CN106892418B - 一种用豆腐废水制作碳量子点的方法 - Google Patents

一种用豆腐废水制作碳量子点的方法 Download PDF

Info

Publication number
CN106892418B
CN106892418B CN201710036614.9A CN201710036614A CN106892418B CN 106892418 B CN106892418 B CN 106892418B CN 201710036614 A CN201710036614 A CN 201710036614A CN 106892418 B CN106892418 B CN 106892418B
Authority
CN
China
Prior art keywords
quantum dot
carbon quantum
fluorescence
carbon
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710036614.9A
Other languages
English (en)
Other versions
CN106892418A (zh
Inventor
张晋
王鸿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan University YNU
Original Assignee
Yunnan University YNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan University YNU filed Critical Yunnan University YNU
Priority to CN201710036614.9A priority Critical patent/CN106892418B/zh
Publication of CN106892418A publication Critical patent/CN106892418A/zh
Application granted granted Critical
Publication of CN106892418B publication Critical patent/CN106892418B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开一种用豆腐废水制作碳量子点的方法,属于纳米材料技术领域。该方法以豆腐黄浆水为碳源,经加热使黄浆水中的有机物碳化,合成水溶性荧光碳量子点,其特征在于该方法将黄浆水放入容器中在200‑300℃恒温加热反应2~5小时;之后自然冷却,再加入去离子水或浓度为1.8 mg/ml的NaOH溶液形成混合液;然后将此混合液磁力搅拌4 min,再超声5 min,让该混合液静置均匀后取上层清液,再以12000 r/min的转速离心20 min,取上层清液即可获得在紫外光激发下发射蓝色或绿色荧光的碳量子点水溶液。本发明合成碳量子点的原料易得、资源丰富、绿色环保、且变废为宝。所合成的碳量子点产率高、荧光强、分散性好、荧光波长可调,有利于碳量子点在生物医学、照明及显示器件等领域的应用。

Description

一种用豆腐废水制作碳量子点的方法
技术领域
本发明涉及一种用豆腐废水制作碳量子点的方法,属于纳米材料技术领域。
背景技术
碳量子点(carbon quantum dots, CQDs) 是2004年发现的碳纳米材料。碳量子点是荧光碳纳米材料中最重要的一种,具有优异的光致发光和电致发光性能。碳量子点荧光明亮、稳定性高,激发光谱宽,发射光谱窄,发射波长可通过改变碳量子点的粒径大小(1-20nm)、结构成分或掺杂种类、表面态、边缘态、氧化程度及其溶液的PH值来调控,无光漂白现象,且化学性能稳定,某些碳量子点还有上转换荧光特性,因而在生物样本特别是活组织的多色成像中极为有用,能有效避免因样本自身发光和光散射导致的信号干扰。相对于金属量子点和半导体量子点,碳量子点无毒害作用,对环境没有危害。由于碳量子点易于功能化和工业化,制备工艺简单、生产成本低廉,使碳量子点在发光材料及器件、荧光传感、环境检测、光催化、细胞标记和生物成像等众多领域展现出巨大的应用潜力,因而给发光材料、光电器件、绿色照明、薄膜显示、生物医学等学科领域带来新的、广阔的发展空间。
现有技术中合成碳量子点的方法有两类:一是自下而上(Bottom-up)合成方法,即通过热解或碳化合适的前驱物直接合成荧光碳量子点,包括燃烧法、热解法、微波法等;二是自上而下(Top-down)合成方法,即先打碎碳的前驱物,然后通过聚合物表面钝化的方式使其发光,主要包括化学剥离碳纤维法、电弧放电、激光剥蚀、电化学氧化和水热法等,其中水热法是合成碳量子点较为常用的方法。
如果按制备碳量子点的原料来分,合成碳量子点的方法也可归结为两类:无机碳源和有机碳源。为了合成生物相容性好、毒性低、荧光强的碳量子点,促进碳量子点在生物医学、照明和显示等领域的广泛应用,选择自然有机物作为碳源合成碳量子点更可取,如果能废物利用更好。
豆制品废水是一种值得关注的廉价、宏量的碳源,豆制品废水的综合利用将会带来巨大的经济效益和社会效益。豆制品作为我国的传统食品已有五千年的历史。因其营养丰富,风味独特,深受人们喜爱。豆制品蛋白质中人体“必需的氨基酸”含量充足、组分齐全,属于“优质蛋白质”。除此之外,豆制品蛋白质还含有丰富的钙、镁、磷、铁、维生素B1、B2、有机酸及纤维素。随着人们生活水平的提高,豆制品种类及需求量日益增加。据统计,2015年我国用于豆制品加工的大豆约600万吨,每生产 1吨豆制品会将产生约15吨废水。豆制品生产过程中产生的大量废水主要包含泡豆的废水、豆腐压榨过程产生的黄浆水和清洗设备所产生的废水,其中每使用 1吨大豆就产生1吨左右的泡豆废水、4吨的豆腐黄浆水、约10吨清洁废水。豆制品废水属于高浓度的有机废水,生物需氧量( BOD)和化学耗氧量(COD)值较高,总氮(TN)和氨氮(NH,N)也较高,特别是黄浆水含有大豆低聚糖、大豆乳清蛋白、大豆异黄酮、大豆皂甙、多肽等丰富的有机物,其COD高达10000-20000mg/L,这些有机物极易腐败变质,如果直接排放将会导致田地、水质等环境污染。所以对豆制品废水的利用或处理对象主要是黄浆水。如果处理得当,黄浆水中可回收的成分多、含量高,可获得高附加值的物质。
目前黄浆水的应用开发技术主要涉及从豆腐黄浆水中分离蛋白质(公开号CN101473885A)、提取大豆低聚糖、大豆异黄酮等优质功能性成分制备成大豆低聚糖肽功能性饮料(公开号 CN105685752A 和CN104687190A)以及豆腐黄浆水营养强化酱油(公开号CN105707835A)、利用豆制品废水进行微生物培养(公开号 CN104762229A)、制作液体有机肥料(公开号 CN102040409A)、以黄浆水为原料或其营养成分为添加剂开发复合功能性饮料(公开号 CN105685752A)、发酵饲料(公开号 CN105746923A和公开号CN103652339A)等应用。豆制品废水还有许多用途有待研究和开发,豆制品废水引起的环境污染问题也将随着豆制品废水的综合有效利用而得以解决。
发明内容
本发明的目的是提出一种用豆制品废水制作碳量子点的方法,该方法是以豆腐黄浆水为碳源,经平台加热使黄浆水中的有机物碳化,一步合成水溶性荧光碳量子点。本发明的合成方法能够减少高浓度有机废水的排放,解决黄浆水中高浓度有机物直接排放对环境造成的污染问题,同时可以获得高荧光量子产率的水溶性碳量子点,实现豆制品废水的有效利用、延长豆制品生产的产业链。
本发明的技术方案是以豆腐黄浆水为前驱体,采用热解法合成水溶性荧光碳量子点。该合成方法中的加热温度、加热时间、黄浆水的PH值等均对碳量子点的生长产生直接影响。因此,可通过控制上述因素来制作发射不同荧光波长的碳量子点。
本发明的技术特征在于合成荧光碳量子点的工艺过程包含以下步骤:
1. 取300 ml豆腐黄浆水放入500 ml烧杯中,将其置于恒温加热平台上,待加热平台温度升高至200-300 ℃时,恒温加热反应2~5小时,等烧杯中的黄浆水要干未干时停止加热;
2. 让烧杯中的反应物在室温下自然冷却,随后在装有所述的反应物并且已冷却的烧杯中加入去离子水50-200 ml,形成混合液;
3. 然后将所述的混合液磁力搅拌4 min,待搅拌结束后再超声5 min,再让该混合液静置均匀后取上层清液,重复此步骤2~3次;
4. 将取出的上层清液放入离心机中,以12000 r/min的转速离心20 min,最后取出上层清液,即可获得在波长为410 nm的可见光激发下发射波长为457 nm和498 nm蓝色荧光的碳量子点水溶液。
5. 重复以上步骤1,让烧杯中的反应物在室温下自然冷却,随后在装有所述的反应物并已冷却的烧杯中加入浓度为1.8 mg/ml的NaOH溶液100 ml,随后重复步骤3、4的过程,即可获得在波长为480 nm的可见光激发下 点的生长产生直接影响。因此,可通过控制以发射波长为541 nm绿色荧光的碳量子点水溶液。
本发明的有益效果:采用本发明的合成方法制备的水溶性荧光碳量子点产率高、荧光强、分散性和稳定性好、荧光波长可调,而且碳量子点毒性低,生物相容性好,有利于细胞标记和生物成像、荧光探针、药物载体、照明及显示器件等方面的应用。另外,本发明所采用的碳源为豆腐黄浆水,原料易得、资源丰富、绿色环保、无毒无污染,且变废为宝,在其生产过程中无需特殊防护,合成工艺简单,过程易控制,成本低廉,反应时间短、节能省时、适于规模化生产。
附图说明
图1为本发明实施例1合成的碳量子点表面形貌(a)和晶格条纹(b)的TEM像及其相应的傅里叶变换(FFT)图(c);
图2为本发明实施例2合成的碳量子点表面形貌(a)和晶格条纹(b)的TEM像及其相应的傅里叶变换(FFT)图(c);
图3为本发明实施例1(a)和实施例2(b)合成的碳量子点粒径分布统计图;
图4为本发明实施例1(a)和实施例2(b)合成的碳量子点X射线光电子能谱(XPS);
图5为本发明实施例1(a)和实施例2(b)合成的碳量子点吸收谱(Abs)和荧光谱(PL);
图6为本发明实施例3合成的碳量子点荧光谱(PL)和吸收谱(UV-vis)对比分析。
图7是本发明实施例1(a)和实施例2(b)合成的碳量子点在可见光照射(A)和紫外光(365 nm)照射(B)下发射蓝色和绿色荧光的照片。
具体实施方式
下面结合附图及实施例,详细描述本发明的技术方案。
实施例1
将豆腐黄浆水依次装入12支10 ml的试管中并放入转速为12000 r/min的离心机中离心20 min,随后取500 ml离心过后的豆腐黄浆水,将此黄浆水溶液转移到容积为500ml的烧杯中,并将其置于恒温加热平台之上,待加热平台表面温度升高至280℃时,恒温加热反应2~5小时,自然冷却至室温方可取出反应物,随后在装有所述的反应物并已冷却的烧杯中加入去离子水50 ml,形成混合液;再将此混合液磁力搅拌5 min,待搅拌结束后再超声4 min,等混合液静置均匀后取上层清液,重复此步骤2~3次;再将该清液以12000 r/min的转速离心20 min,又取上层清液,即可获得含荧光碳量子点的水溶液。
图1给出本发明实施例1合成的碳量子点表面形貌(a)、晶格条纹(b)的TEM图及其相应的FFT图(c)。图1(a)展现出采用本发明的制备方法合成的水溶性荧光碳量子点为尺寸分布在2~10 nm范围的准球形纳米晶粒,分散性好;图1(b)显示本发明制备的碳量子结晶度高,晶格条纹清晰,晶面间距为0.22 nm,这与图1(c)中显示的碳量子点晶格的付里叶变换FFT图相吻合。
实施例2
将豆腐黄浆水依次装入12支10 ml的试管中并放入转速为12000 r/min的离心机中离心20 min,随后取300 ml离心过后的豆腐黄浆水,将此黄浆水溶液转移到容积为500ml的烧杯中,并将其置于恒温加热平台上,待加热平台表面温度升高至230 ℃时,恒温加热反应2~5小时,自然冷却至室温方可取出反应物,随后在装有所述的反应物并已冷却好的烧杯中加入现配置的PH=12.35的氢氧化钠溶液150 ml形成混合液;再将此混合液磁力搅拌5min,待搅拌结束后再超声4 min,等混合液静置均匀之后取上层清液,重复此步骤2~3次;然后将所得的清液以12000 r/min的转速离心20 min,取上层清液即可获得荧光碳量子点的水溶液。
图2给出本发明实施例2合成的碳量子点表面形貌(a)、晶格条纹(b)的TEM像及其相应的FFT图(c)。图2(a)展现出用本发明的制备方法合成的荧光碳量子点为尺寸分布在2~10 nm范围的准球形纳米晶粒,且分散性好;图2(b)显示本发明制备的碳量子结晶度高,晶格条纹清晰,晶面间距为0.21 nm,这与图2(c)中显示的碳量子点晶格付里叶变换FFT图一致。
图3给出本发明实施例1(a)和实施例2(b)合成的众多碳量子点的TEM像,图3显示本发明制备的碳量子点不论在水中还是在NaOH溶液中分散性都很好。根据本发明提出的碳量子点制作方法,把黄浆水放入容器中,在200-300 ℃恒温加热反应2~5小时,之后在反应物中加入去离子水的量为豆腐黄浆水加热前的六分之一至三分之二时,可获得分散性好、荧光较强的碳量子点。
本发明实施例1和实施例2合成的碳量子点的组成成分和元素化合价态可由图4所示的碳量子点XPS谱图来表征。图4中的XPS谱图表明,本发明实施例1和实施例2制备的碳量子点含有大量的C、O元素,C1s分峰拟合谱图主要有四个峰,它们分别位于284.8 eV,286.3eV,287.05-288 eV以及288.75-289.2 eV附近,相应于C-C/C=C峰、C-O峰、C=O峰和COOH峰,这与碳量子点相关文献报道吻合。
本发明实施例1和实施例2合成的碳量子点荧光特性可由图5所示的荧光谱(PL)来表征。图5中的PL曲线表明,本发明实施例1合成的碳量子点在波长为410 nm的可见光激发下的两个荧光峰峰位分别位于457 nm和498 nm处,为蓝绿色荧光;实施例2合成的碳量子点在波长为410 nm的可见光激发下荧光峰位于541 nm处,是绿色荧光。
实施例3
为了探索碳量子点荧光波长的调控机制和方法,本发明将豆腐黄浆水依次装入12支10 ml的试管中并放入转速为12000 r/min的离心机中离心20 min,随后取300 ml离心过后的豆腐黄浆水,将此黄浆水溶液转移到容积为500 ml的烧杯中,并将其置于恒温加热平台上,待加热平台表面温度升高至230 ℃时,恒温加热反应2~5小时,自然冷却至室温后取出反应物,随后在装有所述的反应物并已冷却好的烧杯中加入现配置的PH=12.35的氢氧化钠溶液50 ml形成混合液;再将此混合液磁力搅拌5 min,待搅拌结束后再超声4 min,等混合液静置均匀后取上层清液,重复此步骤2~3次;然后将所得的清液以12000 r/min的转速离心20 min,取上层清液,即可获得含荧光碳量子点的水溶液。
实施例4
将豆腐黄浆水依次装入12支10 ml的试管中并放入转速为12000 r/min的离心机中离心20 min,随后取300 ml离心过后的豆腐黄浆水,将此黄浆水溶液转移到容积为500ml的烧杯中,并将其置于恒温加热平台上,待加热平台表面温度升高至230 ℃时,恒温加热反应2~5小时,自然冷却至室温方可取出反应物,随后在装有所述的反应物并已冷却好的烧杯中加入现配置的PH=12.35的氢氧化钠溶液100 ml形成混合液;再将此混合液磁力搅拌5min,待搅拌结束后再超声4 min,等混合液静置均匀之后取上层清液,重复此步骤2~3次;然后将所得的清液以12000 r/min的转速离心20 min,取上层清液即可获得荧光碳量子点的水溶液。
实施例5
将豆腐黄浆水依次装入12支10 ml的试管中,并放入离心机,以12000 r/min的转速离心20 min,随后取300 ml离心过后的豆腐黄浆水,将此黄浆水溶液转移到容积为500ml的烧杯中,并将其置于恒温加热平台上,待加热平台表面温度升高至230 ℃时,恒温加热反应2~5小时,自然冷却至室温后取出反应物,随后在装有所述的反应物并已冷却好的烧杯中加入现配置的PH=12.35的氢氧化钠溶液200 ml形成混合液;再将此混合液磁力搅拌5min,待搅拌结束后再超声4 min,等混合液静置均匀之后取上层清液,重复此步骤2~3次;然后将所得的清液以12000 r/min的转速离心20 min,取上层清液,即可获得荧光碳量子点的水溶液。
本发明实施例2、3、4、5合成的碳量子点的吸收谱如图6(a)所示。图6(a)中的UV-vis曲线表明,本发明实施例2、3、4、5合成的碳量子点强吸收峰均处于260 nm附近,并在334nm处有一个肩峰,这两个峰的吸收强度均随氢氧化钠溶液的添加量增大即碳量子点的浓度降低而减弱。
图6(b)给出本发明实施例2、3、4、5合成的碳量子点的荧光强度和波长的变化与氢氧化钠溶液添加剂量的关系。由图6(b)中的荧光特性曲线可知,调节氢氧化钠溶液中碳量子点的浓度可改变碳量子点的荧光强度和波长。当添加所述的NaOH溶液的体积与绿与黄浆水反应前的体积比为1:3时,所制作的碳量子点荧光最强。
图7是本发明实施例1(a)和实施例2(b)合成的碳量子点在可见光照射(A)和紫外光(365 nm)照射(B)下发射蓝色和绿色荧光的照片。根据测试,本发明实施例1和实施例2的质量产率分别为17%和20%,荧光量子产率分别为40%和16%。

Claims (3)

1.一种用豆腐废水制作碳量子点的方法,其特征在于:该方法以豆腐黄浆水为碳源,经加热使黄浆水中的有机物碳化,合成水溶性荧光碳量子点,其主要工艺过程包含以下步骤,将豆腐黄浆水放入烧杯中,在200-300 ℃恒温加热反应2~5小时,待烧杯中的黄浆水要干未干时停止加热;之后自然冷却,再加入去离子水、NaOH溶液的其中一种形成混合液;将此混合液磁力搅拌4 min,再超声5 min,将混合液静置均匀后取上层清液;以12000 r/min的转速离心20 min,取上层清液即可获得在紫外光激发下可发射蓝色、绿色荧光的碳量子点的水溶液。
2.根据权利要求1所述的用豆腐废水制作碳量子点的方法,其特征是将豆腐黄浆水放入烧杯中加热反应完毕,自然冷却后在反应物中加入去离子水的体积与黄浆水加热反应前的体积比为1:6至2:3时,可获得分散性好、荧光较强的碳量子点。
3.根据权利要求1所述的用豆腐废水制作碳量子点的方法,其特征是所述的NaOH溶液浓度为1.8 mg/ml,当添加所述的NaOH溶液的体积与豆腐黄浆水反应前的体积比为1:3时,制作的碳量子点荧光最强。
CN201710036614.9A 2017-01-18 2017-01-18 一种用豆腐废水制作碳量子点的方法 Active CN106892418B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710036614.9A CN106892418B (zh) 2017-01-18 2017-01-18 一种用豆腐废水制作碳量子点的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710036614.9A CN106892418B (zh) 2017-01-18 2017-01-18 一种用豆腐废水制作碳量子点的方法

Publications (2)

Publication Number Publication Date
CN106892418A CN106892418A (zh) 2017-06-27
CN106892418B true CN106892418B (zh) 2019-03-29

Family

ID=59198569

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710036614.9A Active CN106892418B (zh) 2017-01-18 2017-01-18 一种用豆腐废水制作碳量子点的方法

Country Status (1)

Country Link
CN (1) CN106892418B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109879272B (zh) * 2019-04-16 2022-07-15 云南大学 一种用烟草废水制备多色荧光碳量子点的方法
CN109943325B (zh) * 2019-04-17 2022-04-22 云南大学 一种用葡萄酒糟制备红光碳量子点的方法
CN110079308A (zh) * 2019-04-28 2019-08-02 云南大学 一种可调荧光波长的氮、硫共掺碳量子点制备方法
CN110511751B (zh) * 2019-08-28 2022-04-19 西南大学 一种可调谐双发射荧光碳点、制备方法及应用
CN112126431A (zh) * 2020-09-29 2020-12-25 南京理工大学 一种碳量子点修饰的黑磷量子点纳米粒子材料的制备方法和应用
CN113185972B (zh) * 2021-03-25 2022-06-17 清华大学 多模式发光碳点及其制备方法和应用
CN115305085B (zh) * 2021-05-07 2023-12-29 哈尔滨工业大学(深圳) 掺氮碳量子点溶液及其制备方法及用途

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102942924B (zh) * 2012-10-22 2014-10-15 上海交通大学 基于果糖和氢氧化钠化学反应的碳量子点制备方法
KR101490776B1 (ko) * 2013-06-17 2015-02-06 포항공과대학교 산학협력단 에멀젼을 이용한 탄소 양자점 제조 방법
CN104560036B (zh) * 2014-12-30 2017-01-18 中国农业科学院农产品加工研究所 一种以蜂蜜为碳源的碳量子点荧光标记材料及其制备方法和应用
CN105154076A (zh) * 2015-10-15 2015-12-16 青岛大学 一种水热法制备荧光碳量子点的方法
CN105694879B (zh) * 2016-03-11 2018-01-26 大连理工大学 一种有机废水制备碳量子点及其混凝回收方法

Also Published As

Publication number Publication date
CN106892418A (zh) 2017-06-27

Similar Documents

Publication Publication Date Title
CN106892418B (zh) 一种用豆腐废水制作碳量子点的方法
Liu et al. Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications
Miao et al. Hetero-atom-doped carbon dots: Doping strategies, properties and applications
CN110155984A (zh) 以大豆渣为原料水热法合成生物质荧光碳点的方法及应用
CN108018039B (zh) 一种白光发射碳量子点的制备方法及其应用
CN110205121B (zh) 室温磷光碳点材料及其制备方法与应用
CN109321239B (zh) 一种硫掺杂荧光碳量子点及其制备方法和应用
CN106947476B (zh) 一种氮掺杂荧光石墨烯量子点及其制备方法
Liu et al. Synthesis of carbon dots from pear juice for fluorescence detection of Cu2+ ion in water
Al-Qahtani et al. Development of fluorescent carbon dots ink from rice straw waste toward security authentication
CN105567227B (zh) 一种从咖啡渣固体废弃物中提取石墨烯量子点的方法
CN108128767A (zh) 一种在室温环境快速制备碳量子点的方法及其应用
CN106241772A (zh) 一种利用生物质烟灰高效制备碳量子点的方法
CN107353898A (zh) 一种硼氮掺杂的绿色荧光的碳点制备方法及应用
CN108545715A (zh) 一种发射不随激发波长改变的红色荧光碳点的制备方法
CN108893102A (zh) 一种NaYF4与碳点纳米复合材料及其制备方法及其应用
CN106927446A (zh) 一种氮硫磷共掺杂荧光碳点的制备方法
CN111718713A (zh) 碳点及其制备方法和应用、固体发光赋型材料
Wang et al. Mn (II)-coordinated fluorescent carbon dots: preparation and discrimination of organic solvents
CN107815310A (zh) 一种氮、氯双掺杂的荧光碳量子点的制备方法
CN105672038A (zh) 一种量子点荧光防伪纸的制备方法
Wang et al. Progress on the luminescence mechanism and application of carbon quantum dots based on biomass synthesis
Lei et al. Surface state modulation of blue-emitting carbon dots with high quantum yield and high product yield
CN111518542B (zh) 一种高量子产率锌掺杂碳点的合成方法及其应用
Fu et al. Recent advances in solid-state fluorescent of red carbon dots: A comprehensive review

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant