CN106893973B - 一种在非晶基带表面制备双轴织构NaCl薄膜的方法 - Google Patents

一种在非晶基带表面制备双轴织构NaCl薄膜的方法 Download PDF

Info

Publication number
CN106893973B
CN106893973B CN201710156286.6A CN201710156286A CN106893973B CN 106893973 B CN106893973 B CN 106893973B CN 201710156286 A CN201710156286 A CN 201710156286A CN 106893973 B CN106893973 B CN 106893973B
Authority
CN
China
Prior art keywords
nacl
base band
film
vacuum
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710156286.6A
Other languages
English (en)
Other versions
CN106893973A (zh
Inventor
张亚辉
薛炎
陶伯万
熊杰
李言荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201710156286.6A priority Critical patent/CN106893973B/zh
Publication of CN106893973A publication Critical patent/CN106893973A/zh
Application granted granted Critical
Publication of CN106893973B publication Critical patent/CN106893973B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/221Ion beam deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明属于多晶薄膜领域,提供一种在非晶基带表面制备双轴织构NaCl薄膜的方法;首先Hastelloy合金基带进行溶液平坦化沉积得到表面沉积有非晶氧化钇的基带,然后采用离子束辅助沉积在基带表面制备得一层IBAD‑NaCl薄膜,最后再沉淀一层自外延NaCl层。本发明在经过溶液平坦化处理得到的哈氏合金非晶层表面制备出具有双轴织构的NaCl薄膜,该方法制备得薄膜不仅具有优秀的面内外织构,质量已经非常接近单晶,而且工艺简单,无毒害,成本低廉,适合大规模工业化应用。

Description

一种在非晶基带表面制备双轴织构NaCl薄膜的方法
技术领域
本发明属于多晶薄膜领域,特别涉及双轴织构薄膜的制备,具体提供一种在非晶基带表面制备双轴织构NaCl薄膜的方法。
背景技术
晶界在平面内和平面外的变形分别被称为晶界倾斜和扭曲,这两种形式的不规则取向会引起缺陷密度变化,从而导致晶界重新取向。薄膜晶界的倾斜和扭曲程度反映了薄膜的晶体结构;而在面内和面外方向均具有择优取向的双轴织构,可以减少晶粒之间的扭曲和倾斜角。
离子束辅助沉积(IBAD)过程采用低能量(小于1keV),Ar+离子束是在物理气相沉积过程中薄膜纹理平面生长所需的源材料;Ar+离子束沿着一个特定的方向对准基带,这样可使晶体与表面以一定的倾斜角度沿着所需方向生长。在离子束辅助沉积过程中,如果选择适当的离子束倾斜角度,就可以形成双轴织构。离子束辅助沉积过程已被用于在高温超导体YBa2Cu3O7(YBCO)生长MgO晶体织构模板层,其超导特性依赖于面内取向一致的晶粒的数量,晶体的面内取向越一致,则表现出来的超导性能越好。
基于此,本发明基于离子束辅助沉积方法,提供一种在非晶基带表面制备双轴织构NaCl薄膜的方法。
发明内容
本发明的目的在于提供一种在基带表面生长双轴织构NaCl的制备方法,在经过溶液平坦化处理得到的哈氏合金非晶层表面制备出具有双轴织构的NaCl薄膜,该方法制备得薄膜不仅具有优秀的面内外织构,质量已经非常接近单晶,而且工艺简单,无毒害,成本低廉,适合大规模工业化应用。
为实现上述目的,本发明采用的技术方案为:
一种在非晶基带表面制备双轴织构NaCl薄膜的方法,其特征在于,包括以下步骤:
步骤1、非晶层的制备:将经过丙酮、酒精超声清洗过的Hastelloy合金基带进行溶液平坦化沉积,得到表面沉积有非晶氧化钇的基带;
步骤2、IBAD-NaCl层的制备:以步骤1中经平坦化处理制备得氧化钇的哈氏合金基带作为基底,采用离子束辅助沉积装置,在真空室真空1.0×10-3Pa以下,依次开启考夫曼离子源、电子束蒸发、卷绕系统,制备得一层IBAD-NaCl薄膜;
步骤3、自外延NaCl层的制备:以步骤2中制备得IBAD-NaCl薄膜的基带作为基底,加热至200℃,真空抽至5.0×10-3Pa以下,依次开启电子束蒸发、卷绕系统,制备得自外延NaCl薄膜。
本发明的有益效果是:
1、本发明采用化学溶液法制备的非晶层薄膜能够起到平整基带的作用;
2、本发明采用的统一设备能够依次制备IBAD-NaCl以及自外延NaCl两层薄膜,能够提高设备的利用率;
3、本发明采用IBAD-NaCl沉积技术,实现双轴织构NaCl薄膜的沉积,合理控制制备工艺参数,为提高成品率,降低成本提供了关键基础;
4、本发明能够采用卷绕方式实现全动态的薄膜沉积过程,有利于工业化快速生产。
附图说明
图1是实施例中(a)Hastelloy基带(b)36层Y2O3非晶层原子力显微镜(AFM)图。
图2是实施例的IBAD-NaCl薄膜RHEED衍射图。
图3是实施例的NaCl薄膜X射线衍射(XRD)2θ-ω扫描图谱;其中X轴表示2θ角(单位是度),Y轴表示计数强度(单位是count/second)。
图4是实施例的NaCl薄膜(200)峰的X射线衍射仪ω扫描图谱;其中X轴表示θ角(单位是度),Y轴表示计数强度(单位是count/second)。
图5是实施例的NaCl薄膜(220)峰的X射线衍射仪Φ扫描图谱;其中X轴表示Φ角(单位是度),Y轴表示计数强度(单位是count/second)。
图6是实施例的NaCl薄膜典型原子力显微镜(AFM)图。
具体实施方式
下面结合附图和实施例对本发明做进一步详细说明
本实施例提供一种在非晶基带表面制备双轴织构NaCl薄膜的方法,具体包括以下步骤:
步骤1、非晶Y2O3层的制备:将67.6g醋酸钇溶于添加了二乙醇胺和二乙烯三胺的1L无水乙醇中,经一定时间的搅拌得到Y3+浓度为0.2Mol/L的溶液;把经过丙酮和酒精清洗过的Hastelloy合金基带在配置好溶液中匀速提拉出来,经过加热处理会得到一层非晶薄膜,如此经过多次沉积之后得到平坦化的非晶氧化钇基带;
步骤2、IBAD-NaCl制备:将步骤1中最后得到的平坦化过的非晶氧化钇基带放入有离子源的真空卷绕系统中,开启机械泵和分子泵,将真空室本底真空抽到1.0×10-3Pa以下;通入Ar,使气压升到4.0×10-2Pa,打开考夫曼离子源,将离子束能量调到500eV,离子束流调至20mA,离子束加速极电压调至100V,离子中和电流开至12A,离子偏置电流30mA;打开电子束蒸发系统,以0.2nm/sec的沉积速率蒸发NaCl,开启卷绕系统,使基带以15m/h的速度均匀通过沉积区域制备的薄膜厚度20nm;IBAD-NaCl层制备完毕后,依次关闭电子束蒸发系统、考夫曼离子源和真空系统,待离子源冷却后取出制得的NaCl基带;
步骤3、自外延NaCl的制备:将步骤2制得的IBAD-NaCl基带装入卷绕系统中,开启电阻丝加热将真空室温度保持在200℃,将真空室本底真空抽至5.0×10-3Pa以下,打开电子束蒸发系统,以2nm/sec的沉积速率蒸发NaCl,开启卷绕系统,步进电机带动基带以5.4m/h的速度均匀通过沉积区域,制备的自外延NaCl厚度60nm;自外延NaCl制备完毕后,依次关闭电子束蒸发系统、加热系统和真空系统。
将采用以上步骤制得的NaCl薄膜进行结构和表面形貌分析的结果如下:
图1是实施例中(a)Hastelloy基带(b)36层Y2O3非晶层原子力显微镜(AFM)图;基带均方根粗糙度(RMS)约为18nm,非晶薄膜表面RMS为0.9nm,满足IBAD-NaCl的制备前提。
图2是实施例中的IBAD-NaCl薄膜,带材表面有衍射斑点说明表面具有(200)单一取向。
图3是实施例中的NaCl薄膜XRD 2θ-ω扫描图谱,图谱显示表面为纯c轴取向。
图4是实施例中的NaCl薄膜的XRDω扫描图谱,其半高宽(FWHM)为3.9°,表明薄膜的面外一致性好。
图5是实施例中的NaCl薄膜的XRDΦ扫描图谱,其半高宽(FWHM)为8.5°,表明薄膜的面内一致性好。
图6是实施例中的NaCl薄膜的原子力显微镜(AFM)图,NaCl表面表面平整、无裂纹,表面RMS为3.2nm。
说明书已经详细说明了本发明的技术原理及必要技术内容,普通技术人员能够依据说明书予以实施,故不再赘述更详细的技术细节。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。

Claims (1)

1.一种在非晶基带表面制备双轴织构NaCl薄膜的方法,其特征在于,包括以下步骤:
步骤1、非晶层的制备:将经过丙酮、酒精超声清洗过的Hastelloy合金基带进行溶液平坦化沉积,得到表面沉积有非晶氧化钇的基带;
步骤2、IBAD-NaCl层的制备:以步骤1中经平坦化处理制备得氧化钇的哈氏合金基带作为基底,采用离子束辅助沉积装置,在真空室真空1.0×10-3Pa以下,依次开启考夫曼离子源、电子束蒸发、卷绕系统,制备得一层IBAD-NaCl薄膜;具体过程为:
将步骤1中最后得到的平坦化过的非晶氧化钇基带放入有离子源的真空卷绕系统中,开启机械泵和分子泵,将真空室本底真空抽到1.0×10-3Pa以下;通入Ar,使气压升到4.0×10-2Pa,打开考夫曼离子源,将离子束能量调到500eV,离子束流调至20mA,离子束加速极电压调至100V,离子中和电流开至12A,离子偏置电流30mA;打开电子束蒸发系统,以0.2nm/sec的沉积速率蒸发NaCl,开启卷绕系统,使基带以15m/h的速度均匀通过沉积区域制备的薄膜厚度20nm;IBAD-NaCl层制备完毕后,依次关闭电子束蒸发系统、考夫曼离子源和真空系统,待离子源冷却后取出制得的NaCl基带;
步骤3、自外延NaCl层的制备:以步骤2中制备得IBAD-NaCl薄膜的基带作为基底,加热至200℃,真空抽至5.0×10-3Pa以下,依次开启电子束蒸发、卷绕系统,制备得自外延NaCl薄膜;具体过程为:
将步骤2制得的IBAD-NaCl基带装入卷绕系统中,开启电阻丝加热将真空室温度保持在200℃,将真空室本底真空抽至5.0×10-3Pa以下,打开电子束蒸发系统,以2nm/sec的沉积速率蒸发NaCl,开启卷绕系统,步进电机带动基带以5.4m/h的速度均匀通过沉积区域,制备的自外延NaCl厚度60nm;自外延NaCl制备完毕后,依次关闭电子束蒸发系统、加热系统和真空系统。
CN201710156286.6A 2017-03-16 2017-03-16 一种在非晶基带表面制备双轴织构NaCl薄膜的方法 Active CN106893973B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710156286.6A CN106893973B (zh) 2017-03-16 2017-03-16 一种在非晶基带表面制备双轴织构NaCl薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710156286.6A CN106893973B (zh) 2017-03-16 2017-03-16 一种在非晶基带表面制备双轴织构NaCl薄膜的方法

Publications (2)

Publication Number Publication Date
CN106893973A CN106893973A (zh) 2017-06-27
CN106893973B true CN106893973B (zh) 2019-06-21

Family

ID=59194067

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710156286.6A Active CN106893973B (zh) 2017-03-16 2017-03-16 一种在非晶基带表面制备双轴织构NaCl薄膜的方法

Country Status (1)

Country Link
CN (1) CN106893973B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5964966A (en) * 1997-09-19 1999-10-12 Lockheed Martin Energy Research Corporation Method of forming biaxially textured alloy substrates and devices thereon
CN102602963A (zh) * 2012-03-12 2012-07-25 山东建筑大学 一种择优取向氯化钠薄膜的制备方法
CN104021880B (zh) * 2014-06-03 2016-08-24 电子科技大学 一种涂层导体用双面MgO缓冲层的制备方法
CN104992777B (zh) * 2015-05-28 2017-05-24 苏州新材料研究所有限公司 一种双轴织构缓冲层结构

Also Published As

Publication number Publication date
CN106893973A (zh) 2017-06-27

Similar Documents

Publication Publication Date Title
CN1943053A (zh) 用于超导体涂布带的双轴织构化膜沉积
CN103255369B (zh) 一种金属基带上适用于IBAD-MgO生长的简化阻挡层及其制备方法
CN108660417B (zh) 一种自支撑Ga2O3薄膜及其制备方法
CN108411267A (zh) 一种制备自由态多面体纳米Ag颗粒的方法
CN102623521A (zh) 一种氧化亚铜薄膜的制备方法
CN112410880B (zh) 自调控生长取向的柔性自支撑单晶Fe3O4薄膜材料的制备、薄膜材料及单晶结构
CN104021880B (zh) 一种涂层导体用双面MgO缓冲层的制备方法
CN108251805A (zh) 一种用Ru缓冲层实现六角Mn3Ga薄膜制备的方法
Vanamoorthy et al. Study on optimizing c-axis oriented AlN thin film for piezoelectric sensing applications controlling the sputtering process parameters
CN106893973B (zh) 一种在非晶基带表面制备双轴织构NaCl薄膜的方法
WO2014183237A1 (zh) 基于IBAD-MgO金属基带的简化隔离层及其制备方法
CN109913945A (zh) 一种在硅(211)衬底上生长硒化铋高指数面单晶薄膜的方法
CN110129732B (zh) 一种高电阻率高熵合金薄膜及其制备方法
CN109896543B (zh) 一种远程外延生长可转移钛酸钡单晶薄膜的方法
CN109023276A (zh) 一种基于中频溅射制备同质外延双面MgO薄膜的方法
JP4033945B2 (ja) 酸化物超電導導体およびその製造方法
CN102255040B (zh) 双面超导带材缓冲层的连续制备方法
CN113322514A (zh) 分子束外延技术制备(00l)择优取向低熔点铋薄膜的方法
CN100537822C (zh) 金属基带上连续生长的多层立方织构隔离层的制备方法
CN108004518A (zh) 基于离子束溅射技术制备尺寸均匀、高密度MnGe量子点
CN108831823B (zh) 柔性透明聚酰亚胺衬底上的氮化铟镓薄膜及其制备方法
CN114015982A (zh) 一种利用磁场增强技术制备晶态锡酸钡薄膜的方法
CN113564698B (zh) 一种磁性拓扑异质结薄膜的制备方法
CN109338321A (zh) 一种异质结薄膜的制备方法
CN113838965B (zh) 一种独立式高温超导薄膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant