CN106914219A - 一种磁性碳微球在去除废水中六价铬的应用 - Google Patents

一种磁性碳微球在去除废水中六价铬的应用 Download PDF

Info

Publication number
CN106914219A
CN106914219A CN201710222412.3A CN201710222412A CN106914219A CN 106914219 A CN106914219 A CN 106914219A CN 201710222412 A CN201710222412 A CN 201710222412A CN 106914219 A CN106914219 A CN 106914219A
Authority
CN
China
Prior art keywords
magnetic
adsorption
chitosan
hexavalent chromium
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710222412.3A
Other languages
English (en)
Inventor
王诗生
戴波
徐倩倩
盛广宏
练建军
王萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Technology AHUT
Original Assignee
Anhui University of Technology AHUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Technology AHUT filed Critical Anhui University of Technology AHUT
Priority to CN201710222412.3A priority Critical patent/CN106914219A/zh
Publication of CN106914219A publication Critical patent/CN106914219A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明公开了一种磁性碳微球在去除废水中六价铬的应用,属于重金属废水处理技术领域。本发明以壳聚糖为碳源,采用水热碳化法一步合成了磁性碳微球,该吸附剂内核为四氧化三铁,壳聚糖碳化产物包裹在四氧化三铁的表面。该吸附剂表面具有丰富含氧基团和氨基等活性基团,可用于水体中Cr(Ⅵ)吸附去除,在pH=2和298K的条件下对水中六价铬的最大吸附量为310mg/g,同时吸附速率快,5分钟即对六价铬的去除率高达93%。由于该吸附剂具有较高的饱和磁化强度,在外加磁场的条件下,可快速实现磁性分离,解决了壳聚糖碳化产物吸附饱和后难以分离的难题。

Description

一种磁性碳微球在去除废水中六价铬的应用
技术领域
本发明属于重金属废水处理技术领域,具体涉及磁性碳微球的制备及其在吸附去除废水中六价铬的应用。
背景技术
重金属铬是我国优先控制的污染物之一,主要来源于电镀、冶金、制革、印染和化工等行业排放的三废。铬在自然界中主要以Cr(Ⅵ)和Cr(Ⅲ)两种形态存在。铬的毒性与其存在价态有关,通常Cr(Ⅵ)的毒性比Cr(Ⅲ)高100倍,且更易为人体吸收而在体内蓄积。所谓的铬污染主要是指Cr(Ⅵ)污染,Cr(Ⅵ)被公认为致畸、致癌、致突变物质。由于铬的毒性强,且不能被微生物分解,易在生物体内富集,因此水溶性Cr(Ⅵ)已被列为对人体危害最大的8种化学物质之一,是国际公认的3种致癌金属物之一。
目前,含铬废水的处理方法主要有化学沉淀法、离子交换法、膜分离法、光催化法、电化学法、生物化学法等。吸附法具有操作简单、成本较低、处理效果好等优点,已广泛用于处理含铬废水。近来废弃生物材料和粘土矿物等以其来源广泛、成本低廉和环境友好等特点在含铬废水治理方面受到关注,已有将农业副产品如木屑、树皮、果皮、谷壳等非活体生物材料,及沸石、伊利石、膨润土和凹凸棒石等粘土矿物用于Cr(Ⅵ)的吸附去除研究(Journal of Hazardous Materials,2006,137(2):762-811;Chemsophere,2015,138:726-734),但这些材料对Cr(Ⅵ)的吸附容量有限,有部分吸附剂还不能进行广泛的应用。
壳聚糖是通过甲壳素脱乙酰基而制得的一种天然阳离子多聚糖,具有生物相容性、环境友好性等特点,其分子链上富含—OH和—NH2等活性基团,可以通过静电或络合作用从废水中吸附重金属离子等污染物。但是由于壳聚糖在酸性水溶液中容易发生溶解并形成胶体,通常无法直接在酸性条件下使用。但是对于Cr(Ⅵ)只能在酸性条件下才能有良好效果。为了提高在酸性条件下的稳定性,必须对壳聚糖进行改性,如和戊二醛、环氧氯丙烷和乙二胺等发生交联反应。典型专利和文献有:
中国专利“一种磁性壳聚糖微球处理剂及其制备方法”(申请号201310097557.7,公开号103127914A,公开日2013年6月5日)是将电气石和磁性壳聚糖微球混合粉加入海藻酸钠和聚乙烯醇中溶解、混匀,然后固化成球,用于吸附去除水中Cr(Ⅵ)。
中国专利“改性磁性壳聚糖微球重金属离子吸附剂的制备方法”(申请号201310189171.9,公开号103263895A,公开日2013年8月28日)首先以壳聚糖为原料制备磁性壳聚糖微球,然后对其进行化学接枝改性,得到一种Cr(Ⅵ)吸附剂。
中国专利“一种壳聚糖与磁性生物碳复合的磁性吸附剂去除废水中Cr(Ⅵ)的方法”(申请号201510126324.4,公开号104787831A,公开日2015年7月22日)先利用FeCl3·6H2O对水葫芦生物质进行浸泡,然后对浸泡过的生物质进行热解煅烧,从而制得磁性生物炭,再将壳聚糖复合到磁性生物炭表面。
Materials Science and Engineering C,2013,33:1214-1218。作者采用加热回流法制备磁性壳聚糖微球,然后在加以改性。
这些交联改性的制备过程相当复杂,且需要大量的有机溶剂,易产生二次污染,有时还会导致吸附性能的下降。
近年来,有学者提出将壳聚糖进行水热碳化后得到一种碳化材料,该材料具有抗酸性且保留了壳聚糖的活性基团,对Cr(Ⅵ)的吸附容量较高(International Journal ofBiological Macromolecules,2016,91:443-449),但是吸附后难以分离限制其工业化应用。
发明内容
为克服现有技术的不足,本发明要解决的技术问题是提供一种磁性碳微球在去除水中六价铬的应用,以期吸附效率高、碳微球吸附饱和后固液分离容易。
本发明的技术问题是通过以下技术方案予以实现的。
本发明提供了一种磁性碳微球在去除水中六价铬中的应用,具体是将磁性碳微球投入初始浓度为100~600mg/L的六价铬废水中,在pH=2条件下吸附去除六价铬。
所述磁性碳微球是通过以下步骤予以制备的:
1)将六水合三氯化铁加入到乙二醇中,在磁力搅拌条件下加入壳聚糖粉末,得到淡黄色粘稠液体。
2)在步骤1)得到的淡黄色粘稠液中加入醋酸钠固体,并不断搅拌。
3)将步骤2)处理得到的溶液转移至100mL聚四氟乙烯反应釜中,180℃水热条件下反应12~48h。
4)反应结束自然冷却后磁分离,用无水乙醇和蒸馏水各洗涤3~4次,得到的黑色产物经烘干、研磨、过筛,即得磁性碳微球。
上述六水合三氯化铁和壳聚糖粉末的质量比为1:0.3~4.5;上述六水合三氯化铁和醋酸钠的质量比为1:3。
进一步的,所述六价铬废水的初始浓度为200mg/L;磁性碳微球和六价铬废水的质量比为1:800,吸附温度为25℃,吸附时间为5min,此时对废水中六价铬的吸附去除率高达93%。
本发明科学原理:
本发明以壳聚糖为碳源,采用高温水热碳化法一步制备出磁性碳微球。该吸附剂具有核-壳结构,内核为磁性四氧化三铁,外壳为壳聚糖碳化产物,表面具有丰富含氧基团和氨基等活性基团,可用于水体中Cr(Ⅵ)吸附去除;内核为四氧化三铁,具有较高的饱和磁化强度,在外加磁场的条件下,可快速磁性分离,解决了壳聚糖碳化产物吸附饱和后难以分离的难题。
与现有技术相比,本发明具有如下优点:
(1)吸附容量大。本发明提供的吸附剂表面富含OH、COOH和NH2等活性基团,对六价铬具有较强的吸附能力。在298K、pH=2和磁性碳微球与含铬废水的质量比为1/800的条件下,该吸附剂的最大理论吸附量为310mg/g。
(2)吸附去除率高。在六价铬初始浓度200mg/L,pH=2和磁性碳微球与含铬废水的质量比=1/800的条件下,5分钟内对六价铬的吸附去除率高达93%。
(3)可实现快速固液分离。本发明提供的吸附剂具有典型的核壳结构,内核为磁性四氧化三铁,外壳为壳聚糖水热碳化产物。吸附饱和后,可在外加磁场条件下实现快速固液分离。
(4)制备工艺简单,能耗低,易操作;采用高温水热碳化法一步制备出磁性碳微球。
附图说明
图1是本发明实施例3中磁性碳微球的扫描电镜(SEM)图。
图2是本发明实施例3中磁性碳微球的X射线衍射(XRD)图。
图3是本发明实施例3中磁性碳微球的红外光谱(FTIR)图;(其中:A代表Fe3O4,B代表磁性碳微球)。
图4是本发明实施例3中磁性碳微球的磁滞回线图。
具体实施方式
下面通过实例,对本发明作进一步详细的描述,但本发明不局限于下述实施例。
实施例1
1)将1.0g六水合三氯化铁加入到70mL乙二醇中,在磁力搅拌条件下再加入0.3g壳聚糖粉末,得到淡黄色粘稠液体;
2)在步骤1)处理得到的液体中加入3.0g醋酸钠,并不断搅拌;
3)将步骤2)处理得到的溶液转移至100mL聚四氟乙烯反应釜中,180℃水热条件下反应24h;
4)自然冷却后磁分离,用无水乙醇和蒸馏水各洗涤3~4次,得到的黑色产物放入到电热鼓风干燥箱中60℃烘干、研磨过筛,即得磁性碳微球;
5)称取0.05g实例1中制备的吸附剂,加入到40mLK2Cr2O7溶液中(pH=2,300mg/L),在298K时振荡至吸附平衡,磁分离后测定上清液中Cr(Ⅵ)浓度,计算得到Cr(Ⅵ)去除率为43.5%。
实施例2
1)同实施例1,所不同的是在磁性碳微球制备过程中添加的壳聚糖为1.5g;
2)称取0.05g步骤1)中制备的吸附剂,加入到40mLK2Cr2O7溶液中(pH=2,300mg/L),在298K时振荡至吸附平衡,磁分离后测定上清液中Cr(Ⅵ)浓度,计算得到Cr(Ⅵ)去除率为88.9%。
实施例3
1)同实施例1,所不同的是在磁性微球制备过程中添加的壳聚糖为3.0g;
2)称取0.05g步骤1)中制备的吸附剂,加入到40mLK2Cr2O7溶液中(pH=2,300mg/L),在298K时振荡至吸附平衡,磁分离后测定上清液中Cr(Ⅵ)浓度,计算得到Cr(Ⅵ)去除率为93.5%。
实施例4
1)同实施例1,所不同的是在磁性碳微球制备过程中添加的壳聚糖为4.5g;
2)称取0.05g步骤1)中制备的吸附剂,加入到40mLK2Cr2O7溶液中(pH=2,300mg/L),在298K时振荡至吸附平衡,磁分离后测定上清液中Cr(Ⅵ)浓度,计算得到Cr(Ⅵ)去除率为96.7%。但是实施例4制备的吸附剂磁性较弱,外加磁场不能完全分离。
实施例5
1)同实施例3,所不同的是水热反应时间为12h;
2)称取0.05g步骤1)中制备的吸附剂,加入到40mLK2Cr2O7溶液中(pH=2,300mg/L),在298K时振荡至吸附平衡,磁分离后测定上清液中Cr(Ⅵ)浓度,计算得到Cr(Ⅵ)去除率为80.7%。
实施例6
1)同实施例3,所不同的是水热反应时间为48h;
2)称取0.05g步骤1)中制备的吸附剂,加入到40mLK2Cr2O7溶液中(pH=2,300mg/L),在298K时振荡至吸附平衡,磁分离后测定上清液中Cr(Ⅵ)浓度,计算得到Cr(Ⅵ)去除率为96.9%。
实施例7
称取0.05g实施例3中制备的吸附剂,加入到40mLK2Cr2O7溶液中(300mg/L),在298K时振荡至吸附平衡,磁分离后测定上清液中Cr(Ⅵ)浓度,当吸附溶液pH=3,Cr(Ⅵ)去除率为28.4%。吸附溶液pH=4,Cr(Ⅵ)去除率为22.6%;吸附溶液pH=5,Cr(Ⅵ)去除率为18.9%;吸附溶液pH=6,Cr(Ⅵ)去除率为11.4%。
由此可知,实施例3制备的吸附剂对水体中Cr(Ⅵ)的吸附量随着pH的升高而逐渐减小。
实施例8
称取若干份0.050g实施例3中制备的吸附剂,分别加入到20mL重铬酸钾溶液中(pH=2,200mg/L),在298K时振荡,在预先设定时间点取样,磁分离后测定上清液中Cr(Ⅵ)剩余浓度,计算结果列于表1中。
表1吸附动力学
由表1可知,本发明提供的吸附剂对Cr(Ⅵ)吸附速率较快,在吸附1h后基本能达到平衡,去除率高达99%。
实施例9
称取若干份0.050g实施例3中制备的吸附剂,分别加入到40mL不同浓度(100~600mg/L)重铬酸钾溶液中(pH=2),在298K时振荡至吸附平衡,磁分离后测定上清液中Cr(Ⅵ)剩余浓度,计算结果列于表2中。
表2吸附等温线
对表2数据进行F和L型线性拟合,结果符合L型吸附。根据L型方程计算理论最大吸附量为310mg/g。
以上所述是本发明的优选实施方案,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (2)

1.一种磁性碳微球在去除废水中六价铬的应用,其特征在于,将磁性碳微球投入初始浓度为100~600mg/L的六价铬废水中,在pH=2条件下吸附去除六价铬;
所述磁性碳微球是通过以下步骤予以制备的:
1)将六水合三氯化铁加入到乙二醇中,在磁力搅拌条件下加入壳聚糖粉末,得到淡黄色粘稠液体;
2)在步骤1)得到的淡黄色粘稠液中加入醋酸钠固体,并不断搅拌;
3)将步骤2)处理得到的溶液转移至100mL聚四氟乙烯反应釜中,180℃水热条件下反应12~48h;
4)反应结束自然冷却后磁分离,用无水乙醇和蒸馏水各洗涤3~4次,得到的黑色产物经烘干、研磨、过筛,即得磁性碳微球;
所述的六水合三氯化铁和壳聚糖粉末的质量比为1:0.3~4.5;所述的六水合三氯化铁和醋酸钠的质量比为1:3。
2.如权利要求1所述的磁性碳微球在去除废水中六价铬的应用,其特征在于,所述磁性碳微球与六价铬废水的质量比为1:800,吸附温度为25℃,吸附时间为5min。
CN201710222412.3A 2017-04-07 2017-04-07 一种磁性碳微球在去除废水中六价铬的应用 Pending CN106914219A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710222412.3A CN106914219A (zh) 2017-04-07 2017-04-07 一种磁性碳微球在去除废水中六价铬的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710222412.3A CN106914219A (zh) 2017-04-07 2017-04-07 一种磁性碳微球在去除废水中六价铬的应用

Publications (1)

Publication Number Publication Date
CN106914219A true CN106914219A (zh) 2017-07-04

Family

ID=59568605

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710222412.3A Pending CN106914219A (zh) 2017-04-07 2017-04-07 一种磁性碳微球在去除废水中六价铬的应用

Country Status (1)

Country Link
CN (1) CN106914219A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107899541A (zh) * 2017-09-27 2018-04-13 同济大学 一种用于吸附废水中六价铬离子的磁性碳纳米复合材料的制备方法
CN109250701A (zh) * 2018-08-21 2019-01-22 中国林业科学研究院林产化学工业研究所 一种生物基碳微球材料及其制备方法和应用
CN110064378A (zh) * 2019-05-08 2019-07-30 广州大学 一种高吸附性能磁性壳聚糖碳球及其制备方法和应用
CN110975463A (zh) * 2019-03-07 2020-04-10 乐清市智格电子科技有限公司 环保型空气净化材料的制备工艺
CN111298730A (zh) * 2020-03-02 2020-06-19 江苏科技大学 一种磁性生物微胶囊、制备方法及其应用
CN112337432A (zh) * 2020-11-03 2021-02-09 广州大学 一种过渡金属掺杂的碳微球及其制备方法与应用
CN112892478A (zh) * 2021-01-17 2021-06-04 桂林理工大学 一种生物质染料吸附剂的制备方法及其应用
CN113413880A (zh) * 2021-06-07 2021-09-21 中南大学 一种基于热改性壳聚糖包覆铁锰矿物材料的制备及应用
CN115779865A (zh) * 2022-12-16 2023-03-14 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) 一种处理含铬和铅废水的改性茶渣微球制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805037A (zh) * 2010-04-26 2010-08-18 南京大学 一种磁性壳聚糖微粒去除水中腐殖酸类污染物的方法
CN102258981A (zh) * 2011-05-27 2011-11-30 清华大学 磁性壳聚糖纳米微粒的制备及其处理重金属废水的方法
CN102350309A (zh) * 2011-06-30 2012-02-15 浙江工业大学 一种基于磁性壳聚糖微球的内毒素吸附介质及其使用方法
CN102784624A (zh) * 2012-07-23 2012-11-21 合肥工业大学 一种炭包覆磁性吸附材料的制备方法及其用途
CN103041777A (zh) * 2013-01-28 2013-04-17 天津市水利科学研究院 Fe3O4/CS磁性材料吸附剂及制备方法和污水处理方法
CN106423087A (zh) * 2016-12-23 2017-02-22 安徽工业大学 一种磁性壳聚糖碳球的制备及在吸附去除水中Cr(Ⅵ)上的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805037A (zh) * 2010-04-26 2010-08-18 南京大学 一种磁性壳聚糖微粒去除水中腐殖酸类污染物的方法
CN102258981A (zh) * 2011-05-27 2011-11-30 清华大学 磁性壳聚糖纳米微粒的制备及其处理重金属废水的方法
CN102350309A (zh) * 2011-06-30 2012-02-15 浙江工业大学 一种基于磁性壳聚糖微球的内毒素吸附介质及其使用方法
CN102784624A (zh) * 2012-07-23 2012-11-21 合肥工业大学 一种炭包覆磁性吸附材料的制备方法及其用途
CN103041777A (zh) * 2013-01-28 2013-04-17 天津市水利科学研究院 Fe3O4/CS磁性材料吸附剂及制备方法和污水处理方法
CN106423087A (zh) * 2016-12-23 2017-02-22 安徽工业大学 一种磁性壳聚糖碳球的制备及在吸附去除水中Cr(Ⅵ)上的应用

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107899541A (zh) * 2017-09-27 2018-04-13 同济大学 一种用于吸附废水中六价铬离子的磁性碳纳米复合材料的制备方法
CN107899541B (zh) * 2017-09-27 2020-01-31 同济大学 一种用于吸附废水中六价铬离子的磁性碳纳米复合材料的制备方法
CN109250701A (zh) * 2018-08-21 2019-01-22 中国林业科学研究院林产化学工业研究所 一种生物基碳微球材料及其制备方法和应用
CN110975463A (zh) * 2019-03-07 2020-04-10 乐清市智格电子科技有限公司 环保型空气净化材料的制备工艺
CN110064378A (zh) * 2019-05-08 2019-07-30 广州大学 一种高吸附性能磁性壳聚糖碳球及其制备方法和应用
CN110064378B (zh) * 2019-05-08 2021-10-26 广州大学 一种高吸附性能磁性壳聚糖碳球及其制备方法和应用
CN111298730A (zh) * 2020-03-02 2020-06-19 江苏科技大学 一种磁性生物微胶囊、制备方法及其应用
CN111298730B (zh) * 2020-03-02 2021-09-24 江苏科技大学 一种磁性生物微胶囊、制备方法及其应用
CN112337432A (zh) * 2020-11-03 2021-02-09 广州大学 一种过渡金属掺杂的碳微球及其制备方法与应用
CN112892478A (zh) * 2021-01-17 2021-06-04 桂林理工大学 一种生物质染料吸附剂的制备方法及其应用
CN113413880A (zh) * 2021-06-07 2021-09-21 中南大学 一种基于热改性壳聚糖包覆铁锰矿物材料的制备及应用
CN115779865A (zh) * 2022-12-16 2023-03-14 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) 一种处理含铬和铅废水的改性茶渣微球制备方法

Similar Documents

Publication Publication Date Title
CN106914219A (zh) 一种磁性碳微球在去除废水中六价铬的应用
CN111036174B (zh) 一种基于铁富集植物的磁性生物炭及其制备方法和应用
Li et al. Removal and adsorption mechanism of tetracycline and cefotaxime contaminants in water by NiFe2O4-COF-chitosan-terephthalaldehyde nanocomposites film
Foroutan et al. Cadmium ion removal from aqueous media using banana peel biochar/Fe3O4/ZIF-67
Abd El-Monaem et al. Zero-valent iron supported-lemon derived biochar for ultra-fast adsorption of methylene blue
Cai et al. Preparation of amino-functionalized magnetic biochar with excellent adsorption performance for Cr (VI) by a mild one-step hydrothermal method from peanut hull
Rasheed Magnetic nanomaterials: Greener and sustainable alternatives for the adsorption of hazardous environmental contaminants
Farrokhi et al. Application of ZnO–Fe 3 O 4 nanocomposite on the removal of azo dye from aqueous solutions: kinetics and equilibrium studies
Huo et al. Adsorptive removal of Sr (II) from aqueous solution by polyvinyl alcohol/graphene oxide aerogel
CN103933951B (zh) 一种基于壳聚糖的吸附六价铬的吸附剂的制备方法
Karthikeyan et al. Hydrothermal synthesis of hydroxyapatite-reduced graphene oxide (1D–2D) hybrids with enhanced selective adsorption properties for methyl orange and hexavalent chromium from aqueous solutions
Tao et al. Highly efficient Cr (VI) removal from industrial electroplating wastewater over Bi2S3 nanostructures prepared by dual sulfur-precursors: Insights on the promotion effect of sulfate ions
Chen et al. Arsenic removal via a novel hydrochar from livestock waste co-activated with thiourea and γ-Fe2O3 nanoparticles
CN107262033A (zh) 一种凹凸棒石/Fe3O4/碳复合材料的制备及应用
CN106984272A (zh) 一种用于水处理的磁性活性炭吸附剂的制备方法
CN111097384B (zh) 一种C-Bi2O3-CuO-ZnO吸附材料及其制备方法和应用
CN106423087B (zh) 一种磁性壳聚糖碳球的制备及在吸附去除水中Cr(Ⅵ)上的应用
Karthik et al. Ferrite-supported nanocomposite polymers for emerging organic and inorganic pollutants removal from wastewater: a review
CN108927101A (zh) 一种针状纳米羟基氧化铁吸附剂及其制备方法
Beig et al. Adsorption of Cr (VI) by NaOH-modified microporous activated carbons derived from the wastes of Amaranthus retroflexus, Magnolia soulangeana, and Tanacetum Vulgar L.: mechanism, isotherms, and kinetic studies
CN108927172B (zh) 一种负载金纳米粒子的磁性生物质碳材料的制备及其应用
Cui et al. Cellulose bridged carbonate hydroxyapatite nanoparticles as novel adsorbents for efficient Cr (VI) removal
Pathania et al. Biochar supported Ag/Cu-ZrO2 nano-hetero assembly for enhanced adsorption of heavy metal ions and biomedical applications
Kayani Bimetallic metal–organic frameworks (BMOFs) for dye removal: a review
Guo et al. Enhanced removal of aqueous chromium (VI) by KOH-activated soybean straw-based carbon

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170704

RJ01 Rejection of invention patent application after publication