CN106905699B - 一种限域空间微纳米精密组装法制备聚合物基导电复合材料的方法 - Google Patents

一种限域空间微纳米精密组装法制备聚合物基导电复合材料的方法 Download PDF

Info

Publication number
CN106905699B
CN106905699B CN201710070455.4A CN201710070455A CN106905699B CN 106905699 B CN106905699 B CN 106905699B CN 201710070455 A CN201710070455 A CN 201710070455A CN 106905699 B CN106905699 B CN 106905699B
Authority
CN
China
Prior art keywords
composite material
nano
micro
polymer matrix
precise assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710070455.4A
Other languages
English (en)
Other versions
CN106905699A (zh
Inventor
吴大鸣
高小龙
刘颖
郑秀婷
黄尧
何晓祥
萨门
许红
赵中里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huabo Jinggong Hebei Province Technology Co ltd
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to GB1911176.4A priority Critical patent/GB2573914B/en
Priority to US16/483,938 priority patent/US11104037B2/en
Priority to PCT/CN2017/086039 priority patent/WO2018145372A1/zh
Publication of CN106905699A publication Critical patent/CN106905699A/zh
Application granted granted Critical
Publication of CN106905699B publication Critical patent/CN106905699B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • B29B7/005Methods for mixing in batches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/22Component parts, details or accessories; Auxiliary operations
    • B29B7/28Component parts, details or accessories; Auxiliary operations for measuring, controlling or regulating, e.g. viscosity control
    • B29B7/283Component parts, details or accessories; Auxiliary operations for measuring, controlling or regulating, e.g. viscosity control measuring data of the driving system, e.g. torque, speed, power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/24Calendering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/22Component parts, details or accessories; Auxiliary operations
    • B29B7/28Component parts, details or accessories; Auxiliary operations for measuring, controlling or regulating, e.g. viscosity control
    • B29B7/286Component parts, details or accessories; Auxiliary operations for measuring, controlling or regulating, e.g. viscosity control measuring properties of the mixture, e.g. temperature, density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • B29C2043/5808Measuring, controlling or regulating pressure or compressing force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • B29C2043/5816Measuring, controlling or regulating temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • B29C2043/5825Measuring, controlling or regulating dimensions or shape, e.g. size, thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • B29C2059/023Microembossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/162Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/165Hollow fillers, e.g. microballoons or expanded particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/165Hollow fillers, e.g. microballoons or expanded particles
    • B29K2105/167Nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2507/00Use of elements other than metals as filler
    • B29K2507/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0005Conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/04Antistatic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及一种限域空间微纳米精密组装法制备聚合物基导电复合材料的方法,属于复合材料制备技术领域;具体包括如下步骤:(1)将导电填料与聚合物基体加入到共混设备中混合均匀得到均相的聚合物/导电填料物料体系;(2)将均相物料体系加入到由两个平板组成的模具中,通过机械压缩的方式对均相共混物进行平面限域压缩;(3)利用压缩模板上设置的微纳结构阵列,对网络上的填料进行进一步压实,进行“阵列锚固”,实现网络的微纳米精密组装,得到复合材料,具有连续紧密的导电网络,同时兼具优良的拉伸性能、柔性和热稳定性。

Description

一种限域空间微纳米精密组装法制备聚合物基导电复合材料 的方法
技术领域
本发明涉及一种高性能聚合物基导电复合材料的制备方法,特别是涉及一种限域空间微纳米精密组装法制备高性能聚合物基导电复合材料的方法,属于复合材料制备技术领域。
背景技术
聚合物基导电复合材料作为重要的功能材料之一,近年来广泛的应用于制造抗静电、导电或者导热需求的电子设备、飞机配件、个人电脑、发光二极管芯片、电磁干扰屏蔽和传感材料、医疗设备、智能生物材料、汽车零部件、家用电器、管道等。大部分聚合物基体本身不导电,因此需要向聚合物基体中添加具有相当大长径比或比表面积的导电填料,形成导电网络才能制备出满足导电要求的复合材料,常用的导电填料有炭黑粒子、碳纤维、片状石墨、碳纳米管和石墨烯。原位聚合法、溶液混合法和熔体共混法是制备聚合物基导电复合材料的常用方法,其中熔体共混是制备填料均匀分散的聚合物基复合材料普遍采用的方法。理论与实践表明,形成连续紧密的导电网络是制备超高电导率聚合物基复合材料的关键,现有的提高复合材料导电性能的方法主要通过提高填料含量达到导电渗流阈值后继续添加直至饱和,即便如此,复合材料的电导率与理论值相差甚远,究其原因主要在于传统方法大多是在特定的热力学和流体动力学条件下让填料在基体中自组装形成导电网络,填料间距具有不可控性,虽然在导电渗流区域可以通过提高填料含量快速提升复合材料的导电性能,但是由于大多聚合物基体粘度高,加上填料之间排斥力,位阻等影响,填料在聚合物基体中很难自组装形成连续紧密的导电网络,距离预期的电导率相差甚远,尤其在经过导电渗流区域之后,复合材料的电导率随着填料含量变化不大,继续提高复合材料的导电性能已经无能为力。本发明采用新的技术路径限域空间微纳米精密组装来达到提高复合材料性能的目的。
发明内容
本发明的目的是提供一种限域空间高性能聚合物基导电复合材料的方法,采用该方法制备的高性能聚合物基导电复合材料具有连续紧密的导电网络,同时兼具优良的拉伸性能、柔性和热稳定性。
为实现上述发明的目的,本发明采取的技术方案如下: 一种空间限域微纳米精密组装法制备高性能聚合物基复合材料的方法,包括如下步骤: (1)将导电填料与聚合物基体按质量比为(0.5~60): 100 的比例加入到共混设备中混合均匀,通过共混得到均相的聚合物/导电填料物料体系; (2)将步骤(1)制备的均相物料体系加入到由两个平板组成的模具中,通过机械压缩的方式对均相共混物进行平面限域压缩; (3)利用压缩模板上设置的微纳结构阵列,对网络上的填料进行进一步压实,进行“阵列锚固”,实现网络的微纳米精密组装,得到性能优异的复合材料。
步骤(1)所述的导电填料为微纳米尺度的片状填料、纤维状填料、球状导电填料中的一种或两种以上的组合物。所述的片状填料为鳞片石墨、石墨烯中的一种或两种以上的组合物;纤维状填料为碳纤维、碳纳米管中的一种或两种以上的组合物;球状导电填料为炭黑粒子、银粉或氧化镁中的一种或两种以上的组合物。
步骤(1)所述的聚合物基体为热塑性聚合物基体、热固性基体或光固化类基体。所述的热塑性聚合物基体为聚丙烯、尼龙、聚碳酸酯或聚甲基丙烯酸甲酯中的一种或两种以上的组合物;热固性基体为酚醛树脂、聚二甲基硅氧烷或环氧树脂;光固化类基体为环氧丙烯酸酯、聚氨酯丙烯酸酯或聚酯丙烯酸树脂。步骤(1)所述的共混设备包括高速搅拌器、超声分散仪、密炼机、同向双螺杆挤出机、 Buss 挤出机或行星挤出机。
步骤(2)所述的机械压缩方式包括平板压缩、履带压缩或辊压压缩。
步骤(2)所述的平面限域压缩,均相体系首先发生传统方式的自组装成网,其后共混物被进一步压缩直至设定的特征厚度,在该厚度形成过程中,自组装网络上的填料被进一步压实,填料的间距降低到设计的数值,网络密实度大幅提高。
步骤(3)所述的微纳结构阵列为 V-Cut 结构、半球型结构、半圆柱结构、棱镜结构、金字塔结构、棱锥结构或半椭圆球结构中的一种或两种以上的组合。
步骤(3)所述的复合材料的厚度为对均相样品进行机械压缩,使其厚度压缩至接近或小于自组装成网过程中的特征厚度,而特征厚度取决于填料组成网络网线的平均直径。
本发明的有益效果是: (1)通过高速搅拌器、密炼机或者双螺杆挤出机等共混的方法得到聚合物/导电填料均相体系,然后在一定热力学条件下通过机械方式对均相共混物进行平面限域压缩。在压缩过程中,均相体系首先发生传统的自组装成网;其后对共混物进一步压缩直至设定的特征厚度,在该厚度形成过程中,自组装网络上的填料被进一步压实,填料的间距降低到设定的数值,网络密实度大幅度提高。
(2)在压缩过程的后期,通过压缩模板上设置的微纳结构阵列,对网络上的填料进行“阵列锚固”最终完成导电网络的微纳米精密组装。通过这两个步骤可获得强迫组装的连续紧密的导电网络,得到导电性能优异的复合材料。
(3) 采用本发明制备的复合材料中填料形成连续紧密的导电网络,填料之间缝隙变小,尤其在锚固点,填料间距更小,在导电填料低浓度条件下复合材料可获得高电导率。该方法还可以用于制备高导热和高增强聚合物基复合材料。所制备的聚合物基导电复合材料可应用于防静电、电磁干扰屏蔽、可穿戴电子设备、弯曲显示器、柔性电子元件,智能生物材料等。
附图说明
图 1 平板上 v-cut 微结构阵列几何尺寸与排布显微图;
图 2 平板上半椭圆球微结构阵列几何尺寸与排布显微图;
图 3 平板上凸起微结构阵列的锚固作用示意图;
图 4 实验中制备的复合材料部分样品实物图;
图 5 实施例 1 制备的聚二甲基硅氧烷/0.5wt%碳纤维复合材料的断面扫描电镜图片;
图 6 实施例 2 制备的聚二甲基硅氧烷/4wt%碳纤维复合材料的断面扫描电镜图片;
图 7 实施例 3 制备的聚二甲基硅氧烷/4wt%炭黑复合材料的断面扫描电镜图片;
图 8 实施例 4 制备的聚二甲基硅氧烷/3wt%碳纤维+1wt%炭黑复合材料的断面扫描电镜图片;
图 9 实施例 5 制备的聚二甲基硅氧烷/3wt%碳纤维+1wt%碳纳米管复合材料的断面扫描电镜图片;
图 10 实施例 6 制备的聚二甲基硅氧烷/3wt%碳纤维+1wt%石墨烯复合材料的断面扫描电镜图片;
图 11 实施例 7 制备的聚丙烯/5wt%碳纤维复合材料的透射扫描电镜图片;
图 12 实施例 8 制备的聚二甲基硅氧烷/60wt%碳纤维复合材料的断面扫描电镜。
具体实施方式
下面通过实例对本发明做进一步详细说明,这些实例仅用来说明本发明,并不限制本发明的范围。
实施例 1 配置碳纤维浓度为 0.5wt%的聚二甲基硅氧烷/碳纤维混合物料,加入哈克密炼机中混合,密炼参数为:螺杆转速 50r/min 密炼温度 30℃密炼时间 15min。将混合好的物料与 PDMS 固化剂按照 10:1 的比例混合后放入真空干燥箱中抽真空 10 分钟去除物料中的气泡, PDMS 固化剂为八甲基环四硅氧烷, PDMS 与固化剂均为道康宁公司生产。碳纤维几何尺寸为:直径 7um,长度 4mm。然后将均相体系的物料加入平板模具中,利用模压机压缩物料至设定厚度 200um,压力为 5Mpa。加热模具至 100-130℃,固化 10 分钟,即可得到复合材料。其中一个平板上凸起的微结构阵列几何机构和尺寸如图 1,图 5为实施例 1 制备的复合材料的横截面的扫描电镜图片。实施例 1 的复合材料测试电导率为 0.036S/m。
实施例 2 配置碳纤维浓度为 4wt%的聚二甲基硅氧烷/碳纤维混合物料,加入哈克密炼机中混合,密炼参数为:螺杆转速 50r/min 密炼温度 30℃密炼时间 15min。将混合好的物料与 PDMS 固化剂按照 10:1 的比例混合后放入真空干燥箱中抽真空 10 分钟去除物料中的气泡, PDMS 固化剂为八甲基环四硅氧烷, PDMS 与固化剂均为道康宁公司生产。直径 7um,长度 4mm,然后将均相体系的物料加入平板模具中,利用模压机压缩物料至设定厚度 200um,压力为 5Mpa。加热模具至 100-130℃,固化 10 分钟,即可得到复合材料。其中一个平板上凸起的微结构阵列几何机构和尺寸如图 1,图 6 为实施例 2 制备的复合材料的横截面的扫描电镜图片。实施例 2 的复合材料测试电导率为 95.2S/m。
实施例 3 配置炭黑浓度为 4wt%的聚二甲基硅氧烷/炭黑混合物料,加入哈克密炼机中混合,密炼参数为:螺杆转速 50r/min 密炼温度 30℃密炼时间 15min。将混合好的物料与 PDMS 固化剂按照 10:1 的比例混合后放入真空干燥箱中抽真空 10 分钟去除物料中的气泡, PDMS 固化剂为八甲基环四硅氧烷, PDMS 与固化剂均为道康宁公司生产。炭黑为 ORIONENGINEEREDCARBONS 公司生产,型号为: XE2-B。然后将均相体系的物料加入平板模具中,利用模压机压缩物料至设定厚度 200um,压力为 5Mpa。加热模具至 100-130℃,固化 10 分钟,即可得到复合材料。其中一个平板上凸起的微结构阵列几何机构和尺寸如图 1,图 7 为实施例 3制备的复合材料的横截面的扫描电镜图片。实施例 3 的复合材料测试电导率为 182S/m。
实施例 4 配置碳纤维浓度 3wt%,炭黑浓度为 3wt%的聚二甲基硅氧烷/碳纤维+炭黑混合物料,加入哈克密炼机中混合,密炼参数为:螺杆转速 50r/min 密炼温度 30℃密炼时间 15min。将混合好的物料与 PDMS 固化剂按照 10:1 的比例混合后放入真空干燥箱中抽真空 10 分钟去除物料中的气泡, PDMS 固化剂为八甲基环四硅氧烷, PDMS 与固化剂均为道康宁公司生产。碳纤维,直径 7um,长度 4mm,炭黑为 ORION ENGINEERED CARBONS公司生产,型号为:XE2-B。然后将均相体系的物料加入平板模具中,利用模压机压缩物料至设定厚度 200um,压力为 5Mpa。加热模具至 100-130℃,固化 10 分钟,即可得到复合材料。其中一个平板上凸起的微结构阵列几何机构和尺寸如图 1,图 8 为实施例 4 制备的复合材料的横截面的扫描电镜图片。实施例 4 的复合材料测试电导率为 910S/m。
实施例 5 配置碳纤维浓度 3wt%,碳纳米管浓度为 1wt%的聚二甲基硅氧烷/碳纤维+碳纳米管混合物料,加入哈克密炼机中混合,密炼参数为:螺杆转速 50r/min 密炼温度30℃密炼时间 15min。将混合好的物料与 PDMS 固化剂按照 10:1 的比例混合后放入真空干燥箱中抽真空 10 分钟去除物料中的气泡, PDMS 固化剂为八甲基环四硅氧烷, PDMS与固化剂均为道康宁公司生产。碳纤维,直径 7um,长度 4mm,碳纳米管几何尺寸为:直径20-30nm,长度 10-30um,电导率大于 10000S/m,北京德金岛生产。然后将均相体系的物料加入平板模具中,利用模压机压缩物料至设定厚度 200um,压力为 5Mpa。加热模具至 100-130℃,固化 10 分钟,即可得到复合材料。其中一个平板上凸起的微结构阵列几何机构和尺寸如图 2,图 9 为实施例 5 制备的复合材料的横截面的扫描电镜图片。实施例 5 的复合材料测试电导率为 727S/m。
实施例 6 配置碳纤维浓度 3wt%,石墨烯浓度为 1wt%的聚二甲基硅氧烷/碳纤维+石墨烯混合物料,加入哈克密炼机中混合,密炼参数为:螺杆转速 50r/min 密炼温度 30℃密炼时间 15min。将混合好的物料与 PDMS 固化剂按照 10:1 的比例混合后放入真空干燥箱中抽真空 10 分钟去除物料中的气泡, PDMS 固化剂为八甲基环四硅氧烷, PDMS 与固化剂均为道康宁公司生产。碳纤维,直径 7um,长度 4mm,石墨烯为单层石墨烯粉末,几何尺寸为:厚度 1.0-1.77nm,片层直径 10-50um,苏州恒球科技生产。然后将均相体系的物料加入平板模具中,利用模压机压缩物料至设定厚度 200um,压力为 5Mpa。加热模具至 100-130℃,固化 10 分钟,即可得到复合材料。其中一个平板上凸起的微结构阵列几何机构和尺寸如图 2,图 10 为实施例 6制备的复合材料的横截面的扫描电镜图片。实施例 6 的复合材料测试电导率为 97.7S/m。
实施例 7 配置碳纤维浓度为 5wt%聚丙烯/碳纤维混合物料,加入哈克密炼机中混合,密炼参数为:螺杆转速 100r/min 密炼温度 170℃密炼时间 15min。将混合好的物料与PDMS固化剂按照10:1的比例混合后放入真空干燥箱中抽真空 10 分钟去除物料中的气泡, PDMS 固化剂为八甲基环四硅氧烷, PDMS 与固化剂均为道康宁公司生产。碳纤维,直径 7um,长度 4mm,炭黑为ORION ENGINEERED CARBONS 公司生产,型号为: XE2-B。然后将均相体系的物料加入平板模具中,利用模压机压缩物料至设定厚度 200um,压力为 5Mpa。加热模具至 100-130℃,固化 10 分钟,即可得到复合材料。其中一个平板上凸起的微结构阵列几何机构和尺寸如图 2,图 11 为实施例 7 制备的复合材料的横截面的扫描电镜图片。实施例 7 的复合材料测试电导率为 0.11S/m。
实施例 8 配置碳纤维浓度为 60wt%的聚二甲基硅氧烷/碳纤维混合物料,加入哈克密炼机中混合,密炼参数为:螺杆转速 50r/min 密炼温度 30℃密炼时间 15min。将混合好的物料与 PDMS 固化剂按照 10:1 的比例混合后放入真空干燥箱中抽真空 10 分钟去除物料中的气泡, PDMS 固化剂为八甲基环四硅氧烷, PDMS 与固化剂均为道康宁公司生产。直径 7um,长度 4mm,然后将均相体系的物料加入平板模具中,利用模压机压缩物料至设定厚度 200um,压力为 5Mpa。 加热模具至 100-130℃,固化 10 分钟,即可得到复合材料。其中一个平板上凸起的微结构阵列几何机构和尺寸如图 1,图 12 为实施例 8 制备的复合材料的横截面的扫描电镜图片。实施例 8 的复合材料测试电导率为 2650S/m。

Claims (10)

1.一种空间限域微纳米精密组装法制备聚合物基复合材料的方法,其特征在于:包括如下步骤:
(1)将导电填料与聚合物基体按质量比为0.5~60:100的比例加入到共混设备中混合均匀,通过共混得到均相的聚合物/导电填料物料体系;
(2)将步骤(1)制备的均相物料体系加入到由两个平板组成的模具中,通过机械压缩的方式对均相共混物进行平面限域压缩;
(3)利用压缩模板上设置的微纳结构阵列,对网络上的填料进行进一步压实,进行“阵列锚固”,实现网络的微纳米精密组装,得到复合材料。
2.根据权利要求1所述的一种空间限域微纳米精密组装法制备聚合物基复合材料的方法,其特征在于:步骤(1)所述的导电填料为微纳米尺度的片状填料、纤维状填料、球状导电填料中的一种或两种以上的组合物。
3.根据权利要求1所述的一种空间限域微纳米精密组装法制备聚合物基复合材料的方法,其特征在于:步骤(1)所述的聚合物基体为热塑性聚合物基体、热固性基体或光固化类基体。
4.根据权利要求1所述的一种空间限域微纳米精密组装法制备聚合物基复合材料的方法,其特征在于:步骤(1)所述的共混设备包括高速搅拌器、超声分散仪、密炼机、同向双螺杆挤出机、Buss挤出机或行星挤出机。
5.根据权利要求1所述的一种空间限域微纳米精密组装法制备聚合物基复合材料的方法,其特征在于:步骤(2)所述的机械压缩方式包括平板压缩、履带压缩或辊压压缩。
6.根据权利要求1所述的一种空间限域微纳米精密组装法制备聚合物基复合材料的方法,其特征在于:步骤(2)所述的平面限域压缩,均相体系首先发生传统方式的自组装成网,其后共混物被进一步压缩直至设定的特征厚度,在该厚度形成过程中,自组装网络上的填料被进一步压实,填料的间距降低到设计的数值,网络密实度提高。
7.根据权利要求1所述的一种空间限域微纳米精密组装法制备聚合物基复合材料的方法,其特征在于:步骤(3)所述的微纳结构阵列为V-Cut结构、半球型结构、半圆柱结构、棱镜结构、金字塔结构、棱锥结构或半椭圆球结构中的一种或两种以上的组合。
8.根据权利要求1所述的一种空间限域微纳米精密组装法制备聚合物基复合材料的方法,其特征在于:步骤(3)所述的复合材料的厚度为对均相样品进行机械压缩,使其厚度压缩至接近或小于自组装成网过程中的特征厚度,而特征厚度取决于填料组成网络网线的平均直径。
9.根据权利要求2所述的一种空间限域微纳米精密组装法制备聚合物基复合材料的方法,其特征在于:所述的片状填料为鳞片石墨、石墨烯中的一种或两种以上的组合物;纤维状填料为碳纤维、碳纳米管中的一种或两种以上的组合物;球状导电填料为炭黑粒子、银粉或氧化镁中的一种或两种以上的组合物。
10.根据权利要求3所述的一种空间限域微纳米精密组装法制备聚合物基复合材料的方法,其特征在于:所述的热塑性聚合物基体为聚丙烯、尼龙、聚碳酸酯或聚甲基丙烯酸甲酯中的一种或两种以上的组合物;热固性基体为酚醛树脂、聚二甲基硅氧烷或环氧树脂;光固化类基体为环氧丙烯酸酯、聚氨酯丙烯酸酯或聚酯丙烯酸树脂。
CN201710070455.4A 2016-10-10 2017-02-09 一种限域空间微纳米精密组装法制备聚合物基导电复合材料的方法 Active CN106905699B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB1911176.4A GB2573914B (en) 2016-10-10 2017-05-26 A Method for preparing high performance polymer-based conductive composites by space-limited micro-nano precision assembly method
US16/483,938 US11104037B2 (en) 2016-10-10 2017-05-26 Method for preparing high performance polymer-based conductive composites by space-limited micro-nano precision assembly method
PCT/CN2017/086039 WO2018145372A1 (zh) 2016-10-10 2017-05-26 一种限域空间微纳米精密组装法制备高性能聚合物基导电复合材料的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610885809 2016-10-10
CN2016108858096 2016-10-10

Publications (2)

Publication Number Publication Date
CN106905699A CN106905699A (zh) 2017-06-30
CN106905699B true CN106905699B (zh) 2020-01-21

Family

ID=59209071

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710070455.4A Active CN106905699B (zh) 2016-10-10 2017-02-09 一种限域空间微纳米精密组装法制备聚合物基导电复合材料的方法

Country Status (4)

Country Link
US (1) US11104037B2 (zh)
CN (1) CN106905699B (zh)
GB (1) GB2573914B (zh)
WO (1) WO2018145372A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108357042A (zh) * 2018-02-09 2018-08-03 广东工业大学 一种高分子复合材料表面微纳结构的制备方法
CN110577745A (zh) * 2019-09-05 2019-12-17 上海阿莱德实业股份有限公司 一种导热材料的制备方法
CN110540706B (zh) * 2019-09-05 2022-06-10 上海阿莱德实业股份有限公司 一种导热界面材料的制备方法
CN112375383A (zh) * 2020-10-16 2021-02-19 北京科技大学顺德研究生院 一种用于机器人触觉传感器的压阻橡胶复合材料及其制备方法
CN113414924B (zh) * 2021-05-06 2022-08-05 北京化工大学 一种连续化制备聚合物基导电复合材料的方法和装置
CN114864138B (zh) * 2022-06-01 2023-06-09 业泓科技(成都)有限公司 改善超声波指纹识别的复层导电膜及其制备方法
CN116289319B (zh) * 2022-09-09 2024-02-09 天津大学 一种有序阵列孔隙结构碳纸的制备及加工方法
CN115819976B (zh) * 2022-12-07 2023-06-27 山东大学 一种定向排布复合机敏材料以及使用该材料的机敏传感器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101195266A (zh) * 2007-12-31 2008-06-11 宁波海天塑机集团有限公司 注塑机双重压缩成型方法
JP2015093441A (ja) * 2013-11-13 2015-05-18 小島プレス工業株式会社 スタックモールド射出圧縮成形金型

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1142119C (zh) * 1994-08-09 2004-03-17 株式会社丰田中央研究所 复合材料、其制法及由其构成的热敏电阻材料及制法
US20020118465A1 (en) * 2001-02-28 2002-08-29 Konica Corporation Molding die for optical element, optical element and master die
US6652968B1 (en) * 2001-03-22 2003-11-25 Dorothy H. J. Miller Pressure activated electrically conductive material
CN102205639A (zh) * 2011-03-03 2011-10-05 北京化工大学 聚合物挤出微压印成型方法
CN103624992B (zh) * 2013-11-22 2016-05-25 北京化工大学 一种聚合物微结构的片材压制设备及压制加工方法
US20160012932A1 (en) * 2014-07-11 2016-01-14 Tyco Electronics Corporation Composite Formulation and Electronic Component
US20160351288A1 (en) * 2015-06-01 2016-12-01 Rhode Island Board Of Education, State Of Rhode Island And Providence Plantations Systems and methods for providing tunable multifunctional composites
US10829623B1 (en) * 2017-06-27 2020-11-10 Douglas W. Van Citters High-strength conductive polymer composite formed by angular extrusion
US10957495B2 (en) * 2018-01-03 2021-03-23 Nanotek Instruments Group, Llc Supercapacitor and electrode having cellulose nanofiber-spaced graphene sheets and production process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101195266A (zh) * 2007-12-31 2008-06-11 宁波海天塑机集团有限公司 注塑机双重压缩成型方法
JP2015093441A (ja) * 2013-11-13 2015-05-18 小島プレス工業株式会社 スタックモールド射出圧縮成形金型

Also Published As

Publication number Publication date
GB201911176D0 (en) 2019-09-18
GB2573914B (en) 2022-05-25
US11104037B2 (en) 2021-08-31
US20190389093A1 (en) 2019-12-26
CN106905699A (zh) 2017-06-30
WO2018145372A1 (zh) 2018-08-16
GB2573914A (en) 2019-11-20

Similar Documents

Publication Publication Date Title
CN106905699B (zh) 一种限域空间微纳米精密组装法制备聚合物基导电复合材料的方法
Zhang et al. Assembly of graphene-aligned polymer composites for thermal conductive applications
CN104845361B (zh) 短切碳纤维、纳米导电炭黑/石墨烯协同增强高导电热塑性塑料及其制备方法
Gao et al. Improved electrical conductivity of PDMS/SCF composite sheets with bolting cloth prepared by a spatial confining forced network assembly method
CN106827428B (zh) 一种注塑成型高性能导电或导热聚合物基复合材料制件的方法
CN104119627A (zh) 一种高体积分数导热复合材料及其制备方法
CN111584151B (zh) 一种碳纤维/碳/石墨复合碳毡及其增强聚合物复合材料导热导电性能的方法
KR100758341B1 (ko) 금속-나노파이버 혼합체가 분산된 단분자 및 고분자 기지전도성 복합재와 그 제조 방법
CN102532839B (zh) 一种高性能导电聚碳酸酯材料及其制备方法
Wang et al. Epoxy composites with high thermal conductivity by constructing three-dimensional carbon fiber/carbon/nickel networks using an electroplating method
CN104130753A (zh) 一种高导热导电碳纳米复合材料及其制备方法
CN110527468B (zh) 一种基于一维、二维材料的力致导电胶的制备与应用
KR100898900B1 (ko) 전도성 복합재와 그 제조방법
Kormakov et al. The electrical conductive behaviours of polymer-based three-phase composites prepared by spatial confining forced network assembly
Zulkarnain et al. Effects of silver microparticles and nanoparticles on thermal and electrical characteristics of electrically conductive adhesives
CN110256815A (zh) 一种新型增韧导电环氧树脂复合材料及其制备方法
CN102604186A (zh) 一种高韧性导电纳米复合材料及其制备方法
Li et al. Preparation of Short Carbon Fiber/Polydimethylsiloxane Conductive Composites Based on Continuous Spatial‐Confining Network Assembly Technique
KR20160038543A (ko) 필러를 함유하는 섬유 강화 열가소성 수지 복합재료 및 그 제조 방법
CN106832522B (zh) 一种具有取向隔离结构的电磁屏蔽复合材料及其制备方法
CN111978712B (zh) 一种电磁防护塑料及其制备方法
CN107746527A (zh) 一种基于热致相分离技术的多相高分子功能复合薄膜及其制备方法
CN112976438B (zh) 一种定向互连的高导热界面材料的制备方法及产品
CN110607014A (zh) 一种高强度高韧性电磁屏蔽复合材料的制备方法
CN103756304A (zh) 碳化硅微粉改性尼龙6/66复合材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240618

Address after: 065000 Building 40-1, Phase 1, Jingnan Science and Technology Achievement Transformation Base, Daqinghe Park, Gu'an County, Langfang City, Hebei Province

Patentee after: Huabo Jinggong (Hebei Province) Technology Co.,Ltd.

Country or region after: China

Address before: Room 313, Mechanical Building, Beijing University of Chemical Technology, No. 15 North Third Ring East Road, Chaoyang District, Beijing, 100029

Patentee before: BEIJING University OF CHEMICAL TECHNOLOGY

Country or region before: China