CN106878997B - 一种基于分布式网络的节点采样速率自适应调整方法 - Google Patents

一种基于分布式网络的节点采样速率自适应调整方法 Download PDF

Info

Publication number
CN106878997B
CN106878997B CN201710046470.5A CN201710046470A CN106878997B CN 106878997 B CN106878997 B CN 106878997B CN 201710046470 A CN201710046470 A CN 201710046470A CN 106878997 B CN106878997 B CN 106878997B
Authority
CN
China
Prior art keywords
node
sparse prior
nodes
reconstruction
prior parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710046470.5A
Other languages
English (en)
Other versions
CN106878997A (zh
Inventor
孙学康
张玉艳
郭彩丽
周日康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Posts and Telecommunications
Original Assignee
Beijing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Posts and Telecommunications filed Critical Beijing University of Posts and Telecommunications
Priority to CN201710046470.5A priority Critical patent/CN106878997B/zh
Publication of CN106878997A publication Critical patent/CN106878997A/zh
Application granted granted Critical
Publication of CN106878997B publication Critical patent/CN106878997B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover

Abstract

本发明属于无线通信技术领域,名称为“一种分布式网络中的贝叶斯压缩频谱感知方法”,适用于分布式网络中对频谱进行感知的场景。在本方法中,网络中节点独立地进行压缩采样过程。节点在使用贝叶斯方法重构过程中,将本地的信道稀疏先验参数初步估计值同过网络与其他节点的初步估计值进行交换,然后节点将接收到的值与本地值进行融合,使用融合值再继续进行贝叶斯重构过程。本发明通过合作式频谱感知,有效地对抗了噪声、隐蔽终端和低采样速率的影响,提高了频谱感知性能。同时本发明基于此频谱感知方法提供了一种节点自适应采用速率方法,通过频谱信号协方差矩阵对角元素的均值来调整网络中的节点采样速率,以满足重构精度的要求。

Description

一种基于分布式网络的节点采样速率自适应调整方法
技术领域
本发明属于无线通信技术领域,特别涉及基于贝叶斯压缩感知(BCS,BayesianCompressed Sensing)的频谱感知技术。
背景技术
随着无线通信业务的飞速发展,频谱资源日渐匮乏,现有的频谱分配方式下一些频段出现的大量的频谱空穴(所述频谱空穴为已分配给授权用户但未被其使用的空闲频谱)。认知无线电(CR,Cognitive radio)技术是一种新型的智能频谱共享技术,可主动检测并机会式地利用授权频段中的频谱空穴,实现不可再生频谱资源的再次利用。在CR技术中,对宽带频谱进行感知是一个备受关注的问题。根据奈奎斯特采样定理,当应用传统的模数转换器(ADC,Analog to Digital Converter)对宽带信号进行采样时,采样器只有以两倍或两倍以上的信号带宽大小的采样速率来采样才能准确恢复信号,这对ADC造成很大的压力。压缩感知技术被应用于宽带频谱感知有效地解决了这个问题。对于稀疏信号,它能够以低于奈奎斯特速率的采样速率进行采样然后有效的重构原稀疏信号,解决了传统方法使用ADC对宽带信号采样导致采样速率过高的问题。而在一段宽带频谱内,当只有少数信道被占用时,那么信号在频域具有稀疏性。在以低于奈奎斯特速率的采样速率进行采样之后,有多种压缩感知算法被提出用于重构原信号。有基于线性规划的基追踪(BP,Basis Pursuit)算法、贪婪迭代的正交匹配追踪(OMP,Orthogonal Match Pursuit)算法、贝叶斯压缩感知(BCS,Bayesian Compressed Sensing)算法。相比于其他重构算法,贝叶斯压缩感知算法能够得到更稀疏的解和更好的噪声鲁棒性。
单节点压缩频谱感知性能在复杂网络环境中具有一定的局限性,容易受到噪声、隐蔽终端和过低采样速率等因素的影响,其感知精度以及稳定性很难达到频谱感知在实际应用的要求。考虑到实际情况中,多个节点进行频谱感知,且节点空间地理差异产生的天然空间分集增益,多个节点可以通过合作的方式,共享单个节点本地感知信息,利用全局的信息来帮助重构,提高频谱感知精度。
发明内容
为了解决单节点压缩感知易受噪声、隐蔽终端和过低采样速率等因素影响的问题,本发明实例提供了一种基于贝叶斯压缩感知方法的分布式压缩频谱感知方法,达到了对抗单节点易受噪声、隐蔽终端和过低采样速率等因素影响的问题,提高了重构精度。
一种分布式网络中贝叶斯压缩频谱感知方法,包括:
S1,节点对待感知信号进行压缩频谱感知中的压缩采样过程;
S2,节点使用贝叶斯压缩感知算法进行合作重构,合作方式为重构过程中每个节点每轮迭代过程与其他相互交换信道稀疏先验参数初步估计值,将所有接收到的初步估计值与本地初步估计值进行融合,利用这个融合估计值来继续进行贝叶斯重构过程。
S3,每个节点对重构信号进行二元假设检验;
S4,每个节点通过二元假设检验判断信道是否被占用。
本发明还提供了以上述方法中步骤S2中,节点将所有接收到的信道的稀疏先验初步估计值与本节点的信道的稀疏先验初步估计值进行融合的方法。
同时本发明提供一种基于分布式网络中贝叶斯压缩频谱感知方法的节点自适应采样速率调整方法,包括:
第一步:初始化各节点采样速率;
第二步:网络中节点依上述方法进行频谱感知,各节点计算频谱信号协方差矩阵对角元素的均值β;
第三步:若重构结果不满足要求,则选出节点中协方差对角元素均值B最大的节点,在其原有的采样矩阵中增加预定数目的投影向量来增加采样速率,然后返回第二步,若重构结果满足要求,则停止执行。
本发明实施例提供的技术方案的有益效果是:
通过网络中的节点的相互合作来进行频谱感知,相比单节点压缩频谱感知,能够有效地对抗噪声、隐蔽终端和低采样速率的影响,提高了频谱感知精度,同时提供一种基于此频谱感知方法的节点自适应采样速率选择方法,通过频谱信号协方差矩阵对角元素的均值来快速调整网络中的节点采样速率,以满足重构精度的要求。
附图说明
图1:本发明实施例的网络结构图;
图2:本发明实施例的感知频谱图样;
图3:本发明实施例的流程图;
图4:本发明实施例在不同信噪比下与单节点贝叶斯压缩频谱感知方法的性能对比图;
图5:本发明实施例在低采样速率下与单节点贝叶斯压缩频谱感知方法的性能对比图;
图6:本发明实施例合作节点数与重构误差关系图;
图7:本发明实施例中节点自适应采样速率选择方法与节点随机采样速率选择方法性能对比图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步详细描述。
本发明实施例的分布式网络如图1所示,网络中有多个具有频谱感知功能的感知节点,共同感知一段宽带频谱,来判断信道是否被占用。当宽带频谱中只有少数信道被占用时,在一个感知周期中信号被认为在频域是稀疏的。
本发明实施例使用的频谱图样如图2所示,假设宽带信号被划分为N个无重叠子信道,频谱图为宽带信号经过N个点的离散傅里叶变换得到离散稀疏的频谱信号。
本发明实例提供了一种分布式网络中的贝叶斯压缩频谱感知方法,包括:
S1,节点对待感知信号进行压缩频谱感知中的压缩采样过程;
S2,节点使用贝叶斯压缩感知算法进行合作重构,合作方式为重构过程中每个节点每轮迭代过程与其他相互交换信道稀疏先验初步估计值,将所有接收到的初步估计值与本地初步估计值进行融合,使用这个融合估计值来继续进行贝叶斯重构过程;
S3,每个节点对重构信号进行二元假设检验;
S4,每个节点通过二元假设检验判断信道是否被占用。
本发明还提供了以上述方法中步骤S2中,节点将所有接收到的信道的稀疏先验估计值与本节点的信道的稀疏先验估计值进行融合的方法。
同时本发明提供一种基于分布式网络中的贝叶斯压缩频谱感知方法的节点自适应采样速率调整方法,包括:
第一步:初始化各节点采样速率;
第二步:网络中节点依上述方法进行频谱感知,各节点计算频谱信号协方差矩阵对角元素的均值β;
第三步:若重构结果不满足要求,则选出节点中对应协方差对角元素均值β最大的节点,在其原有的采样矩阵中增加预定数目的投影向量来增加采样速率,然后返回第二步,若重构结果满足要求,则停止执行。
在本发明实施例中S2步骤包括:
每个节点对频谱信号的稀疏先验参数进行估计。对于每个节点,频谱信号的后验概率模型可以表示为:
Figure GDA0002389874680000041
其中s为待感知信号的频谱信号,维度为N,x为压缩采样后的信号,维度为M,x的可以表示为
x=ΨF-1r=ΨF-1s+ε, (2)
公式(2)中Ψ为M×N维投影矩阵,F-1为N×N逆傅里叶变换矩阵,在后面的内容中我们用Φ代替ΨF-1。r为待感知信号的时域信号经过N点离散傅里叶变换得到的频域信号,ε为噪声信号进过线性变换后的信号,每个元素服从均值为零方差为σ2的分布。S中的元素服从零均值高斯分布:
Figure GDA0002389874680000042
α为频谱信号的稀疏先验参数,αj为第j个信道的稀疏先验参数。s的后验概率函数为:
Figure GDA0002389874680000043
其中
∑=(σ-2Φ)TΦ+A)-1 (5)
μ=σ-2∑Φ)x (6)
式(5)中A=diag(α1,α2...αN)。
每个节点依文献中(Tipping M E,Faul A C.Fast Marginal LikelihoodMaximisation for Sparse Bayesian Models[C]//International Workshop onArtificial Intelligence and Statistics.2003:3-6.)中的方法本地计算稀疏先验参数初步估计值,然后通过网络进融合估计稀疏先验参数,具体步骤为:
第一步:初始化:网络中每个节点初始化噪声σ2。网络中每个节点本地计算第j个信道的稀疏先验参数估计值:
Figure GDA0002389874680000051
其中
Figure GDA0002389874680000052
是矩阵Φ的第j个向量。将得到的值通过网络互相传输估计值,每个节点将所有接收到的其他节点的第j个信道的稀疏先验参数估计值与本节的估计值进行融合得到一个共同的第j个信道的稀疏先验参数估计值
Figure GDA0002389874680000053
Figure GDA0002389874680000054
Figure GDA0002389874680000055
加入模型中(加入
Figure GDA0002389874680000056
中)。设置其他信道的先验参数为无穷大(∞),完成α的初始化,执行第二步。若
Figure GDA0002389874680000057
选择不同的信道重新初始化;
第二步:每个节点本地计算此时的∑和μ,并计算:
Figure GDA0002389874680000058
Figure GDA0002389874680000059
Figure GDA00023898746800000510
Figure GDA00023898746800000511
i=1,2...N
需要指出的是式(10)和(11)中,当αi=∞时,si=Si,qi=Qi
第三步:网络中所有节点从所有的向量中选一个相同的候选向量
Figure GDA00023898746800000512
执行第四步。
第四步:每个节点本地计算稀疏先验初步估计值:
Figure GDA00023898746800000513
每个节点通过网络互相传输本地计算稀疏先验参数初步估计值θm,每个节点将所有接收到的其他节点的稀疏先验参数初步估计值与本节点的稀疏先验参数初步估计值进行融合,融合后的值为
Figure GDA0002389874680000061
Figure GDA0002389874680000062
且αm<∞,重新估计αm
Figure GDA0002389874680000063
Figure GDA0002389874680000064
且αm=∞,将
Figure GDA0002389874680000065
加入模型,更新αm
Figure GDA0002389874680000066
Figure GDA0002389874680000067
且αm<∞,从模型中删除
Figure GDA0002389874680000068
将αm设为∞。
执行第五步;
第五步:每个节点对噪声估计值进行更新。执行第六步;
第六步:每个节点重新计算∑和μ和所有的si和qi。执行第七步。
第七步:若没有达到收敛条件,执行第三步,若达到收敛条件停止执行。
本发明还提供了上述方法中第四步中,节点将所有接收到的信道的稀疏先验初步值与本节点的初步值进行融合的方法:
Figure GDA0002389874680000069
Figure GDA00023898746800000610
表示T个第m个信道的稀疏先验参数初步估计值值的融合后的值,T表示接收到的加上本地的一共有T个值,θim表示T个中的第i个。同时本发明提供一种基于上述方法的节点自适应采样速率调整方法,包括:
第一步:初始化各节点采样速率;
第二步:网络中节点依分布式网络中的贝叶斯压缩频谱感知方法进行频谱感知,并得到稀疏信号的协方差矩阵∑,各节点计算协方差矩阵对角元素的均值β;
第三步:若重构结果不满足要求,则选出节点中对应协方差对角元素均值β最大的节点,在其原有的投影矩阵中增加预定数目的投影向量来增加采样速率,然后返回第二步,若重构结果满足要求,则停止执行。
本发明的流程图如图3所示。
通过仿真来验证方法的性能。待感知宽带信号频谱范围为[0,4096]M,将待感知宽带信号分为512个子信道,每个信道带宽为8M。一个检测周期内有20个随机信道被占用。
图4显示了本发明实施例在不同信噪比下和单节点贝叶斯压缩频谱感知方法的性能对比。横坐标是信噪比,范围从-10dB到20dB,纵坐标是在虚警概率Pf=0.1下的检测概率Pd。从图可以看出同一信噪比情况下,节点使用本发明实施例方法合作重构得到的检测概率要比单节点贝叶斯压缩频谱感知方法的检测概率要高。
图5显示了在低采样速率下,本发明实施例与节点贝叶斯压缩频谱感知方法的性能对比。横坐标为采样点数,范围变化为[40,70],纵坐标为重构误差,为根均方误差(RMSE),定义为:
Figure GDA0002389874680000071
式中s是原频谱信号,
Figure GDA0002389874680000072
是重构后得到的估计信号。从图5可以看出,通过在本发明实施例的方法进行合作重构得到的重构误差要小于单节点贝叶斯压缩频谱感知方法得到的重构误差。
图6显示了本发明实施例合作节点数与重构误差关系,横坐标为参与合作重构的节点数,纵坐标为RMSE。从图6可以看出一定节点数的合作可以产生很大的增益,网络中的节点不必全部合作,这给网络部署会带来一定便利性。
图7显示本发明实例中的节点自适应采样速率调整方案的性能与随机选择一个节点增加速率的性能比较。横坐标为多次自适应速率采样,纵坐标为RMSE误差。网络中有10个节点进行合作,初始化采样点数为60。每次调整选择β最大的节点增加步长为2的采样数。当从图可以看出本发明实例中的自适应采样速率调整方案有一定的增益效果,更快的下降速率,以满足重构精度要求。

Claims (2)

1.一种基于分布式网络的节点采样速率自适应调整方法,其特征在于,按下列步骤依次进行:
第一步:初始化各节点采样速率;
第二步:网络中节点依分布式网络中的贝叶斯压缩频谱感知方法进行频谱感知,各节点计算频谱信号协方差矩阵∑对角元素的均值β;所述分布式网络中的贝叶斯压缩频谱感知方法,包括以下步骤:
S1,节点对待感知信号进行压缩频谱感知中的压缩采样过程;
S2,节点利用压缩信号对频谱信号进行重构;
S3,每个节点对重构信号进行二元假设检验;
S4,每个节点通过二元假设检验判断信道是否被占用;
S2步骤中,节点使用贝叶斯压缩感知算法进行合作重构,合作方式为重构过程中每个节点每轮迭代过程与其他节点相互交换信道稀疏先验参数的初步估计值,将所有接收到的信道稀疏先验参数初步估计值与本节点信道稀疏先验参数初步估计值进行融合,得到信道稀疏先验参数融合估计值,利用这个信道稀疏先验参数融合估计值来继续进行贝叶斯重构过程,得到重构信号;
第三步:若重构结果不满足要求,则选出节点中协方差对角元素均值β最大的节点,在其原有的采样矩阵中增加预定数目的投影向量来增加采样速率,然后返回第二步,若重构结果满足要求,则停止执行。
2.根据权利要求1所述的一种基于分布式网络的节点采样速率自适应调整方法,其特征在于,所述步骤S2中,节点将所有接收到的信道稀疏先验参数初步估计值与本节点的信道稀疏先验参数初步估计值进行融合,其方法为:
对于第m个信道,
Figure FDA0002389874670000011
Figure FDA0002389874670000012
表示对N个信道稀疏先验参数初步估计值进行融合后得到融合估计值,N表示参与融合的稀疏先验参数初步估计值共有N个,包含接收到的稀疏先验参数初步估计值和本节点的稀疏先验参数初步估计值,θim表示N个稀疏先验参数初步估计值中的第i个稀疏先验参数初步估计值。
CN201710046470.5A 2017-01-18 2017-01-18 一种基于分布式网络的节点采样速率自适应调整方法 Active CN106878997B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710046470.5A CN106878997B (zh) 2017-01-18 2017-01-18 一种基于分布式网络的节点采样速率自适应调整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710046470.5A CN106878997B (zh) 2017-01-18 2017-01-18 一种基于分布式网络的节点采样速率自适应调整方法

Publications (2)

Publication Number Publication Date
CN106878997A CN106878997A (zh) 2017-06-20
CN106878997B true CN106878997B (zh) 2020-08-14

Family

ID=59158162

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710046470.5A Active CN106878997B (zh) 2017-01-18 2017-01-18 一种基于分布式网络的节点采样速率自适应调整方法

Country Status (1)

Country Link
CN (1) CN106878997B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110275158B (zh) * 2018-03-15 2023-04-28 南京理工大学 基于贝叶斯压缩感知的宽带雷达回波信号参数估计方法
CN109586728B (zh) * 2018-12-11 2022-10-25 哈尔滨工业大学 基于稀疏贝叶斯的调制宽带转换器框架下信号盲重构方法
CN113346932B (zh) * 2021-05-19 2022-06-21 重庆邮电大学 基于贝叶斯数据融合的fsk信号分集接收方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102025427A (zh) * 2009-09-23 2011-04-20 华为技术有限公司 频谱检测的方法及用户设备与融合设备
CN102833020A (zh) * 2012-09-10 2012-12-19 杭州电子科技大学 认知无线网络中基于自适应测量的贝叶斯压缩宽带频谱检测方法
CN104703216A (zh) * 2015-02-04 2015-06-10 杭州电子科技大学 基于能量有效的多任务贝叶斯压缩感知宽带频谱检测方法
CN105071877A (zh) * 2015-08-03 2015-11-18 南京邮电大学 一种宽带分布式贝叶斯压缩频谱感知方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102025427A (zh) * 2009-09-23 2011-04-20 华为技术有限公司 频谱检测的方法及用户设备与融合设备
CN102833020A (zh) * 2012-09-10 2012-12-19 杭州电子科技大学 认知无线网络中基于自适应测量的贝叶斯压缩宽带频谱检测方法
CN104703216A (zh) * 2015-02-04 2015-06-10 杭州电子科技大学 基于能量有效的多任务贝叶斯压缩感知宽带频谱检测方法
CN105071877A (zh) * 2015-08-03 2015-11-18 南京邮电大学 一种宽带分布式贝叶斯压缩频谱感知方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
分布式协作压缩频谱感知研究;赵金城;《北京邮电大学硕士论文》;20160112;第二章第2.1.3、2.2、2.3节,第四章4.1、4.2、4.3 *

Also Published As

Publication number Publication date
CN106878997A (zh) 2017-06-20

Similar Documents

Publication Publication Date Title
CN111698182B (zh) 一种基于压缩感知的时频分块稀疏的信道估计方法
CN110855585B (zh) 一种毫米波大规模mimo系统的信道估计方法
CN106878997B (zh) 一种基于分布式网络的节点采样速率自适应调整方法
CN107947881B (zh) 一种混合高斯噪声稀疏贝叶斯频谱感知方法
CN104703216A (zh) 基于能量有效的多任务贝叶斯压缩感知宽带频谱检测方法
CN111030952A (zh) 一种毫米波系统的波束空间信道估计方法及系统
CN108259397B (zh) 基于自适应正则化子空间追踪压缩感知算法的大规模mimo系统信道估计方法
Zhang et al. Autonomous compressive-sensing-augmented spectrum sensing
CN105680963B (zh) 一种能效优先的分布式压缩感知频谱检测与功率分配方法
CN110011742A (zh) 基于最大互相关熵准则鲁棒稀疏的宽带频谱感知算法
CN114268388A (zh) 一种在大规模mimo中基于改进gan网络的信道估计方法
CN114285523B (zh) 面向多业务需求的大规模mtc免授权多用户检测方法及系统
CN108566227B (zh) 一种多用户检测方法
CN112543409B (zh) 一种到达时间toa估计方法及基站
Sun et al. Compressive autonomous sensing (CASe) for wideband spectrum sensing
Bergel et al. Lower bound on the localization error in infinite networks with random sensor locations
Yan et al. Distributed collaborative spectrum sensing using 1-bit compressive sensing in cognitive radio networks
CN115967421A (zh) 一种分布式天线系统下联合参数估计与信号重构的方法及系统
KR102032956B1 (ko) 시간적 상관 관계를 이용한 다중 안테나 통신 시스템에서 채널 추정 방법 및 그 장치
CN110912843A (zh) 大规模无线传感器网络中的分布式盲估计方法及系统
CN114978818A (zh) 一种基于压缩感知的自适应信道估计方法及估计系统
Azghani et al. Simultaneous block iterative method with adaptive thresholding for cooperative spectrum sensing
Fang et al. Robust wireless LAN location fingerprinting by SVD-based noise reduction
WO2017101097A1 (zh) 一种信道统计信息获取方法和接收机
CN108400948B (zh) 一种环境自适应感知无线通信信道估计与信号重构方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant