CN112337432A - 一种过渡金属掺杂的碳微球及其制备方法与应用 - Google Patents

一种过渡金属掺杂的碳微球及其制备方法与应用 Download PDF

Info

Publication number
CN112337432A
CN112337432A CN202011214465.9A CN202011214465A CN112337432A CN 112337432 A CN112337432 A CN 112337432A CN 202011214465 A CN202011214465 A CN 202011214465A CN 112337432 A CN112337432 A CN 112337432A
Authority
CN
China
Prior art keywords
transition metal
doped carbon
carbon
doped
carbon spheres
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011214465.9A
Other languages
English (en)
Other versions
CN112337432B (zh
Inventor
蔡卫权
刘裴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou University
Original Assignee
Guangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou University filed Critical Guangzhou University
Priority to CN202011214465.9A priority Critical patent/CN112337432B/zh
Publication of CN112337432A publication Critical patent/CN112337432A/zh
Priority to PCT/CN2021/114696 priority patent/WO2022095565A1/zh
Application granted granted Critical
Publication of CN112337432B publication Critical patent/CN112337432B/zh
Priority to US18/141,687 priority patent/US20230365434A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0214Compounds of V, Nb, Ta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0218Compounds of Cr, Mo, W
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0222Compounds of Mn, Re
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种过渡金属掺杂的碳微球及其制备方法与应用。所述的过渡金属掺杂碳球具有均一的实心多孔结构,过渡金属均匀分布在碳球内部。其制备方法包括,一步水热法制备锰、钒、钼、钨均匀掺杂的碳微球,然后通过与草酸钾混合后,于保护气氛中焙烧处理得到活化的金属掺杂碳球。其中掺杂的过渡金属元素在焙烧后仍保持均匀分散状态,没有发生聚集。所制得的过渡金属掺杂碳微球对重金属离子Cr(VI)表现出良好的吸附性能,最大吸附量可达660.7mg/g;对初始浓度低于200mg/L的含Cr(VI)废水中可实现深度去除,吸附后的Cr(VI)残留浓度低于0.05mg/L,显示了其在重金属废水处理领域中的良好应用前景。

Description

一种过渡金属掺杂的碳微球及其制备方法与应用
技术领域
本发明属于吸附分离材料技术领域,具体涉及一种过渡金属掺杂的碳微球及其制备方法与应用。
背景技术
目前,水污染问题日益突出,其中金属加工等行业中的Cr(VI)等重金属离子的污水因其毒性强,容易渗入土壤,进入食物链等而受到关注。重金属离子污水的治理方法有很多,其中,吸附法去除重金属离子具有操作简便、成本低、实用性强等优点。但一般的吸附剂难以实现污水中重金属离子的深度去除。因此,同时具备高吸附量和痕量去除效果的吸附剂成为研究中的一大难点。
活性碳材料是一类常用的吸附剂,但其对痕量存在的Cr(VI)也无法去除完全。通过对活性炭材料的掺杂可以极大的拓展其吸附性能,目前文献报道的掺杂的方案多集中在氮、磷等非金属元素的掺杂上,对金属元素掺杂碳材料的报道较少。
过渡金属因其特有的外层电子结构使其具有多种特性。一些在自然界中分布广泛、无毒害、价格低廉的过渡金属被广泛的应用于制备复合碳材料,用于超级电容器电极、锂离子电池载体、氧化还原反应催化剂、吸波材料等,也可以用于水中污染物的吸附和降解。过渡金属的均匀参杂,既可以体现碳材料的特有的导电、传质、稳定等优良的物理化学性质,还可以通过金属元素掺量的调节来实现其在催化、吸附、电化学等领域,具有广阔的应用前景。特别地,过渡金属与碳材料形成球形复合材料会大大增加复合材料的机械稳定性。
本发明重点关注锰(Mn)、钒(V)、钼(Mo)和钨(W)等过渡金属与碳球的掺杂。以Mn为例,其与碳球的复合有多种途径,可以通将碳源、锰盐进行水热反应制得,也可以用孔体积浸渍法在已有碳材料表面沉积锰盐后再经焙烧制得。
用水热法制备锰-碳(Mn-C)复合材料的报道中都是以Mn盐为主要原料,得到的产品是Mn氧化物为主导的材料,碳源一般都是以碳球的形式充当锰氧化物生长的模板,制得核壳状的C-Mn复合材料。例如,余家国等人(中国发明CN110335758A)向高锰酸钾(KMnO4)和钴盐水溶液中加入空心碳球,使锰酸钴在碳球表面生长,形成可用作超级电容器的Mn-C复合微球。其中碳微粒为核,外部包裹着颗粒状、片状或棒状的Mn氧化物。这种复合材料的Mn氧化物颗粒之间结合的较为疏松,焙烧去除碳核后可得空心Mn氧化物微球。但Mn氧化物壳层失去碳核支撑后的机械强度较弱,易破碎,并且此类Mn-C复合材料无法体现出碳材料所特有的化学惰性、膨胀稳定性、导电性,以及多变的织构性质等特点。
孔体积浸渍法需要提前制备好碳前驱体,通过渗透、吸附在前驱体中插入Mn离子,再经过高温焙烧,实现Mn离子向Mn氧化物的转变。例如,江治等人(中国发明CN107876044A)在多孔碳球中吸附各种价态的锰离子,再热处理,得到Mn氧化物掺杂的碳球。易清风等人(CN108899217A)则是通过将Mn2+负载在空心碳球的内壁上,再用KMnO4氧化,将其转化为MnO2掺杂在碳球内;或者直接将空心碳球加入KMnO4溶液中,负载在碳球上的MnO4 -通过高温下碳的还原性转变为MnO2掺杂(中国发明CN109727783A)。类似的报道还有一些(J.Mater.Chem.A,2014,2,2555-2562;ACS Appl.Mater.Inter.,2014,6,9689-9697;Electrochim.Acta,2016,191,1018-1025.)。通过浸渍法制得的Mn-C复合材料中的Mn氧化物晶体粒度小,分散均匀,Mn元素的利用率高,但Mn氧化物会堵塞活性炭的孔道,造成复合碳材料的比表面积和孔容减少,而且由于碳前驱体对Mn的吸附量有限,所制备复合材料中的Mn掺杂量极少,通常低于0.1%,且难以提高。
姜香等人(中国发明CN108682871A)通过向沸腾的葡萄糖溶液中滴加高锰酸钾溶液,制得了MnO2掺杂的碳球。但是,这种方法制得的碳材料形貌无法控制,多为无定形碳渣,机械强度不高。
其他的过渡金属,例如钒、钼、钨等的掺杂也有类似的报道。例如,中国发明CN110787823A在预制的花型碳球上负载钼酸盐,再在氮气氛中焙烧,制得钼掺杂的碳球;中国发明CN106981647A和CN108231426A将二硫化钼包裹在聚多巴胺微球上,再碳化,形成包覆的钼掺杂;中国发明CN110885114A将钨盐和炭黑、活性炭在氢气氛中高温焙烧,实现掺杂。但这些方法都略显繁琐。
发明内容
为解决现有技术的缺点和不足之处,本发明的首要目的在于提供一种一步法制备过渡金属掺杂的碳微球(简称过渡金属掺杂碳球),通过活化,制备出对重金属污染物Cr(VI)具有高效吸附性能的多孔碳球。
本发明方法利用过渡金属酸盐在过硫酸盐的辅助下与蔗糖水热碳化,在较短时间内制得过渡金属均匀掺杂的碳球(CS),再与草酸钾混合高温焙烧,制备得到过渡金属掺杂的多孔活性碳球(ACS)。
本发明的另一目的在于提供一种由上述方法制得的过渡金属掺杂的碳微球。
本发明再一目的在于提供上述过渡金属掺杂的碳微球的用途。本发明制备得到的ACS具有丰富的微孔,过渡金属原子在碳球中分散良好,对废水中的Cr(VI)具有良好的吸附性能。
本发明通过下述方案实现:
一种制备过渡金属掺杂碳球的方法,包括以下步骤:将蔗糖、过渡金属酸盐和过硫酸盐在水中混合,转入水热釜内,180℃下进行水热反应4h;反应产物经冷却、洗涤、分离后,干燥,得到碳微球;然后将碳微球和草酸钾混合,在气体保护下,加热到600~800℃焙烧1~3h,得到过渡金属掺杂碳球(即所述过渡金属掺杂的碳微球)。
本发明中所述的过渡金属包括锰、钒、钼和钨,并且这些过渡金属在碳微球中均匀分布。
所述的过渡金属酸盐包括高锰酸钾、原钒酸钠、二水钼酸钠和二水钨酸钠中的至少一种。
所述的过硫酸盐优选为过硫酸铵。
所述蔗糖添加量为4质量份,过渡金属酸盐添加量为1~4质量份,过硫酸盐的添加量为1~5质量份。
所述洗涤是指用水和乙醇反复洗涤。
所述碳微球添加量为1质量份,所述草酸钾添加量为1~4质量份。
所述焙烧,以1~5℃/min的升温速率加热到600~800℃,优选的升温速率为3℃/min。
所述焙烧过程优选在700℃下焙烧2h。
所述焙烧在氮气或惰性气体保护下进行。
上述制备的过渡金属掺杂碳球具有均一的实心多孔结构,过渡金属均匀分布在碳球内部,可用于废水中的Cr(VI)吸附。
所述的过渡金属掺杂碳球用于废水中的Cr(VI)吸附,其对废水中Cr(VI)的最大吸附量为160.4~660.7mg/g;当废水中Cr(VI)离子浓度<200mg/L时,可以实现深度去除,废水中Cr(VI)浓度低于饮用水国标的要求(GB 5749-2006)。
本发明方法中,步骤(1)的水热法可以实现一步制得过渡金属均匀掺杂的碳球,碳球中的过渡金属含量可以达到0.9~10.6%。区别于现有技术的多步法,即需要预制出基体碳材料或前驱体,再通过负载实现过渡金属掺杂后碳化。本方法中过渡金属分布均匀,含量高且可调,反应时间仅需4h即可完成反应,大大缩短了反应时间,减少能耗。
本发明方法中,过渡金属掺杂的水热碳球与草酸钾焙烧反应,利用草酸钾高温活化,得到孔隙率增强的活性碳球ACS,有效保持碳球形貌不变,过渡金属保持分布均匀,不团聚;比表面积和孔结构明显增加,其比表面积可达1406m2/g,明显高于无过渡金属掺杂的活性炭球(784m2/g)。
本发明方法中,活化后的过渡金属掺杂碳球可用于含Cr(VI)废水的处理,其表现出良好的吸附性能。在pH为1~2的水溶液中,对Cr(VI)的最大吸附量可达660.7mg/g(Mn掺杂ACS);在浓度小于200mg/L的Cr(VI)溶液中,40min内对Cr(VI)的吸附去除率可达97.5%以上,并且可以实现Cr(VI)的深度去除,达到国标中饮用水的Cr(VI)浓度标准;总Cr元素的去除率可以达到95.5%,并且在此过程中Mn的溶出率极低,可以忽略不计(元素含量均由ICP检测)。
本发明相对于现有技术,具有如下的优点及有益效果:
与现有技术相比,本发明首次提出了将过渡金属酸盐(KMnO4、Na3VO4、Na2MoO4·2H2O、Na2WO4·2H2O)、过硫酸盐与蔗糖一起进行水热反应,制得了过渡金属掺杂的碳球。在水热过程中,过渡金属酸盐被葡萄糖还原成其对应的金属离子或氧化物;同时,过硫酸盐的加快了碳球的形成过程,并在其表面形成丰富的羧基。过硫酸盐在分解过程中还提供了酸性环境,使碳球在生长过程中不发生交联。碳球表面的羧基捕获金属离子或其氧化物,在碳球不断生长的过程中,金属原子就被一层层的包附进碳球内部,形成均匀掺杂结构。并且在碳球内的金属(或其氧化物)颗粒之间被碳层隔离,难以形成融合。掺杂碳球中的金属原子类似于单原子分布。
在氮气或惰性气体保护下经草酸钾高温活化,碳微球内部的氧结合碳形成的CO或CO2从球内逸出,形成丰富的微孔孔道并明显提高碳微球的比表面积。与此同时,由于碳层的隔离作用,金属颗粒不会形成大体积的聚集,仍然均匀的分布在碳球内部,这使其对Cr(VI)表现出优秀的还原吸附性能。以Mn掺杂活性碳球为例,其最大吸附量可以达到660.7mg/g,吸附后溶液中的Mn元素含量用ICP测量,仅为0.009mg/L,几乎没有溶出。采用,采用本方法制得的V、Mo、W掺杂的活性碳球对Cr(VI)的吸附量均有较大的提高。
附图说明
图1为实施例1中所制备的Mn掺杂碳球(Mn-CS)和对比样(Mn-C)的SEM照片。
图2为实施例2中Mn-CS经草酸钾高温活化后所得Mn-ACS的SEM照片。
图3为实施例2中的Mn-CS和Mn-ACS的元素分布图,其中A:Mn-CS;B:破碎的Mn-CS的截断面;C:Mn-ACS;D:破碎的Mn-ACS的截断面。
图4为实施例2中的Mn-ACS对不同初始浓度Cr(VI)溶液的吸附量和残留Cr(VI)浓度图。
图5为实施例3中所制备的V掺杂碳球(V-CS)和对比样(V-C)的SEM照片。
图6为实施例4中所制备的Mo掺杂碳球(Mo-CS)和对比样(Mo-C)的SEM照片。
图7为实施例5中所制备的W掺杂碳球(W-CS)和对比样(W-C)的SEM照片。
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。对于未特别注明的工艺参数,可参照常规技术进行。
以下实施例中涉及的物料均可从通过商业渠道获得。各组分用量以质量体积份即,g/mL。
实施例1:
本实施例涉及Mn掺杂碳球(Mn-CS)和对照样品Mn掺杂碳材料(Mn-C)的制备,以及草酸钾无损活化Mn-CS制备Mn-ACS。
将4质量份蔗糖、1质量份的KMnO4、3质量份的APS(过硫酸铵)溶于40体积份的水中,然后将该混合液转入内衬聚四氟乙烯的不锈钢水热釜中,置于热风烘箱中升温至180℃后保温反应4h;反应液过滤,滤饼用水和乙醇分别洗涤三次后,将其在热风烘箱中80℃下干燥8h,命名为Mn-CS。其中的Mn含量为0.89wt%。
按照上述相同的方法不添加APS制得了对照样品Mn-C。按照上述相同的方法不添加KMnO4和APS制得了对照样品CS。
Mn-CS和Mn-C的SEM对比照片如图1所示,Mn-CS呈光滑球形,Mn-C呈融合的片状。
取Mn-CS样品1质量份,与3质量份草酸钾混合均匀,转入陶瓷舟,并置于管式炉内,通入氮气置换炉内的空气,再调节氮气流量为30mL/min,以3℃/min的升温速率升至600℃焙烧2h,自然降至室温。焙烧后的黑色粉末用水洗涤滤饼至中性。将滤饼于110℃的热风烘箱中干燥6h,制得Mn掺杂活化碳球Mn-ACS。按照同样的方法将CS活化制得对照样品ACS。Mn-ACS的SEM照片如图2所示,活化后仍然保持光滑的球形。
在两个装有100mL的Cr(VI)溶液(800mg/L,pH=1~2)的烧杯中分别加入Mn-ACS和ACS各100mg,在旋转摇床中以25℃、180rpm的转速摇动烧杯5h,进行吸附实验。其中Mn-ACS对Cr(VI)的吸附量为272.8mg/g,而无掺杂的活性炭球ACS对Cr(VI)的吸附量仅为96.2mg/g。
实施例2:
本实施例涉及Mn掺杂碳球(Mn-CS)的制备,以及草酸钾无损活化Mn-CS制Mn-ACS。
将4质量份蔗糖、4质量份的KMnO4、5质量份APS溶于40体积份的水中,然后将该混合液转入内衬聚四氟乙烯的不锈钢水热釜中,置于热风烘箱中升温至180℃后保温反应4h;反应液过滤,滤饼用水和乙醇分别洗涤三次后,将其在热风烘箱中80℃下干燥8h,命名为Mn-CS。其中的Mn含量为2.31wt%。
取Mn-CS样品1质量份,与3质量份的草酸钾混合均匀,转入陶瓷舟,并置于管式炉内,通入氮气置换炉内的空气,再调节氮气流量为30mL/min,以3℃/min的升温速率升至800℃,焙烧2h,然后自然降至室温。焙烧后的黑色粉末用水洗涤,至滤液至中性。将滤饼于110℃的热风烘箱中干燥6h,制得Mn掺杂的活化碳球Mn-ACS。
Mn-CS和Mn-ACS对应的元素分布图如图3、图4所示,证明Mn元素在碳球中均匀分布,焙烧并没有使Mn原子未发生明显聚集。
按照实施例1中同样的方法,对所得Mn-ACS进行Cr(VI)吸附实验,测得其对Cr(VI)的最大吸附量为660.7mg/g。分别在6个装有100mL Cr(VI)溶液(浓度分别为0、50、100、150、250、300mg/L,pH=2)的烧杯中加入100mg的Mn-ACS,在旋转摇床中以25℃、180rpm的转速摇动烧杯5h,进行吸附实验。测得吸附量和溶液中Cr(VI)的残余浓度如图5所示,在初始浓度低于200mg/L的Cr(VI)溶液中,吸附后的溶液中的Cr(VI)残余浓度低于0.05mg/L(GB5749-2006,饮用水中允许的Cr(VI)浓度)。
实施例3:
本实施例涉及V掺杂碳球(V-CS)和对照样品V掺杂碳材料(V-C)的制备,以及草酸钾无损活化V-CS制备V-ACS。
将4质量份蔗糖、1质量份的Na3VO4、3质量份APS溶于40体积份的水中,然后将该混合溶液转入内衬聚四氟乙烯的不锈钢水热釜中,置于热风烘箱中后升温至180℃,保温反应4h;反应液过滤后,将滤饼用水和乙醇分别洗涤三次,然后将滤饼在热风烘箱中于80℃下干燥8h,命名为V-CS。其中的V含量为2.59wt%。
不添加APS,按照相同的方法制得对照样品V-C。V-CS和V-C的SEM对比照片如图5所示,V-CS呈光滑球形,V-C呈融合的不规则块状。
取V-CS样品1质量份,与3质量份的草酸钾混合均匀,转入陶瓷舟,并置于管式炉内,通入氮气置换炉内的空气,再调节氮气流量为30mL/min,以3℃/min的升温速率升至700℃,焙烧2h后自然降至室温。焙烧后的黑色粉末用水洗涤滤饼至中性。将滤饼于110℃的热风烘箱中干燥6h,制得V掺杂的活化碳球V-ACS。
在装有100mL的Cr(VI)溶液(500mg/L,pH=1~2)的烧杯中加入100mg的V-ACS,在旋转摇床中以25℃、180rpm的转速摇动烧杯5h,进行吸附实验。其对Cr(VI)的吸附量为193.4mg/g。
实施例4:
本实施例涉及Mo掺杂碳球(Mo-CS)和对照样品Mo掺杂碳材料(Mo-C)的制备,以及草酸钾无损活化Mo-CS制备Mo-ACS。
将4质量份蔗糖、1质量份的Na2MoO4·2H2O、3质量份APS溶于40体积份的水中,然后将该混合液转入内衬聚四氟乙烯的不锈钢水热釜中,置于热风烘箱中升温至180℃后,保温反应4h;反应液过滤,滤饼用水和乙醇分别洗涤三次后,将滤饼在热风烘箱中于80℃下干燥8h,命名为Mo-CS。其中的Mo含量为10.62wt%。
不添加APS,按照相同的方法制备对照样品Mo-C。Mo-CS和Mo-C的对比SEM照片如图6所示,Mo-CS呈光滑球形,Mo-C呈不规则融合渣状,部分Mo氧化物颗粒包裹在球体上,剩余的Mo氧化物以碎片的形式混在碳材料中。
取Mo-CS样品1质量份,与3质量份的草酸钾混合均匀,转入陶瓷舟,并置于管式炉内,通入氮气置换炉内的空气,再调节氮气流量为30mL/min,以3℃/min的升温速率升至800℃后焙烧2h,然后自然降至室温。焙烧后的黑色粉末用水洗涤至滤液呈中性。最后,将滤饼于110℃的热风烘箱中干燥6h,制得Mo掺杂的活化碳球Mo-ACS。
按照实施例3的方法测得Mo-ACS对Cr(VI)的吸附量为191.7mg/g。
实施例5:
本实施例涉及W掺杂碳球(W-CS)和对照样品W掺杂碳材料(W-C)的制备,以及草酸钾无损活化W-CS制备W-ACS。
将4质量份的蔗糖、1质量份的Na2WO4·2H2O、3质量份的APS溶于40体积份的水中,然后将该混合液转入内衬聚四氟乙烯的不锈钢水热釜中,置于热风烘箱中升温至180℃后保温反应4h;将反应液过滤,滤饼用水和乙醇分别洗涤三次,滤饼在热风烘箱中80℃下干燥8h,命名为W-CS。其中的W含量为3.31wt%。
不添加APS,按照相同的方法制备对照样品W-C。W-CS和W-C的对比SEM照片如图7所示,W-CS呈光滑球形,W-C呈融合的块状,其中能够看到较大颗粒的W氧化物(粒状和棒状)。
取W-CS样品1质量份,与3质量份的草酸钾混合均匀,转入陶瓷舟,并置于管式炉内,通入氮气置换炉内的空气,再调节氮气流量为30mL/min,以3℃/min的升温速率升至800℃后焙烧2h,然后自然降至室温。焙烧后的黑色粉末用水洗涤,至滤液呈中性。将滤饼于110℃的热风烘箱中干燥6h,制得W掺杂的活化碳球W-ACS。
按照实施例3的方法测得W-ACS对Cr(VI)的吸附量为160.4mg/g。
上述实施例中重金属离子Cr(VI)的浓度检测采用二苯碳酰二肼分光光度法测定,所用的紫外可见分光光度计为日本岛津的UVmini-1240型。掺杂的过渡金属含量采用电感耦合等离子体原子发射光谱法测定,所用的全谱直读等离子体发射光谱仪为美国LeemanLabs公司的Prodigy7型;样品表面的微观结构是采用日本电子株式会社生产的JSM-IT300型扫描电子显微镜测试。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

1.一种制备过渡金属掺杂碳球的方法,其特征在于,包括以下步骤:将蔗糖、过渡金属酸盐和过硫酸盐在水中混合,转入水热釜内,180℃下进行水热反应4h;反应产物经冷却、洗涤、分离后,干燥,得到碳微球;然后将碳微球和草酸钾混合,在气体保护下,加热到600~800℃焙烧1~3h,得到过渡金属掺杂碳球。
2.根据权利要求1所述的一种制备过渡金属掺杂碳球的方法,其特征在于,所述的过渡金属酸盐包括高锰酸钾、原钒酸钠、二水钼酸钠和二水钨酸钠中的至少一种;所述的过硫酸盐为过硫酸铵。
3.根据权利要求1所述的一种制备过渡金属掺杂碳球的方法,其特征在于,所述蔗糖添加量为4质量份,过渡金属酸盐添加量为1~4质量份,过硫酸盐的添加量为1~5质量份。
4.根据权利要求1所述的一种制备过渡金属掺杂碳球的方法,其特征在于,所述碳微球添加量为1质量份,所述草酸钾添加量为1~4质量份。
5.根据权利要求1所述的一种制备过渡金属掺杂碳球的方法,其特征在于,所述焙烧,以1~5℃/min的升温速率加热到600~800℃。
6.根据权利要求1所述的一种制备过渡金属掺杂碳球的方法,其特征在于,所述焙烧过程是在700℃下焙烧2h。
7.根据权利要求1所述的一种制备过渡金属掺杂碳球的方法,其特征在于,所述焙烧在氮气或惰性气体保护下进行。
8.一种由权利要求1-8任一项所述方法制得的过渡金属掺杂碳球。
9.权利要求9所述的过渡金属掺杂碳球在吸附废水中Cr(VI)的应用。
CN202011214465.9A 2020-11-03 2020-11-03 一种过渡金属掺杂的碳微球及其制备方法与应用 Active CN112337432B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202011214465.9A CN112337432B (zh) 2020-11-03 2020-11-03 一种过渡金属掺杂的碳微球及其制备方法与应用
PCT/CN2021/114696 WO2022095565A1 (zh) 2020-11-03 2021-08-26 一种过渡金属掺杂的碳微球及其制备方法与应用
US18/141,687 US20230365434A1 (en) 2020-11-03 2023-05-01 Transition metal-doped carbon microsphere, preparation method therefor and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011214465.9A CN112337432B (zh) 2020-11-03 2020-11-03 一种过渡金属掺杂的碳微球及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN112337432A true CN112337432A (zh) 2021-02-09
CN112337432B CN112337432B (zh) 2022-05-17

Family

ID=74356155

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011214465.9A Active CN112337432B (zh) 2020-11-03 2020-11-03 一种过渡金属掺杂的碳微球及其制备方法与应用

Country Status (3)

Country Link
US (1) US20230365434A1 (zh)
CN (1) CN112337432B (zh)
WO (1) WO2022095565A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022095565A1 (zh) * 2020-11-03 2022-05-12 广州大学 一种过渡金属掺杂的碳微球及其制备方法与应用
CN115477298A (zh) * 2022-09-01 2022-12-16 广州大学 一种空心球状超结构碳材料及其制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115818796B (zh) * 2023-01-10 2024-05-24 东莞理工学院 一种Zr金属原子掺杂Ti4O7复合电极的制备及其使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2814068A1 (en) * 2009-10-14 2011-04-21 The Administrators Of The Tulane Educational Fund Novel multifunctional materials for in-situ environmental remediation of chlorinated hydrocarbons
CN104409225A (zh) * 2014-11-28 2015-03-11 西北师范大学 二氧化锰/碳微球复合材料的制备及其作为超级电容器电极材料的应用
CN105582888A (zh) * 2016-01-21 2016-05-18 西南科技大学 一种金属盐催化低温水热法制备碳微球吸附剂的方法
CN106914219A (zh) * 2017-04-07 2017-07-04 安徽工业大学 一种磁性碳微球在去除废水中六价铬的应用
CN109704337A (zh) * 2019-01-29 2019-05-03 广州大学 一种快速制备分散性良好的微米级碳球的方法
CN109970039A (zh) * 2019-04-26 2019-07-05 陕西科技大学 一种二元过渡金属纳米颗粒原位嵌入多孔氮掺杂碳球及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107282030B (zh) * 2017-05-11 2019-12-10 华南理工大学 一种三维木质素多孔碳/氧化锌复合材料及其制备和在光催化领域中的应用
CN112337432B (zh) * 2020-11-03 2022-05-17 广州大学 一种过渡金属掺杂的碳微球及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2814068A1 (en) * 2009-10-14 2011-04-21 The Administrators Of The Tulane Educational Fund Novel multifunctional materials for in-situ environmental remediation of chlorinated hydrocarbons
CN104409225A (zh) * 2014-11-28 2015-03-11 西北师范大学 二氧化锰/碳微球复合材料的制备及其作为超级电容器电极材料的应用
CN105582888A (zh) * 2016-01-21 2016-05-18 西南科技大学 一种金属盐催化低温水热法制备碳微球吸附剂的方法
CN106914219A (zh) * 2017-04-07 2017-07-04 安徽工业大学 一种磁性碳微球在去除废水中六价铬的应用
CN109704337A (zh) * 2019-01-29 2019-05-03 广州大学 一种快速制备分散性良好的微米级碳球的方法
CN109970039A (zh) * 2019-04-26 2019-07-05 陕西科技大学 一种二元过渡金属纳米颗粒原位嵌入多孔氮掺杂碳球及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022095565A1 (zh) * 2020-11-03 2022-05-12 广州大学 一种过渡金属掺杂的碳微球及其制备方法与应用
CN115477298A (zh) * 2022-09-01 2022-12-16 广州大学 一种空心球状超结构碳材料及其制备方法和应用
CN115477298B (zh) * 2022-09-01 2023-10-24 广州大学 一种空心球状超结构碳材料及其制备方法和应用

Also Published As

Publication number Publication date
WO2022095565A1 (zh) 2022-05-12
US20230365434A1 (en) 2023-11-16
CN112337432B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
CN112337432B (zh) 一种过渡金属掺杂的碳微球及其制备方法与应用
Acharya et al. Adsorbed Cr (VI) based activated carbon/polyaniline nanocomposite: a superior electrode material for asymmetric supercapacitor device
CN111514943A (zh) 一种MOFs衍生材料及其制备方法和应用
KR101724979B1 (ko) 탄소체 및 강자성 탄소체
Cheng et al. A novel preparation method for ZnO/γ-Al 2 O 3 nanofibers with enhanced absorbability and improved photocatalytic water-treatment performance by Ag nanoparticles
CN111359580A (zh) 一种多孔结构的碳铁复合材料的制备方法及应用
KR101608850B1 (ko) 중공형 다공성 탄소입자 및 이의 제조방법
CN109110742B (zh) 利用锰化合物制备的中孔炭及制备方法
CN110064368B (zh) 硅锰改性生物炭复合材料的制备方法
CN106732358A (zh) 一种负载氧化铁的生物质碳化微球及其制备和应用
Chen et al. ZnO@ ZIF-8 core–shell heterostructures with improved photocatalytic activity
CN110813241A (zh) 一种氮氧共掺杂多孔碳材料及其制备方法和应用
CN115069216B (zh) 一种磁性活性生物炭的制备方法及应用
CN106824069A (zh) 用于处理含砷废水的稀土掺杂铁炭材料的制备方法
CN113181949A (zh) 钴铁合金/氮硫共掺杂碳纳米复合材料及其制法与应用
CN116621601A (zh) 一种Al/Fe/C微电解陶粒及其制备方法和应用
JP7566271B2 (ja) 炭素-金属複合物の製造方法
CN112142048A (zh) 一种氧化镍/金属镍复合竹活性炭材料的制备方法及应用
CN108793312B (zh) 利用氮化碳/氮掺中空介孔碳/三氧化二铋三元z型光催化剂催化去除抗生素的方法
CN108745405B (zh) 氮化碳/氮掺中空介孔碳/三氧化二铋三元z型光催化剂及其制备方法
CN114644334B (zh) 一种高效去除重金属污染物的多层氮掺碳材料的制备方法
CN115771925A (zh) 一种水体中四环素的去除方法
CN110368896B (zh) 一种超高比表面积碳基功能材料及其制备方法和应用
CN108365201B (zh) 一种TiO2-碳基石墨烯复合材料及其制备方法和应用
KR101441329B1 (ko) 슈퍼 커패시터용 메조포러스 탄소체의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant