工业大学 一种反钙钛矿锰氮化合物/铝双连通结构复合材料及其制备方法

Similar Documents

Publication Publication Date Title
CN102017025B (zh) 制备用于磁冷却或热泵的金属基材料的方法
CN105154694A (zh) 通过电弧熔炼和铜模喷铸制备磁热材料Mn-Ni-Ge:Fe基系列合金棒材的方法
CN103611896B (zh) 一种通过电弧熔炼和熔体快淬制备MnCoGe基和MnNiGe基合金薄带的方法
CN111266587B (zh) 一种轻质致密近零膨胀金属基复合材料的制备方法
CN102320650B (zh) 一种锌锡掺杂锰氮化合物-氮化锰复合材料
CN101734730B (zh) 具有近零热膨胀特性的“反钙钛矿结构”金属间化合物材料的制备方法
CN104975241A (zh) 一种非晶合金带材的制造方法
CN101413093A (zh) 一种大块钆基复合非晶磁致冷材料及其制备方法
CN110983174B (zh) 一种具有塑性的单轴零膨胀复合材料及其制备方法
CN109136656A (zh) Gd、Fe掺杂DyCo2和HoCo2型Laves相零膨胀金属间化合物及制备方法
CN101734722A (zh) 一种具有近零热膨胀特性的“反钙钛矿结构”固体材料
CN106915967A (zh) 一种锌锗掺杂锰氮化合物-氮化锰复合材料及其制备方法
CN102220535B (zh) 一种零膨胀复合材料
Okura et al. Synthesis and Na+ conduction properties of Nasicon-type glass-ceramics in the system Na2O-Y2O3-X2O3-SiO2 (X= B, Al, Ga) and effect of Si substitution
CN101792659A (zh) 用于磁制冷的稀土-铜-硅材料及其制备方法
CN106906432B (zh) 一种钴基块体非晶态合金的应用
CN103449436B (zh) 一种类钙钛矿结构负膨胀锰碳化合物制备方法
CN104357727A (zh) 一种Mn-Fe-P-Si磁制冷材料及其制备方法
CN102320663A (zh) 一种具有负热膨胀特性的粉体材料
CN106917026A (zh) 一种负热膨胀材料Zn0.5Sn0.5NMn3及其制备方法
CN106929775A (zh) 大非晶形成能力高磁热效应钆基块体非晶合金及制备方法
CN109103323A (zh) 一种通过填充Ga、Te替换Sb提高基方钴矿材料热电性能的方法
CN102220536A (zh) 一种具有极微负热膨胀特性的粉体材料
CN103449386B (zh) 一种具有超大负热膨胀的粉体及其制备方法
CN105752950A (zh) 一种具有高温负热膨胀性能的金属间化合物材料及其合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170704